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ABSTRACT: As computer data grows exponentially, detecting anomalies within system logs has become increasingly
important. Current research on log anomaly detection largely depends on log templates derived from log parsing. Word
embedding is utilized to extract information from these templates. However, this method neglects a portion of the
content within the logs and confronts the challenge of data imbalance among various log template types after parsing.
Currently, specialized research on data imbalance across log template categories remains scarce. A dual-attention-based
log anomaly detection model (LogDA), which leveraged data imbalance, was proposed to address these issues in the
work. The LogDA model initially utilized a pre-trained model to extract semantic embedding from log templates.
Besides, the similarity between embedding was calculated to discern the relationships among the various templates.
Then, a Transformer model with a dual-attention mechanism was constructed to capture positional information and
global dependencies. Compared to multiple baseline experiments across three public datasets, the proposed approach
could improve precision, recall, and F1 scores.
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1 Introduction
Information technology has experienced significant growth with the arrival of the big data era. The

exponential growth in data volume and the frequency of data exchanges highlight the need for a stable and
secure network. Currently, most application systems are required to operate without interruption. Server
overloads, application errors, or external data attacks affect millions of users, underscoring the critical
importance of rapid error detection [1]. Given the importance of log anomaly detection, an increasing
number of studies have been proposed. Initially, keyword matching or regular expressions [2,3] are used
to manually detect log anomalies. Recently, deep learning models have been widely utilized for automatic
anomaly detection [4,5]. Effective methodologies have been proposed, including the mining of log sequence
patterns and word embeddings to extract semantic features. However, these methods fail to adequately
address imbalanced log template data caused by log parsers. Some fundamental challenges remain as follows:

1. The impact of data noise. Currently, most log anomaly detection tasks rely on standard log parsing
tools [6,7]. However, the use of these tools or the process of collecting and processing log data may
encounter issues like data loss, duplication, and errors, which introduce a certain level of noise. This
noise adversely affects the performance of log anomaly detection.

2. Imbalance in data across different types of log templates. Various types of log templates are generated
after processing raw log data using log parsing tools. These log templates exhibit a significant imbalance
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in data distribution (Fig. 1). However, most existing studies fail to address or adequately address the
log-template class imbalance.

3. The absence of semantic vectors. Numerous approaches utilize word embeddings to obtain semantic
vectors for log templates in many log anomaly detection tasks. However, this method discards some
information from log templates, which results in incomplete semantic vectors.

Figure 1: Distribution of occurrences for some templates in the HDFS logs. The highest template occurrence reaches
1,719,741 times, while the lowest is only 165 times. ‘*’ represents variables in the original logs

Based on dual attention and data imbalance (LogDA), a novel log anomaly detection model was
proposed to address the aforementioned issues. A pre-trained model was used to obtain the semantic vectors,
which captured the relationships between log templates. Drawing inspiration from research in text similarity,
the work utilized cosine similarity to compute the relationships between vectors, constructing a scoring
matrix in the process. These relationships were then integrated into the semantic vectors, which captured
connections among various types of log templates. A dual-attention Transformer model equipped with a
flexible and resource-efficient mechanism was developed to capture crucial log information. This design
enhanced the extraction of both global and local details. The proposed approach was evaluated using real-
world open-source datasets, including BGL, HDFS, and Thunderbird. The contributions of the work can be
summarized as follows:

1. The work proposed the LogDA model, a dual-attention Transformer model based on data imbalance.
The model could capture key information in log anomaly detection and reduce the impact of noise by
calculating the similarity between templates and employing a dual-attention mechanism.

2. Most log anomaly detection approaches used word embedding to generate semantic vectors, which
led to a loss of log information. The LogDA model leveraged a pre-trained model to extract sentence
embeddings for log templates, which minimized semantic information loss. Additionally, data imbal-
ance among log template categories was addressed by constructing a scoring matrix using the similarity
of sentence embeddings.

3. A new perspective on log anomaly detection was presented, focusing on the highly imbalanced types
of log templates generated by log parsers. The similarity between log template types was calculated
to construct a scoring matrix capturing their interrelations. A Transformer model was designed
with a dual-attention mechanism to better capture these relationships, which mitigated log-template
data imbalance.

