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ABSTRACT: Fatigue damage is a primary contributor to the failure of composite structures, underscoring the
critical importance of monitoring its progression to ensure structural safety. This paper introduces an innovative
approach to fatigue damage monitoring in composite structures, leveraging a hybrid methodology that integrates
the Whale Optimization Algorithm (WOA)-Backpropagation (BP) neural network with an ultrasonic guided wave
feature selection algorithm. Initially, a network of piezoelectric ceramic sensors is employed to transmit and capture
ultrasonic-guided waves, thereby establishing a signal space that correlates with the structural condition. Subsequently,
the Relief-F algorithm is applied for signal feature extraction, culminating in the formation of a feature matrix. This
matrix is then utilized to train the WOA-BP neural network, which optimizes the fatigue damage identification model
globally. The proposed model’s efficacy in quantifying fatigue damage is tested against fatigue test datasets, with its
performance benchmarked against the traditional BP neural network algorithm. The findings demonstrate that the
WOA-BP neural network model not only surpasses the BP model in predictive accuracy but also exhibits enhanced
global search capabilities. The effect of different sensor-receiver path signals on the model damage recognition results is
also discussed. The results of the discussion found that the path directly through the damaged area is more accurate in
modeling damage recognition compared to the path signals away from the damaged area. Consequently, the proposed
monitoring method in the fatigue test dataset is adept at accurately tracking and recognizing the progression of
fatigue damage.

KEYWORDS: Structural health monitoring; ultrasonic guided wave; composite structural fatigue damage monitoring;
WOA-BP neural network; relief-F algorithm

1 Introduction
Composite materials, renowned for their lightweight, high specific strength, and high specific modulus,

have become indispensable in the aerospace industry [1–3]. These materials, integral to aerospace structures,
are subject to prolonged fatigue loads, posing a significant risk of damage in the complex operational
environments they encounter [4]. The implementation of real-time fatigue damage monitoring systems is
pivotal for the timely detection of potential structural vulnerabilities and the issuance of preemptive alerts,
thereby safeguarding the integrity and reliability of composite structures [5–8].

Ultrasonic-guided waves, with their expansive inspection range, heightened sensitivity to damage, and
ability to access traditionally challenging areas, have emerged as a prominent technique in nondestructive
evaluation [9–13]. They enable the precise identification of internal damage, including micro-cracks and
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delamination, and have garnered considerable interest within the domain of composite aerospace structural
health monitoring, heralded as a method with immense potential for application.

Traditional approaches to ultrasonic-guided wave-based structural health monitoring often rely on
comparative analyses of signal characteristics pre- and post-damage, correlating damage indices with the
condition of the structure, and identifying damage states against predefined thresholds [14–18]. However, the
intricate and varied nature of real-world operational conditions can confound sensing signal characteristics,
complicating the establishment of a direct correlation between specific signal features and structural damage
using a physical model [19].

Machine learning offers a robust solution to these complexities, with an array of studies leveraging
its capabilities for guided wave-based structural damage identification [20–24]. Among neural network
technologies, the Backpropagation (BP) neural network stands out for its user-friendliness and robust
approximation capabilities [25–28]. Unlike conventional methods, the BP neural network sidesteps the need
to define a functional relationship between structural responses and physical parameters, focusing instead
on establishing linear or nonlinear mappings between inputs and outputs. Despite these advantages, the BP
neural network’s susceptibility to local optima and its slower convergence rates present challenges in the
context of structural damage identification.

The introduction of the Whale Optimization Algorithm (WOA) marked a significant advancement
in the field of population-based intelligent optimization algorithms. Characterized by its straightforward
structure and prowess in global optimization, WOA has rapidly gained traction for addressing optimization
challenges [29]. Notably, it offers a compelling solution to the tendency of Backpropagation (BP) neural
networks to converge prematurely on local minima, a common issue in neural network training. The
algorithm’s utility extends to the realm of damage monitoring, where it has been successfully harnessed by
researchers to develop and validate novel methods for quantifying and identifying structural damage across
a spectrum of damage scenarios [30–34].

This paper delves into the integration of WOA with feature engineering techniques to enhance the
selection of sensing signal features pivotal to the structural damage state, thereby augmenting the predictive
accuracy of our model. Furthermore, we employ WOA to refine the BP neural network, crafting an
optimized structural damage prediction model that mitigates the drawbacks of slow computational speed
and susceptibility to local minima inherent in traditional BP networks. The robustness of our approach is
substantiated through rigorous testing against a composite fatigue test dataset, demonstrating that the hybrid
WOA-BP neural network model outperforms its BP counterpart in terms of predictive precision and global
search efficacy. The results corroborate the method’s efficacy in the precise identification of the progression
of structural damage.

