
echT PressScience

Doi:10.32604/cmc.2025.060713

ARTICLE

Application of Deep-Learning Potential in Simulating the Structural and
Physical Characteristics of Platinum

Keyuan Chen1 , Xingkao Zhang1 , Li Ma1 , Jueyi Ye1 , Qi Qiu1 , Haoxiang Zhang1 , Ju Rong1,*,
Yudong Sui1,*, Xiaohua Yu1,2 and Jing Feng1

1Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China
2Yunnan Key Laboratory of Integrated Computational Materials Engineering for Advanced Light Metals, Kunming, 650093, China
*Corresponding Authors: Ju Rong. Email: 20200020@kust.edu.cn; Yudong Sui. Email: 20180070@kust.edu.cn
Received: 07 November 2024; Accepted: 03 January 2025; Published: 26 March 2025

ABSTRACT: The deep potential (DP) is an innovative approach based on deep learning that uses ab initio calculation
data derived from density functional theory (DFT), to create high-accuracy potential functions for various materials.
Platinum (Pt) is a rare metal with significant potential in energy and catalytic applications, However, there are challenges
in accurately capturing its physical properties due to high experimental costs and the limitations of traditional empirical
methods. This study employs deep learning methods to construct high-precision potential models for single-element
systems of Pt and validates their predictive performance in complex environments. The newly developed DP is highly
consistent with DFT results in predicting the stable phases, lattice constants, surface energies, and phonons dispersion
relations of Pt, demonstrating outstanding quantum-level accuracy. Additionally, the complex phase transitions and
domain formations of Pt are extensively and quantitatively analyzed. Molecular dynamic simulations utilizing the DP
approach show that Pt’s face-centered cubic (FCC) structure undergoes a phase transition from solid to liquid at its
melting point of 1986 K, this is in close agreement with the experimental value of 2041.5 K. Increased temperature
enhances the diffusion of Pt atoms, with a self-diffusion coefficient of 1.17 × 10−11 m2/s at the melting point, comparable
to that of other FCC metals. This result can be utilized for the precise analysis of the fundamental properties of the
rare metal Pt at the microscopic scale, and it facilitates the development of binary or multi-component deep potential
models that include Pt.
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1 Introduction
The interactions of atoms, molecules, and ions are at the core of molecular dynamics (MD) studies

in condensed matter, with interatomic potential energy surfaces serving as precise tools for defining these
interactions. Ensuring the accuracy and applicability of potential energy surfaces across various physical
conditions has long been a major challenge limiting the MD simulation applications. The development of
interatomic potentials began with early empirical potentials and has now evolved towards sophisticated
models constructed using advanced machine learning (ML) methods [1]. The choice of interatomic potential
functions is typically based on the requirements for accuracy and computational cost. Simplified physical
models often employ empirical potentials [2–4], semi-empirical potentials are used for reaction dynam-
ics [5–7], and complex molecular system simulations increasingly adopt ML-based potentials to enhance
accuracy [8–10].
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Empirical potential functions are simple models derived from experimental phenomena and empirical
rules, excelling in efficiency for large-scale simulations but limited in their ability to accurately describe
complex interactions. Semi-empirical potentials, which combine physical foundations with experimental
fitting, can handle multi-body interactions more accurately but come with lower computational efficiency.
Clearly, while ab initio methods offer high accuracy, they are computationally expensive, and empirical force
field methods, although efficient, may lack precision. Therefore, it is essential to develop a potential energy
model that achieves an optimal balance between accuracy and computational practicality and is widely
applicable. ML has emerged as an alternative approach, leveraging Density Functional Theory (DFT) data as a
training set to map complex relationships between features, energies, and forces, enabling the development of
ML potentials [11–13]. With further optimization of ML algorithms and increased computational resources,
ML potentials have been widely applied in fields like computational physics, chemistry, and materials
science [14]. Zhang et al. first pioneered the Deep Potential (DP) model, successfully bridging ab initio
calculations, ML methods, and classical force fields [15]. The DP model, built with deep neural networks,
combines the advantages of deep learning techniques with first-principles calculations. It efficiently and
accurately simulates complex material systems, precisely describing the intricate many-body interactions
and potential energy surface characteristics of Pt atoms. The key distinction between this approach and DFT
calculations lies in its ability to maintain accuracy comparable to ab initio calculations while retaining the
computational efficiency of empirical potential models. This fully meets our requirements for high-precision
and large-scale simulations. The DP potential energy surface model, driven by the DP-GEN package,
combines rapid data sampling and optimization advantages while being compatible with first-principles
calculation software, such as VASP [15] and Quantum ESPRESSO [16,17], gradually becoming a mainstream
approach in deep learning-based potential surface construction. To date, the DP model has been widely
applied to various material systems, including pure metals [18–20], alloys [21–24] and compounds [25–28],
significantly advancing MD simulation studies. However, MD simulations based on deep potential models
via DP-GEN in the field of single-element Pt systems are still limited.