4. The LogDA model achieved state-of-the-art performance on three public benchmark datasets.



Comput Mater Contin. 2025;83(1) 1293

2 Related Work

Currently, most system logs are automatically generated and consist of multiple specific events that
are represented as unstructured text. The task of log parsing is to extract these important events from
the unstructured text and reconstruct them into structured text for subsequent log anomaly detection
analysis (Fig. 2). In recent years, Drain [6] and Spell [7] are the most commonly used log parsing tools in
various log anomaly detection tasks. Drain is a log parsing method based on deep parsing trees that uses
regular expressions to separate constants from variables and extract parameters [8]. Spell is a log parsing
method based on the longest common subsequence of log sequences. Since log parsing significantly impacts
subsequent anomaly detection, and Drain shows high accuracy [9], Spell will be used in our future work.

Figure 2: Log parsing process. The original logs are shown at the top, and the log templates extracted using Drain are
displayed below. ‘*’ represents variables in the original logs

These templates need to be converted into feature vectors for log anomaly detection after transforming
the original logs into structured log templates through log parsing. The methods for log anomaly detection
have gradually shifted from manual identification to machine learning and deep learning techniques. Some
prominent machine learning methods in log anomaly detection include support vector machine (SVM) [10],
decision trees [11], and principal component analysis (PCA) [12]. However, traditional machine learning
methods fail to capture semantic information in log texts, which limits their effectiveness with increasing log
volumes. Consequently, researchers have proposed numerous deep learning-based methods for log anomaly
detection. Recurrent neural networks (RNNs) have become particularly prominent, especially long short-
term memory networks (LSTM) [4,5], bidirectional long short-term memory (Bi-LSTM) [13–15], and gated
recurrent units (GRUs). For instance, DeepLog [4] uses LSTM to predict whether the next log sequence
is anomalous; if fails, the sequence is considered anomalous. Logs are characterized as being unstable
and in continuous change [13]. A Bi-LSTM model is employed to capture contextual information within
log sequences.
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In addition to recurrent neural networks (RNNs) for log anomaly detection, Refs. [16–18] employ
bidirectional encoder representations from transformers (BERT). Guo et al. introduced LogBert [15], a
method that establishes two self-supervised training tasks specifically for log anomaly detection. Addressing
the challenge of imbalanced learning in log anomaly detection, the most significant contributions include
the MLog method proposed by Fu et al. [19], as well as research conducted by Yan et al. [20]. Recently,
the advancement of large-scale models has significantly influenced the landscape of log anomaly detection
research. He et al. introduced a method involving the fine-tuning of these large models, aiming to reduce
the parameter count in log anomaly detection models [21,22]. Table 1 compares the work with diverse
deep-learning approaches, focusing on their ability to handle the discrete attributes of logs, effectiveness
in mitigating the loss of semantic information, and strategy for addressing the imbalance present among
various log template types. However, most models for log anomaly detection rely on word embeddings to
extract semantic vectors. This approach does not address data imbalance among log templates post-parsing.
Therefore, the similarity between template types was calculated to enrich the semantic vectors with semantic
similarity in the work. Besides, a dual-attention Transformer was used to capture semantic information for
anomaly detection.

Table 1: Comparison with previous work

Methods Discrete Semantic loss Imbalance templates
DeepLog × × ×

LogAnomaly
√ × ×

LogRobust
√ × ×

LogBert
√ × ×

LogDA (Ours)
√ √ √

3 Approach
This section presents the overall framework of LogDA and explains its workflow from log parsing,

semantic vectorization, and classification based on dual attention.

3.1 Overview
As an innovative log anomaly detection method, LogDA was proposed to address the earlier

issues. Fig. 3 shows the overall structure of LogDA. The procedure began with log parsing, aiming at deriving
structured templates. Subsequently, a pre-trained model was utilized to extract the semantic vectors of these
templates. LogDA was used to construct a scoring matrix, which captured relationships between various
log template categories and handled data imbalance among different types of log templates post-parsing.
Then LogDA employed a dual-attention Transformer for anomaly detection, which captured both the global
semantic information of sequences and the relationships between templates. This method could address data
imbalance among log templates.