2 Structural Damage Identification Method Combining Feature Engineering and Optimized Machine
Learning Algorithm

2.1 Structural Health Monitoring System Based on Ultrasonic-Guided Wave
Under fatigue loads, composite structures may experience a variety of failure modes, including matrix

cracking, delamination, and fiber breakage. The initiation of composite laminate failure often stems from
micro-cracks within the matrix. These micro-cracks are precipitated by localized stress concentrations
around material defects and accumulate progressively as fatigue loads are applied. Should the interfacial
stress surpass a critical threshold, delamination within the composite can initiate and propagate swiftly,
culminating in structural collapse within a brief timeframe.
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This study introduced a health monitoring system for composite structures that relies on ultrasonic
guided waves, featuring an integrated pair of piezoelectric transducers (PZTs). As depicted in Fig. 1, an
electrical signal was initially delivered to one PZT, designated as the actuator, to generate a guided wave
within the structure. The wave then traverses the composite, being subsequently detected by a second PZT,
known as the sensor. Leveraging the piezoelectric effect, the sensor transformed the structural vibrations
into electrical signals, which were emitted as the monitoring output. During propagation, guided waves were
perturbed by the presence of defects, inducing signal alterations that facilitate the monitoring and precise
localization of damage. By assessing the health condition of each path using the ultrasonic guided wave
signals captured across various actuator-to-sensor pathways, the system could locate the regions of fatigue
damage within the composite structure [35,36].

Figure 1: Schematic diagram of the composite structural health monitoring system under different damage conditions
with guided wave signals excited and received by PZT sensors

In guided wave based structural health monitoring, the propagation of the guided wave is divided into
three phases: excitation, propagation, and reception phases. During the excitation phase of the guided wave,
the piezoelectric sensor operates based on the following principle: when mechanical stress is applied to the
sensor, it generates an electrical charge due to the piezoelectric effect. This can be mathematically represented
as:

Si j = SE
i jk l + Tkl + dki jEk (1)

Eq. (1) is the equation for the conversion of electric field into strain, i.e., the inverse piezoelectric
effect, where Si j is the mechanical strain, SE

i jk l is the elasticity coefficient (where E is a constant), Tkl is the
mechanical stress, dki j is the piezoelectric strain constant, Ek is the electric field, and i, j, k, and l are constants.
In the case of zero external force, the relationship between the strain produced by the piezoelectric sensor in
the excitation mode and the excitation voltage applied to it can be expressed as:

εa = −d31
Va

ta
(2)
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where εa is the sensor strain, Va is the excitation voltage, d31 is the dielectric constant, and ta is the
sensor thickness.

In a free boundary plate, the fluctuation equation for the displacement of the plasma point is:

μ∇2u + (λ + μ)∇(∇u) + ρ f = ρ ∂2u
∂t2 (3)

where μ and λ are Lamé constants, u is displacement, f is stress, and t is time.
Given an excitation at a point on the plate, the resulting energy encounters the upper and lower

boundary surfaces of the plate, causing the modes of the longitudinal and transverse waves to shift. As the
energy propagates along the plate, superposition allows the formation of wave groups or guided wave modes
in the plate.

The guided wave dispersion equations for symmetric and asymmetric modes are shown below:

tan (qh)
tan (ph) = −

4k2 pq
(q2 − k2)2 (4)

tan (qh)
tan (ph) = −

(q2 − k2)2

4k2 pq
(5)

where k denotes the number of waves, h is half the thickness of the specimen, and the parameters p and q
are defined by the following equation:

p2 = ω2

c2
L
− k2 (6)

p2 = ω2

c2
T
− k2 (7)

where CL and CT are longitudinal and transverse wave speeds.
However, for N-layer anisotropic composite plates, the propagation of guided waves is more compli-

cated. Guided waves on a composite plate can usually be described by a displacement field, with each layer
satisfying the Navier displacement equation:

μn∇2un + (λn + un)∇(∇un) = ρn ∂2un

∂t2 (n = 1, 2, ⋅ ⋅ ⋅ , N) (8)

where ρi , λi and μi denote the density and the Lame constant of the ith layer, respectively. In composite
plates, the guided wave propagates to amplitude attenuation and dispersion. The composite material is a
viscoelastic structure and the guided wave propagates in the composite structure to damping.

As shown in Eq. (9), the amplitude of the guided wave decays by e−k X after propagating a distance X.