Pt is a rare, corrosion-resistant metal with excellent catalytic properties [29–32]. Incorporating Pt into
automotive exhaust systems can effectively purify harmful emissions [33], and its good biocompatibility
makes it suitable as an electrode material for pacemakers [34], reducing the risk of rejection in patients. Given
Pt’s scarcity in nature and the high cost of experimental validation due to the complexities of extraction,
inspired by the work of Elkoua et al. [35] and Belhamra et al. [36], who explored material properties
through simulation calculations, a reasonable solution is to conduct preliminary studies through simulation
calculations. Clearly, the DP method has achieved remarkable success, and as its application to single-element
Pt systems has yet to be thoroughly explored, this study will employ deep potential function fitting techniques
to further optimize and extend a DP potential model tailored to Pt.

In this study, a comprehensive dataset containing rich structural information along with energy,
mechanical, and simulation data will be used to train the DP potential, aiming to achieve accurate
descriptions of the physical and mechanical properties of Pt. DP potential simulations will be performed
using this data, with simulation results verified by comparison with DFT calculations. The research scope
comprehensively covers the physical properties of Pt (such as lattice constants, surface energy, vacancy
and interstitial formation energies), Mechanical characteristics (such as elastic constants, lattice thermal
conductivity), and dynamic properties (such as phase transition temperatures). The findings of this study will
provide a high-quality DP potential for the single-element Pt system in future computational simulations
and lay a foundation for developing binary or multi-element potentials related to Pt.
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2 Computational Method
The DP-GEN framework [37] integrates the Init, Run, and Autotest processes to iteratively construct,

train, test, and refine deep neural network potential functions, which can then be deployed for molecular
dynamics simulations using DP-kit [38]. During the Init phase, a multi-layered data generation process
is conducted, comprising structural optimization, configuration perturbation, and ab initio molecular
dynamics (AIMD) simulations. At each AIMD simulation step, critical data—such as atomic coordinates,
stress tensors, forces, and energy—are gathered to form a comprehensive initial training dataset (Table S1).
In this study, initial structure preparation and perturbation steps are applied to three Pt crystal phases:
hexagonal close-packed (HCP), face-centered cubic (FCC), and body-centered cubic (BCC). Each unit
cell is first relaxed to obtain stable, low-energy configurations, then expanded into 2 × 2 × 2 supercells.
Atomic coordinates and cell boundaries are perturbed by 0.01 and 0.03 Å, respectively, to disrupt perfect
crystalline symmetry. For every crystal structure, 40 modified configurations are produced. Moreover, the
configurations are subjected to 15 distinct pressures, with scaling factors ranging between 0.7 and 0.95,
resulting in 150 unique configurations. Finally, AIMD simulations at 50 K for 20 fs are performed on these
perturbed structures to capture detailed data on their dynamic evolution, thus completing the foundational
dataset (Table S2). The ‘Run’ phase involves executing DP-GEN cycles a total of 32 times, producing a highly
accurate deep neural network potential function capable of effective performance under varied conditions.