Comput Mater Contin. 2025;83(1) 1295

Figure 3: Overall structure of the LogDA model. Unprocessed logs are transformed into templates through the Drain
log parser. These templates are then vectorized utilizing a pre-trained model, which facilitates the calculation of a
similarity matrix. The fused semantic vectors are then input to a dual-attention classifier for anomaly detection

3.2 Log Parsing
Raw logs, typically unstructured, consist of a log header and log content [23]. In Fig. 2, the first log

entry, “210637 1283 INFO dfs.DataNode$PacketResponder: Received block blk_-7526945448667194862 of
size 67108864 from/10.251.203.80,” has log header “210637 1283 INFO dfs.DataNode$PacketResponder:” and
log content “Received block blk_-7526945448667194862 of size 67108864 from/10.251.203.80.” Both the log
header and content consist of constant and variable words. Constant words are fixed in the log sequence,
while variable words record information like runtime details. In log parsing, variable words in the raw logs are
removed, only with constant words retained. For instance, the parsed log template in the figure is “Received
block blk_<*> of size <*> from/<*>”. Here, the variable numeric details are substituted with wildcards, which
constitute the final output.

3.3 Semantic Vectorization
Although structured log templates can be obtained through log parsing, they cannot be directly used for

training in log anomaly detection tasks. Log templates must be vectorized into semantic vectors for computer
learning. Moreover, the semantic vectorization procedure is segmented into two distinct phases (Fig. 4). This
approach is designed to mitigate data imbalance across various log template types. Thus, semantic vectors
encapsulate both the original meanings and the interrelationships between different templates. These include
log template vectorization and log scoring matrix construction.

3.3.1 Log Template Vectorization
The log templates are converted into fixed-dimensional vectors of dimension d in the process of log

template vectorization. Pre-trained model Sentence-BERT [24] is used to vectorize log templates in the
LogDA task. The model employs vectorization for log templates at the sentence level, ensuring the retention
of their parameters. This method preserves the entire semantic content of the templates. The embedding
dimension of the pre-trained model is set to 768 by default. X represents the list of log templates obtained after
parsing from different datasets, containing n log template entries. The resulting vectors can be represented
as follows after vectorization.

E = V E (X) (1)

where V E represents vectorization performed by the pre-trained model. The semantic vectors of the log
templates are obtained after vectorization, denoted as E, E ∈ Rn×d .
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Figure 4: Semantic vectorization flowchart. Log templates are vectorized, and a similarity matrix between the log
templates is computed. Weighted fusion is applied to generate new semantic vectors that retain the original semantics
and relationships among different log templates. ‘*’ represents variables in the original log

3.3.2 Construction of the Log Scoring Matrix
Once the log templates are transformed into semantic vectors, LogDA maps the interconnections among

them by creating a similarity matrix. This matrix is found in the likeness between various types of log
templates. The log templates with the highest and lowest similarity are selected to the template “instruction
cache parity error corrected” in the BGL dataset (Fig. 5). The high similarity with the target log template
is attributed to both involving parity error issues in the cache, which causes the system to perceive them
as similar. Semantic vector E = [v1 , v2, . . . , vN], where vi ∈ Rd ; i ∈ [1, N] represents the semantic vectors of
different log templates; N represents the total number of log template types. The similarity between different
log templates is calculated using a semantic vector E.

Log − simil arity (vi , v j) =
vi ⋅ v j

∥vi∥ ∥v j∥
(2)

where vi , v j represent the semantic vectors of different log templates within the set of E. Similarity matrix
S , S ∈ Rn×n is obtained by calculating the similarity between various templates, capturing the relationships
among different types of log templates. The similarity matrix requires computing the cosine distance between
all log templates. This approach results in the computational complexity of O (N2 ⋅ d), where N is the number
of templates; d is the embedding dimension (768). In the case of exceptionally large datasets, particularly
where the number of log templates spans tens or even hundreds of thousands, the computational load
becomes substantial. However, such large datasets are uncommon in real-world scenarios. Most log template
datasets, such as all datasets used in this experiment, only contain a few thousand templates. Then the impact
of computational complexity is negligible.
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Figure 5: Log templates most similar and least similar to the target log template, along with their similarities. The log
templates are selected from the BGL dataset. Log templates that are highly similar share the same type of issues as the
target template, which results in their high similarity. ‘*’ represents variables in the original log