εX
pl ate

εpl ate
= e−k X (9)

where εpl ate denotes the structural strain corresponding to the location of the excitation sensor, εX
pl ate

denotes the strain of the guided wave at a distance X from the excitation sensor, and k is the damping
coefficient, the expression of which is shown below:
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k = ωξ
cg

(10)

where ξ = 1
2 (

α
ω + βω) is the complex damping constant, α is the mass damping constant, β is the stiffness

damping constant; cg is the guided wave group velocity can be solved by the dispersion equation. In the
guided wave propagation problem α is negligible, where β = E′′

2E′ , E′ is the energy storage modulus (Young’s
modulus) and E′′ is the loss modulus.

When the strain is transmitted to the receiving sensor through the coupling effect of the adhesive layer
to drive the sensor deformation triggered piezoelectric effect eventually into an electrical signal, driven by
the plate strain εpl ate sensor strain εs shown in the following equation:

εs=εX
pl ate (

Epl ate tpl ate

αEs ts + Epl ate tpl ate
)
⎡⎢⎢⎢⎢⎢⎣

1 −
cosh ( 2Γx

ls
)

cosh Γ

⎤⎥⎥⎥⎥⎥⎦
(11)

where Epl ate is the elastic modulus of the plate, tpl ate is the thickness of the plate, Es is the elastic modulus
of the sensor, and ts is the thickness of the sensor.

According to the piezoelectric effect, the strain of the sensor is converted into a voltage signal Xs , which
is shown in the following equation:

Xs = S ∫
l s
2

− l s
2

εsdx (12)

where l s is the wave length, S = ts
ls

d31 Es
[eσ

33(1−νs)−2d31 Es]
, eσ

33 is the dielectric constant, and Es and νs are the modulus
of elasticity and Poisson’s ratio of piezoelectric sensors.

During guided wave propagation, the characterization of the response signal is influenced by factors
such as the sensor, structural material properties, and structural dimensions. When damage such as
microcracks and delamination occurs in the plate structure, parameters such as the plate’s modulus of
elasticity and boundary conditions for wave propagation are change, leading to corresponding changes in
the guided wave signal.

2.2 Ultrasonic Guided Wave Signal Feature Extraction
The regression model based on signal features will affect the stability of the regression model in the phase

of dimensionality reduction. At the same time, in the case of low signal to noise ratio (SNR), it is important
to build a model with multiple signal features to retain as much signal matrix information as possible. In this
paper, 5 features of signal time domain and 5 features of signal frequency domain are selected to model the
damage monitoring. The FFT is used to convert the guided wave signal in the time-frequency domain, as
shown below:

X (k) = ∑N−1
n=0 x (n)WNnk (13)

WNnk = ex p (− j2πkn/N) (14)

where X (k) represents the signal in the frequency domain; x (n) represents the signal in the time domain;
WNnk is a complex number; j is an imaginary number; k is the number of movements; N represents the size
of the data you want to convert.
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The Time domain signal features include: the peak of signal related to the propagation efficiency of
Lamb wave energy, of the signal main peak affected by the Lamb wave mode transformation (Time of
Flight, TOF), the root mean square describing the signal energy, the standard deviation representing the
degree of signal dispersion, and the margin index representing the degree of peak extreme in the waveform.
The characteristics of the signal in the frequency domain include: the barycenter frequency describing the
power spectrum of the spectrum signal, the standard deviation reflecting the dispersion of the signal in the
frequency domain, the mean square frequency describing the energy of the spectrum signal, the signal band
energy (±25 kHz), and the relative power spectrum entropy representing the signal chaos. The characteristic
expressions of damage signals preliminarily selected are shown in Table 1.

Table 1: Signal time-domain and frequency-domain expressions for damage characterization

Signal feature Expression
Peak of signal P (X) = max ∣X∣
Time of flight T (X) = 0∶(N−1)

Fs

Root mean square Xrms (X) =
√
∑N

1 f 2
X A(X)
N

Signal standard deviation σ (r) =
√

1
N

N
∑
i=1
(xi − r)2

Margin index CL (X) = max ∣X∣
( 1

N ∑N
n=1

√
∣xn ∣)

2

Barycenter frequency FC (X) = ∑
K
k=1 fk A(k)
∑K

k=1 A(k)

Standard deviation of frequency domain signal RV F (X) =
√
∑K

k=1[ fk A(k)−A f ]
2

∑K
k=1 A(k)

Signal mean square frequency MSF (X) = ∑
K
k=1 f 2

k A(k)
∑K

k=1 A(k)

Signal band energy (±25kHz) Ex( f ) = ∫
25
−25 ∣X ( f )∣2 d f

Signal relative power spectrum entropy RPSD (X) = −∑
N
2

0
S(X)

∑
N
2

0 S(k)
∗ log S(X)

∑
N
2

0 S(k)

2.3 Damage Monitoring Modeling Based on WOA-BP Neural Network and Relief-F Algorithm
In the process of damage prediction model establishment, selecting the appropriate sensing signal

features is helpful to improve the accuracy of the damage prediction model. It is difficult for a single signal
feature to fully explain the signal changes under different damage conditions, so it is necessary to construct
a model containing multiple signal features to explain the damage. At the same time, not every signal feature
is associated with damage, so feature optimization is needed to build a good model to predict damage.
The Relief-F algorithm is a feature weight algorithm that assigns different weights to features according to
the relevance of each feature and category. Features with weights smaller than a certain threshold will be
removed.