The DP-GEN active learning cycle comprises three main stages: training, exploration, and labeling
(Table S3). This cycle continues until a specified number of iterations is reached or the desired accuracy is
attained. Training begins with the initial dataset from the Init stage or the most recently expanded dataset
from the previous labeling stage. Four potential function models are created, each initialized with a distinct
random seed. In the exploration phase, the deep neural network potential from the previous iteration is used
in molecular dynamics simulations, where configurations are selected based on uncertainty and structural
diversity criteria. These configurations are then labeled with high-accuracy data from DFT calculations,
providing precise information on energy, forces, and stress (Table S4) This labeled dataset improves the
diversity and accuracy of the training samples. During the training stage, new data samples are incorporated
to retrain the model, with parameters initialized by different random seeds to generate four slightly varied
potential functions (Table S5). In the subsequent Autotest phase, these DP models are evaluated against
metrics such as equations of state and elastic moduli to confirm their applicability. Fig. 1 shows a flowchart
of molecular dynamics simulations using a deep neural network-based DP model. For further details, refer
to the supporting information S1.
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Figure 1: Flowchart of molecular dynamics simulations based on a deep neural network DP model

3 Results and Discussion

3.1 Evaluation of the DP Model’s Performance

As shown in Fig. 2, a comparison of potential energy and predicted interaction forces for Pt atoms
between the DP and DFT models reveals a strong linear correlation, highlighting the consistent accuracy
of both models. The data distribution shows that predictions from the DP model align closely with those
from the DFT model, with points clustering along the line of DP = DFT. This result highlights the strong
correlation between the predictions of DP and DFT calculations, as supported by the maximum deviation
analysis illustrated in Fig. S1. Overall, for single-element systems modeled with DP, the root-mean-square
error (RMSE) remains below 2 meV/atom for energy and 55 meV/Å for atomic forces [39]. Specifically, for
Pt atoms, the trained DP model quantified potential energy and interaction forces with RMSE values of
0.348 meV/atom and 4.76 meV/Å, confirming the model’s reliability in reproducibility and accuracy.

3.2 Physical Properties of Pt
3.2.1 Lattice Constants and Equation of State of Pt

To evaluate the DP model’s effectiveness in simulating the physical properties of complex systems, we
characterized key properties of Pt atoms using the energy-volume (EV) curve and validated them against
DFT results. Fig. 3 illustrates the EV curve for FCC-Pt, as indicated. DP molecular dynamics simulations
effectively capture the energy response of different crystal structures across varying volumes. In the 14.8–
16.6 Å3/atom range, the EV curve aligns closely with the ±27% volume strain predicted by first-principles
methods. We also calculated the energy-volume curves for the FCC-and BCC-Pt structures (see Fig. S2).
Stability comparisons among the three structures reveal that FCC is the most stable, given its lowest energy,
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consistent with the principle that lower energy correlates with higher stability [40–42]. In contrast, the BCC
structure, a high-temperature phase, is the least stable.

Figure 2: Comparison of DFT and DP predictions: (a) energy of Pt, and (b–d) atomic forces of Pt in the x, y, and z
components

Figure 3: The EV curve (energy as a function of volume) for FCC-Pt. DFT represents ab initio results, and DP indicates
predictions from the deep potential model for Pt
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The equilibrium volume, essential for determining optimal material volume, is typically derived from a
compression curve or a third-order equation of state [43,44]. Here, the Birch-Murnaghan equation of state
was used to calculate Pt-related parameters. Table 1 shows that the DP model accurately captures equilibrium
constants for various crystal structures, with an error margin within 0.25% compared to first-principles
data [45]. Additionally, we compared the lattice constants calculated using the Embedded Atom Method
(EAM) and the Modified Embedded Atom Method (MEAM) with the DFT values. Notably, FCC-Pt results
align closely with experimental data [46]. Overall, the DP model demonstrates performance comparable to
DFT methods in predicting stable phases and lattice constants.