Most log templates exhibit low similarity with one another in the similarity matrix. Lacking adequate
precautions, computing the similarity across all log templates results in a substantial expansion of data
volume. This, in turn, will intensively deplete resources and severely diminish computational efficiency. For
instance, when incorporating the scoring matrix, the duration required for semantic vectorization within the
BGL dataset is 433.48 s, whereas it is 276.96 s when excluding the scoring matrix. A threshold is set in the
experiment to retain only high similarity, improve computation, and filter out noise. Extensive experiments
indicate that the threshold range is set between 0.90 and 0.95 for the HDFS and Thunderbird datasets with log
entries exceeding 10 M. Setting the threshold too low can result in excessive use of resources and decreased
efficiency in computations. The threshold range is between 0.75 and 0.80 for the BGL dataset. Given that the
BGL dataset has a limited number of log entries (just 5 M), setting a threshold too high will result in the loss of
most relationships between log templates, which reduces performance. Additionally, data are normalized to
ensure numerical stability and facilitate subsequent processing, which enhances the accuracy of later analysis
and processing. Thus, a similarity matrix S′ is obtained. Finally, based on Eq. (3), the log semantic vector
matrix V is obtained by weighting sentence vectors with the similarity matrix. S′ represents the relationships
among different types of log templates.

V = S′ ⋅ E (3)

The final semantic vectors contain the similarity between different types of log templates and the original
semantic information of log templates. In this way, LogDA can capture the relationships between different
types of log templates, preserving the original semantic information of log templates.

3.4 Classification Based on Dual Attention

Log templates are transformed into semantic vectors after semantic vectorization., Semantic vector
matrix V forms, and each row represents the semantic vector of a distinct log template (e.g., [V1 , V2, . . . , Vn]).
Using these semantic vectors as input, LogDA employs a Transformer model with a dual attention mecha-
nism to capture information within semantic vectors. The Transformer model significantly affects artificial
intelligence development due to its self-attention mechanism [25]. It can process log information across
the input sequence and capture relationships between logs. Nevertheless, the multi-head self-attention
mechanism possesses certain limitations; it emphasizes global information at the expense of local detail
capture. Attention-free transformer (AFT) [26], an efficient, low-complexity mechanism for capturing local
information, is used to address these shortcomings. Similar to the multi-head attention mechanism, AFT
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applies different linear layers to the input features, which obtains Q , K , V (Q , K , V ∈ Rn×d ). Learnable posi-
tional encoding wt′ ,t is added to Kt′ in AFT, and 1 ≤ t′ ≤ n. Moreover, the traditional matrix multiplication
in the Transformer model is adapted to an element-wise multiplication, which yields the final output.

α1 = so f tmax
⎛
⎝

QKT
√

d/h
⎞
⎠

(4)

α2 = sigmoid (Qt) ⊙
∑n

t′=1 exp (Kt′ +wt ,t′) ⊙ Vt′

∑n
t′=1 exp (Kt′ +wt ,t′)

(5)

α = α1 + α2 (6)

Attention values α1 and α2 are combined through residual connection to obtain the final attention
value α. α1 and α2 represent the outputs from the multi-head attention mechanism and the AFT attention
mechanism, respectively. The deep learning model dynamically fine-tunes the output weight of the two
attention mechanisms by summing their attention values via a residual connection while training. This
process, driven by gradient updates, shapes the final output of the model.

The probability of log anomalies (y) is obtained through the feedforward sublayer and subsequent nor-
malization layer. The binary cross-entropy (BCE) loss function is employed, enabling the direct computation
of logits without the necessity of separately applying the sigmoid function. This approach is more efficient
and stable.

BCEWithLogitsLoss (y, ŷ) = 1
N

N
∑
i=1
(yi ⋅ log (σ ( ŷi)) + (1 − yi) ⋅ log (1 − σ ( ŷi))) (7)

where yi is the true label (0 or 1); ŷi represents the model’s output logit; Eq. (8) is the sigmoid function that
converts logits to 0–1.

σ ( ŷi) =
1

1 + e−yi
(8)

4 Experiments
This section compares LogDA on multiple datasets against existing methods. Then, ablation experi-

ments and parameter analysis are performed on LogDA.

4.1 Experimental Design
4.1.1 Datasets

Three public datasets from LogHub [27] (e.g., HDFS [28], BGL, and Thunderbird [29]) were used for
evaluation. The Hadoop distributed file system (HDFS) datasets consisted of 11,175,629 logs generated by
Hadoop. Logs were manually annotated using tailored rules to differentiate between normal and abnormal
events. The BGL dataset, collected from the BlueGene/L supercomputer system at Lawrence Livermore
National Laboratory (LLNL), comprised 4,747,963 log messages, each categorized for analysis. Thunderbird,
gathered from the Thunderbird supercomputer system at Sandia National Laboratories (SNL) in Albu-
querque, also included similar labels to the BGL dataset. In this experiment, 10,000,000 log messages from
Thunderbird were used as the research dataset.
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Table 2 provides statistical data for these three log datasets. Log sequences for the HDFS dataset were
extracted using block_IDs while sliding window methods were employed for the BGL and Thunderbird
datasets. Log parsing was conducted with the Drain and custom regular expressions.

Table 2: Log dataset configurations

Datasets Duration Messages Templates
HDFS 38.7 h 11 M 48
BGL 7 months 5 M 462

Thunderbird 244 days 10 M 4992

4.1.2 Evaluation Metrics
Precision, Recall, and F1 score are used to evaluate the log anomaly detection experiments

(Eqs. (9)–(11)).

Precision = TP
TP + FP

(9)

Recall = TP
TP + FN

(10)

F1 = 2 ∗ Precision ∗ Recall
Precision ∗ Recall

(11)

where TP represents the number of abnormal logs correctly detected as abnormal; TN represents the
number of normal logs correctly detected as normal; FP represents the number of abnormal logs incorrectly
detected as normal; FN represents the number of normal logs incorrectly detected as abnormal.

4.1.3 Environment Setup
The experimental configuration comprised a Windows 10 64-bit operating system, equipped with

32 GB of RAM, an 11th Gen Intel
R©

Core™ i7-11700 CPU running at 2.50 GHz, and an Nvidia RTX3090Ti GPU.
In the course of the experiments, I explored different configurations of the Transformer encoder, ranging
from 1 to 4 layers. The batch size was consistently set at 64, with the model utilizing 8 attention heads. For
optimization, the Adam algorithm was employed.

4.2 Experimental Evaluation
This section validates the performance of LogDA on datasets HDFS, BGL, and Thunderbird. LogDA was

compared with various machine learning methods in the experiments, including invariant mining (IM) [30],
principal component analysis (PCA), and deep learning methods (e.g., DeepLog, LogAnomaly, LogRobust,
and LogBert). For the machine learning methods, the work utilized the loglizer package [31] for evaluation,
while the deep learning methods were implemented using the open-source toolkits LogADEmpirical [32]
and log deep. Table 3 displays the comparative outcomes of various methodologies, including LogDA, on the
HDFS, BGL, and Thunderbird datasets.
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Table 3: Performance of different methods on various datasets

Datasets HDFS BGL Thunderbird

Precision Recall F1 score Precision Recall F1 score Precision Recall F1 score
IM 0.77 1.00 0.87 0.44 0.25 0.32 0.50 0.05 0.09

PCA 0.99 0.26 0.41 1.00 0.23 0.38 1.00 0.19 0.32
DeepLog 0.96 0.25 0.40 0.92 0.78 0.84 0.88 0.99 0.93

LogAnomaly 0.97 0.40 0.57 0.89 0.79 0.84 0.88 0.99 0.93
LogRobust 0.95 0.95 0.95 0.96 0.93 0.94 0.66 1.00 0.80

LogBert 0.71 0.78 0.74 0.86 0.92 0.89 0.98 0.95 0.96
LogDA 0.99 0.99 0.99 0.99 0.97 0.98 1.00 0.97 0.98

Note: Bold numbers represent the best performance.