Table 1: The equilibrium lattice constants of three structures were predicted using DFT, DP, EAM, and MEAM

Source of lattice constant HCP(Å) FCC(Å) BCC(Å)
DFT a = 2.758 and c/a = 1.59 a = 3.924 a = 3.159
DP a = 2.761 and c/a = 1.60 a = 3.943 a = 3.161

Experiment – a = 3.922 –
EAM a = 2.801 and c/a = 1.67 a = 4.078 a = 3.246

MEAM a = 2.814 and c/a = 1.71 a = 4.142 a = 3.258

3.2.2 Formation Energy of Lattice Defects of Pt
As shown in Fig. 4a, the formation energy of self-interstitials and vacancies in FCC-Pt reveals that

the DP model’s self-interstitial formation energy is 3.93 eV, with a discrepancy of up to 1.27 eV from
DFT calculation results, approximately 47% of the total energy. Meanwhile, the vacancy formation energy
differs by 0.25 eV, a 4.6% deviation. Notably, the dataset used for training does not include vacancy and
self-interstitial configurations or configuration-specific potential energy and interaction forces. In high-
throughput computational screening, assessing vacancy/self-interstitial formation energies demonstrates
the important role of the DP model in accelerating the discovery and optimization of new materials [47].
Fig. 4b–d displays the surface energies of three Pt crystal structures (FCC, BCC, HCP). The DP model’s
predicted values closely align with DFT results. Sakong et al. [48] reported a surface energy of 1.49 J/m2 for the
BCC (111) plane of Pt, and our DFT model produced a test value of 1.56 J/m2, showing near-identical results.
For the (210) plane, we calculated a test value of 2.16 J/m2, closely matching Yoo et al. [49] value of 2.0 J/m2.
Both DP molecular dynamics simulations and DFT calculations converge on similar results. Among the FCC,
BCC, and HCP structures, the (111) plane consistently exhibits the lowest surface energy, while the (210), (211),
and (211) planes show the highest, confirming that FCC (111), BCC (111), and HCP (111) structures possess
the lowest surface energy values. For FCC metals, the surface energy order, ranked from lowest to highest,
is (111) < (100) < (110), and FCC-Pt follows this trend [50]. Across surface energy calculations for the three
structures, the maximum deviation between DP and DFT methods reaches 11.76%, particularly notable on
the BCC (211) surface. Overall, the DP model demonstrates high accuracy in predicting the thermodynamic
properties and surface energies of different Pt structures.
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Figure 4: Defect Energies and Surface Energies of Pt. (a) Energies of formation for self-interstitials and vacancies (point
defects) in FCC-Pt, and (b–d) surface energies in FCC-, BCC-, and HCP-Pt

3.2.3 Phase Transition Temperature of Pt
In a 2021 study, Smirnov et al. [51] used ab initio methods to simulate the thermodynamic properties

and stability of Pt, observing that the melting point of FCC-Pt at standard atmospheric pressure—indicating
the temperature at which the FCC structure transitions from solid to liquid—is 1986 K. This finding led us
to apply DP-based molecular dynamics simulations to investigate phase stability and identify the melting
temperature threshold, thereby assessing the DP model’s applicability. Fig. 5a presents the temperature-
energy relationship for the FCC-Pt crystal structure under standard atmospheric pressure, obtained using the
DP model and analyzed via the constant Number of particles, Pressure, and Temperature (NPT) ensemble.
The curve reveals a steady rise in total atomic energy from low to moderate temperatures (below 1986 K),
likely due to increased atomic vibrations from thermal expansion. At 1986 K, a noticeable energy fluctuation
occurs, representing latent heat absorption during the phase transition, suggesting the onset of melting for
Pt atoms. To maintain thermal continuity, we employed continuous heating to determine the melting point.
In the NPT molecular dynamics simulations, periodic boundaries were set for the computational region,
and a lattice system with 4000 atomic environments was constructed. After 500 ps of equilibrium, the BCC
structure of Pt was gradually heated from 300 K at 1.53 × 1013 K/s, reaching a temperature of 3000 K. Fig. 5b
displays the volume changes in the FCC-Pt structure near 1986 K, where volume expands gradually with
temperature due to typical thermal expansion, indicating a solid state with strong atomic binding forces. As
the temperature approaches 1986 K, volume fluctuations increase, signaling a transition from the ordered
solid to the disordered liquid state. Above 1986 K, the volume curve shows irregular fluctuations, consistent
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with liquid metal properties and indicating a complete phase transition in Pt atoms. This further confirms
the occurrence of the solid-liquid transition behavior of Pt. The melting point of Pt is determined to be
1986 K, based on the significant fluctuations in the volume and energy curves as a function of temperature,
with a deviation of 2.7% from the experimental value of 2041.5 K [52]. Additionally, the melting points
predicted using EAM and MEAM show deviations of 3.2% and 3.1%, respectively, from the experimental
value, as shown in Table S6. Given that Du et al.’s DP model-based melting point prediction for element Cu
was 8.6% above experimental data [53], and Xue et al. [54] and Liu et al.’s [55] melting point predictions
showed deviations of 2.9% and 5.2%, we conclude that the DP model demonstrates strong accuracy in
predicting the melting point of Pt. Evaluation results indicate that the DP model’s simulations effectively
capture the phase transition behavior of Pt atoms. The observed energy and volume trends align with
thermodynamic properties, accurately reproducing the melting process of Pt and validating the DP model’s
effectiveness in analyzing high-temperature phase transitions and phase stability in solid materials. This
accuracy is attributed to the extensive consideration of high-temperature phase reactions during potential
energy training.