Experimental data in Table 3 show that traditional machine learning methods (e.g., PCA and IM)
exhibit poor performance in log anomaly detection, especially on the BGL and Thunderbird datasets.
Although these methods may yield high accuracy or recall rates, a common challenge in machine learning
approaches is the trade-off between accuracy and recall, which leads to suboptimal F1 scores. This issue
likely occurs because event-counting methods fail to capture relationships between log events in complex
datasets. In contrast, deep learning approaches exhibit significantly superior performance compared to
traditional machine learning techniques, with particularly impressive results observed on the BGL and
Thunderbird datasets. Deep learning approaches can capture the relationships between logs in more complex
datasets. Notably, LogDA attains exceptional performance across all three datasets, with metrics surpassing
0.95 and achieving 0.99 on HDFS, which outperforms the second-best baseline by a 4% margin. Table 3
illustrates that LogDA outperforms other log anomaly detection methods on all three datasets. LogDA is
superior in capturing the interrelations between various log templates by handling diverse log templates
and employing a dual attention mechanism, which enhances the precision of anomaly detection in logs.
Specifically, LogDA’s dual-attention mechanism in its Transformer encoder captures both local and global
log information more effectively.

Fig. 6a–c presents the ROC curves and AUC values constructed for the BGL, Thunderbird, and HDFS
datasets, which can better evaluate the LogDA model. The LogDA model achieves an AUC of 1.00 on both
the Thunderbird and HDFS datasets and 0.99 on the BGL dataset. LogDA encompasses a more thorough
understanding of log template semantics by leveraging pre-trained models and preprocessing diverse log
template types. Furthermore, a dual-attention mechanism enhances its capability to discern the relationships
between various log template types, which yields high performance in log anomaly detection.

The confusion matrix is an important evaluation method. Fig. 7a–c illustrates the confusion matrices
for the LogDA model on the BGL (a), Thunderbird (b), and HDFS (c) datasets, based on the previously
mentioned true positive (TP), true negative (TN), false positive (FP), and false negative (FN). The proportion
of detected positive cases by LogDA in log anomaly detection is significantly higher than that of negative
cases, indicating the effectiveness of the LogDA model.
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Figure 6: ROC curves and AUC values of the LogDA model on different datasets. (a) BGL dataset (AUC = 0.991);
(b) Thunderbird dataset (AUC = 1.000); (c) HDFS dataset (AUC = 1.000). AUC represents the model’s classification
performance, with values closer to 1 indicating better classification effectiveness

Figure 7: Confusion matrices of the LogDA model on different datasets. (a) BGL dataset; (b) Thunderbird dataset; (c)
HDFS dataset. “True” and “False” represent correct and incorrect predictions, respectively. The high True counts across
all datasets indicate the model’s high accuracy

4.3 Ablation Study
The experiment compared the performance of the traditional Transformer encoder and the dual

attention mechanism encoder on the BGL and Thunderbird datasets to validate the effectiveness of the
proposed dual attention mechanism. As depicted in Fig. 8a, the dual attention mechanism exhibits slightly
lower recall on the BGL dataset compared to the conventional Transformer encoder; however, it attains
superior accuracy and F1 scores. Fig. 8b presents the performance of the traditional encoder and the
dual attention encoder on the Thunderbird dataset. The dual attention mechanism encoder outperforms
the traditional Transformer encoder, indicating that the dual attention mechanism can better capture the
relationships between different types of log templates.

Fig. 9a shows the performance of the dual attention mechanism model with different neural network
layer counts on the BGL dataset. Fig. 9b depicts the performance of the traditional Transformer encoder
with varying neural network layer counts on the BGL dataset. F1 scores of the model employing the dual
attention mechanism consistently surpass those of the traditional Transformer encoder across diverse layer
configurations. Furthermore, as the layer count increases, the stacking of the traditional Transformer encoder
adversely affects its performance, which leads to a decline. In contrast, the dual attention mechanism model
maintains stable performance, which makes it more resilient to various uncertainties encountered in log
anomaly detection.
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Figure 8: Performance of different attention mechanisms on various datasets. (a) BGL dataset; (b) Thunderbird
dataset. The double attention mechanism achieves superior performance, demonstrating its enhanced ability to capture
relationships between templates