Figure 5: Energy and Volume Characteristics of FCC-Pt. (a) Energy-temperature curves for FCC-Pt and (b) volume-
temperature curves for FCC-Pt obtained from molecular dynamics simulations based on the DP model
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3.2.4 Self-Diffusion Coefficient of Pt

As shown in Fig. 6, the prediction of the self-diffusion coefficient of FCC-Pt by the DP model
indicates that this coefficient significantly increases with rising temperature. The self-diffusion coefficient
was evaluated using DP molecular dynamics simulations within the constant Number of particles, Volume,
and Temperature (NVT) ensemble, with a calculation time of 200 ps. Temperature changes directly affect
the self-diffusion coefficient: as temperature rises, the vibration frequency and activation energy of Pt atoms
shift, leading to an increase in the self-diffusion coefficient. Specifically, higher temperatures enhance atomic
vibration frequency, accelerating atomic migration within the crystal and further increasing the self-diffusion
coefficient. Additionally, elevated temperatures reduce activation energy, facilitating atomic migration and
thus boosting the self-diffusion coefficient. Under high-temperature and high-pressure conditions, the α-
FCC structure of Pt can transition into β-BCC or β-HCP structures, ensuring Pt’s adaptability and heat
resistance in extreme environments. Within a certain temperature range, Pt atoms retain thermodynamic
stability in the system, indicating that Pt can regulate thermal stability through atomic diffusion and phase
transition mechanisms at elevated temperatures, effectively adapting to varying environmental demands.
Due to the scarcity of self-diffusion data for Pt atoms, we referenced coefficients from FCC-Ti, Zr, and
Hf, which exhibit similar phase transition characteristics and have more available data. Comparing the
predicted temperature-dependent self-diffusion coefficient of Pt atoms with experimentally observed trends
in FCC-Ti, Zr, and Hf, we find comparable diffusion characteristics [56–59]. Empirical data indicate that, for
FCC metals near melting conditions, the self-diffusion coefficient typically reaches an order of magnitude
of 10−11 m2/s [60]. At Pt’s melting point of 1986 K, the measured self-diffusion coefficient is approximately
1.17 × 10−11 m2/s, matching this expected magnitude. After comparing the data predicted by the DP model
with the experimental values [61], As shown in Table S7, it was found that the overall trend was generally
consistent with the variation pattern of the experimental results. Above the melting point, weakened atomic
interactions within Pt lead to a shift from an ordered solid to a disordered liquid state, causing a sharp
increase in the diffusion coefficient to a range of 10−9 to 10−11 m2/s. Thus, the DP simulation results for the
self-diffusion coefficient are both scientifically consistent and reliable.

Figure 6: Temperature-dependent self-diffusion coefficient of FCC-Pt predicted by the DP model
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The theoretical value of the FCC-Pt self-diffusion coefficient as a function of temperature follows the
Arrhenius formula, and the expression for this coefficient is as follows:

D (T) = (8.24 × 10−5) exp(− 37413
8.314T

) (1)

3.3 Elastic Properties (Elastic Modulus) of Pt
Pt atoms typically exhibit HCP, BCC, and FCC crystal structures, each with specific elastic tensors.

However, evaluating HCP and BCC structures requires extreme conditions, such as high pressure or high
temperature [62,63]. Consequently, we employed DP/DFT techniques for simulation calculations to test
the accuracy of DP in replicating DFT data. Small deformations of 1% were applied to normal strains
(εx x , εy y , εzz) and shear strains (εx y , εxz , εyz), followed by solving the total stress using either the DP model
or DFT method. The resulting stress-strain data was analyzed using linear least squares fitting. Table 2
summarizes the elastic coefficients of Pt atoms in HCP, BCC, and FCC phases at absolute zero. A comparative
analysis shows that the DP model’s predictions for HCP-Pt closely align with DFT values. For BCC-Pt, the
DP model’s predictions of elastic constants show deviations within ±1% from DFT data, which is within an
acceptable range. In terms of elastic response, DP simulations maintained absolute errors below 1.0 GPa for
over 87% of the statistical samples compared to DFT results. For the elastic tensor components C11, C12,
and C44 of FCC-Pt, the DP model exhibited exceptional accuracy, closely matching both experimental and
DFT results. Specifically, the DP model predicted values of C11, C12, and C44 as 346.9, 248.9, and 75.3 GPa,
respectively, while the experimental values are 348, 250, and 76 GPa [64], and DFT values are 349.8, 248.9,
and 76.4 GPa. The DP model’s predictions for C11 and C12 are only 0.3% and 0.4% lower than experimental
values, and the prediction for C44 deviates by less than 1%. These results indicate that the DP model offers
reliability and accuracy comparable to DFT calculations in predicting the elastic tensor of FCC-Pt, accurately
capturing the mechanical properties of Pt.

Using the Voigt equations and elastic constants, we also calculated the shear modulus and bulk modulus
for Pt’s three structures: FCC, BCC, and HCP.
HCP-Pt:

Bv =
[2 (C11 + C12) + 4C13 + C33]

9
(2)

Gv =
(M + 12C44 + 12C66)

30
(3)

M = C11 + C12 + 3C33 − 4C13 (3.1)

C66 =
C11 − C12

2
(3.2)

FCC- and BCC-Pt:

Bv =
C11 + 2C12

3
(4)

Gv =
C11 − C12 + 3C44

5
(5)
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Analysis of the data in Table 2 shows that, while some differences exist between the bulk modulus (Bv)
and shear modulus (Gv) of Pt atoms across different crystal structures when evaluated using DP molecular
dynamics and DFT simulations, EAM, and MEAM methods, the DP model performs exceptionally well.
Specifically, for FCC-Pt, the bulk and shear moduli predicted by the DP model deviate by less than 1% from
both experimental values [64] and DFT calculations. For HCP-Pt, the discrepancies are 0.39% and 0.68%,
respectively. This precise prediction of bulk and shear moduli suggests that the DP model effectively captures
the overall elastic response of Pt atoms.

Table 2: Elastic constants, along with bulk (Bv) and shear (Gv) moduli for HCP-, BCC-, and FCC-Pt

Structure Elastic
properties

Experiment
(GPa)

DFT (GPa) DP (GPa) EAM (GPa) MEAM
(GPa)

FCC

C11 348 349.8 346.9 345.2 345.6
C12 250 248.9 248.9 247.6 247.3
C44 76. 76.4 75.3 74.6 75.1
BV 282.67 282.5 281.6 280.1 280.3
GV 65.2 66.02 64.8 64.28 64.72

BCC

C11 – 360.2 360.8 359.2 358.9
C12 – 180.4 181.4 178.4 178.6
C13 – 115.3 115.9 114.5 114.2
C33 – 360.4 361.4 359.4 359.2
C44 – 90.8 91.4 88.9 89.3
BV – 240.33 241.2 238.7 238.7
GV – 90.28 90.72 89.50 89.64