Figure 9: Comparison of F1 scores of different models with varying layers on the BGL dataset. (a) Dual-attention
Transformer model; (b) Traditional Transformer model. The curve in (a) is smoother than in (b). The dual-attention
mechanism model outperforms the traditional model with greater stability

The work selected thresholds of 0.75, 0.80, and 0.85 on the BGL dataset and conducted experiments
utilizing both the traditional Transformer encoder and the proposed dual-attention mechanism, which
investigated the effect of similarity threshold values on performance between different log template types.
The increased threshold improved the F1 scores achieved by the dual-attention model (Fig. 10). Additionally,
higher thresholds could reduce data resource consumption and unnecessary noise. However, the threshold
should not be excessively high, as this might exclude important relationships between different types of log
templates in semantic information. The adjusted threshold affected the generation of the similarity matrix.
When the scoring matrix was within a reasonable range, the relationships between different types of log
templates were captured without compromising the original semantics of the log templates.
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Tasks with fewer than 100,000 training samples were regarded as low-resource conditions to assess
the performance of the LogDA model in low-resource scenarios. The experiment was conducted on the
Thunderbird dataset, with 30 epochs of training. F1 scores for different amounts of training samples ranging
from 50 to 100 k were compared (Fig. 11). The dual-attention model consistently outperformed the traditional
Transformer encoder, particularly with limited training data. For instance, with only 50 k training samples,
the F1 score of the traditional Transformer encoder was 0.68, while the dual-attention model achieved an F1
score of 0.78. Similarly, with 100 k training samples, the F1 scores were 0.76 and 0.83, with the dual-attention
model outperforming the traditional Transformer encoder. Moreover, the F1 scores obtained from the dual
attention model remained more stable without significant fluctuations. The dual attention mechanism was
effective in capturing the relationships between different types of log templates, even when the training
samples were limited. Overall, LogDA provided acceptable results under low-resource settings. The model
demonstrated considerable reliability in scenarios where computational resources were scarce or when the
volume of anomalous logs was minimal.

Figure 10: Impact of different thresholds on performance in the BGL dataset. Thresholds of 0.75, 0.80, and 0.85 are
tested. The F1 score is highest at a threshold of 0.80, suggesting that both too-high and too-low thresholds hinder the
model’s ability to capture semantic information. A balanced threshold selection is essential

Figure 11: Comparison of F1 scores with different training samples on the Thunderbird dataset.50, 60, 70, 80, 90, and
100 k training samples are used. The dual-attention mechanism outperforms other mechanisms, particularly under
resource-limited conditions
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5 Conclusion

The work addressed the challenge of heterogeneity in various types of log template data by introducing
LogDA, a log anomaly detection method leveraging the disparities within log template data. A scoring
matrix was constructed based on different types of log templates and was integrated into the semantic
vectors. These vectors were allowed to retain both their original semantic information and the relationships
between log templates. Moreover, a dual-attention mechanism model, capturing the correlations among log
templates, was presented to overcome the constraints of conventional Transformer encoders. The capture
of relationships between different types of log templates was enhanced by constructing a scoring matrix
and employing a dual-attention mechanism. Although this approach might entail increased computational
complexity relative to other methods, its impact on large-scale log processing was minimized by employing
varied threshold values and normalization techniques. The model maintained high performance even
when handling large-scale log data. Comprehensive experiments have shown that LogDA excelled in
capturing the intricate relationships between different types of log templates, thanks to its integration of
pre-trained models, sophisticated preprocessing of template interrelations, and the innovative dual-attention
mechanism. This enabled LogDA to achieve superior performance in log anomaly detection, enhancing the
stability of the anomaly detection process.

However, the challenge of increased training parameters and computational load remains when dealing
with large-scale datasets. Therefore, our future research will prioritize the reduction of parameter size in
model training through the application of fine-tuning techniques derived from larger models. This approach
aims to simultaneously increase the efficiency and accuracy of log anomaly detection methods.
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