HCP

C11 – 260.4 261.2 258.9 259.0
C12 – 170.6 171.6 168.8 168.5
C13 – 120.5 121.2 118.6 118.9
C33 – 363.2 363.8 362.3 361.5
C44 – 70.3 71.2 68.7 68.3
BV – 161.42 160.8 188.01 188.01
GV – 85.36 84.78 86.83 86.71

3.4 Thermal Transport Properties of Pt
Lattice thermal conductivity reflects a material’s heat conduction efficiency, making it a key parameter

for evaluating thermal management applications. Accurately assessing thermal conductivity data is essential
for validating the DP model. By examining phonons propagation characteristics, we can predict and
understand a material’s lattice thermal conductivity. A primary criterion for assessing the potential energy
model’s validity is achieving an accurate phonons dispersion relation [65].Using both DP and DFT methods,
we systematically calculated and evaluated the phonons dispersion relations for Pt atoms along high-
symmetry directions in the Brillouin zone (detailed DFT calculations are provided in supporting literature).
According to Fig. 7a, the phonons dispersion relation of Pt, calculated using the phonons dispersion method,
shows that the DP model closely aligns with the DFT curve in the high-frequency region. Additionally, in
the low-frequency region, the dispersion results from MD simulations are consistent with DFT calculations,
further verifying the DP model’s reliability in replicating DFT-calculated performance. We initially calculated



696 Comput Mater Contin. 2025;83(1)

third-order interatomic force constants. Based on these, we analyzed temperature effects (300 to 1000 K) on
the thermal conductivity of Pt in detail. First-principles calculations, combined with the open-source code
ShengBTE, were used to compute lattice thermal conductivity. This approach often requires numerous single-
point DFT calculations on extended lattice cells, reaching hundreds or thousands of instances. To capture
third-order anharmonic interatomic force constants, we considered interactions up to the eighth nearest
neighbors. Force constants were calculated up to the third order on a 2× 2× 2 supercell using first-principles.
A negative correlation exists between lattice thermal conductivity and temperature. As shown in Fig. 7b,
within the range of 300 to 1000 K, the lattice thermal conductivity of Pt atoms increases significantly from
74.2 to 82.1 Wm−1K−1. After comparing the data predicted by the DP model with the experimental values [62],
as shown in Table S8, it was found that the overall trend was generally consistent with the variation pattern
of the experimental results. Thus, the DP simulation results align closely with DFT calculations, confirming
their accuracy and feasibility.

Figure 7: Phonon Dispersion and Thermal Conductivity of Pt. (a) The DFT and DP results of phonon dispersion
relations for Pt are calculated by phonopy with the supercell size being 2 × 2 × 2. (b) The thermal conductivity of Pt at
different temperatures predicted

4 Conclusion
In this work, to investigate the microscopic properties and structural characteristics of metallic Pt,

we established a DP model based on deep neural networks and trained it using a substantial amount of
physical property data and DFT calculations to ensure high predictive accuracy. This model accurately
describes the energy, atomic forces, and lattice constants of metallic Pt, and aligns closely with DFT results in
terms of lattice defects, melting point, mechanical properties, elastic constants, lattice thermal conductivity,
and phonons dispersion. For instance, compared to DFT calculation data, the model’s prediction error for
most structural elastic constants does not exceed 1.0 GPa, demonstrating high accuracy. Additionally, the
DP model precisely captures the stable phase of Pt, with errors in reproducing the HCP, FCC, and BCC
lattice constants below 0.25%. The model also achieves root-mean-square errors of 0.348 meV/atom for
energy and 4.76 meV/Å for atomic force predictions, further validating its reliability. Despite the absence
of vacancy and interstitial configurations of FCC-Pt in the training set, the DP model successfully predicts
the formation energies of these defects, demonstrating excellent transferability. Due to the extensive range
of properties covered in the training data, the DP model is not only suitable for accurately predicting the
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microscopic behavior of metallic Pt but can also be extended to study interactions and performance evolution
in multicomponent systems containing Pt.
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