W (A) =W (A) − di f f (A, R, H)/m + di f f (A, R, M)/m (15)

where W(A) is the weight of the A-th feature, R is the sample randomly selected from the training set, H is
the nearest neighbor sample of the same class set R, M is the nearest neighbor sample of the different class set
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R, diff (A, R1, R2) represents the difference between sample R1 and sample R2 on feature A, and its calculation
formula is as follows:

di f f (A, R1 , R2) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∣R1 [A] − R2 [A]∣
max (A) −min (A) i f A is continuous

0 i f A is discrete and R1 [A] = R2 [A]
1 i f A is discrete and R1 [A] ≠ R2 [A]

(16)

In the application of BP neural network, there are many local optimal solutions, which affect the
accuracy of the model. To solve this challenge, WOA is used to optimize the BP neural network. The core of
this method is to optimize the initial weights and thresholds of the BP neural network to avoid falling into
the local optimal solution.

Since the position of the optimal design in the search space is not known a priori, the WOA algorithm
assumes that the current best candidate solution is the target prey or is close to the optimum. After the best
search agent is defined, the other search agents will hence try to update their positions towards the best search
agent [29]. This behavior is represented by the following equations:

�→
D = ∣�→C ⋅

�→
X∗ (t) −�→X (t)∣ (17)

�→
X (t + 1) =

�→
X∗ (t) −�→A ⋅ �→D (18)

where t indicates the current iteration,
�→
A and

�→
C are coefficient vectors, X∗ is the position vector of the best

solution obtained so far, X is the position vector, ∣ ∣ is the absolute value, and ⋅ is an element-by-element
multiplication. It is worth mentioning here that X∗ should be updated in each iteration if there is a better
solution. The vectors

�→
A and

�→
C are calculated as follows:

�→
A = 2�→a ⋅ �→r −�→a (19)
�→
C = 2 ⋅ �→r (20)

where�→a is linearly decreased from 2 to 0 over the course of iterations (in both exploration and exploitation
phases) and�→r is a random vector in [0, 1].

Fig. 2a shows the possible positions from (X, Y) towards (X∗ , Y∗) that can be achieved by 0 ≤ A ≤ 1 in a
2D space. As can be seen in Fig. 2b, this approach first calculates the distance between the whale located at
(X, Y) and prey located at (X∗ , Y∗). A spiral equation is then created between the position of whale and prey
to mimic the helix-shaped movement of humpback whales as follows:

�→
X (t + 1) =

�→
D′ebl cos (2πl) +

�→
X∗ (t) (21)

where
�→
D′ = ∣

�→
X∗ (t) −�→X (t)∣ and indicates the distance of the ith whale to the prey (best solution obtained

so far), b is a constant for defining the shape of the logarithmic spiral, l is a random number in [−1, 1].
We assume that there is a probability of 50% to choose between either the shrinking encircling

mechanism or the spiral model to update the position of whales during optimization. The mathematical
model is as follows:

�→
X (t + 1) =

⎧⎪⎪⎨⎪⎪⎩

�→
X∗ (t) −�→A ⋅ �→D i f p < 0.5
�→
D′ebl cos (2πl) +

�→
X∗ (t) i f p ≥ 0.5

(22)
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where p is a random number in [0, 1].

Figure 2: Bubble-net search mechanism implemented in WOA (X∗ is the best solution obtained so far): (a) shrinking
encircling mechanism and (b) spiral updating position

WOA introduces also another mechanism called exploration phase. Its main role is to explore the search
space away from the current best solution in order to potentially find a better one. Therefore, WOA has a
global search ability. The mathematical model is as follows:

�→
D = ∣�→C ⋅ ���→Xrand −

�→
X ∣ (23)

�→
X (t + 1) = ���→Xrand −

�→
A ⋅ �→D (24)

where
���→
Xrand is a random position vector (a random whale) chosen from the current population.

Aiming at the structural characteristics and load characteristics in fatigue loading damage monitoring
of composite materials, this paper combined Relief-F algorithm and WOA-BP neural network to propose
the structural damage identification method, as shown in Fig. 3.

Figure 3: Damage monitoring model flow chart of Relief-F algorithm combined with WOA-BP neural network
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As shown in Fig. 3, in the damage monitoring method, the complete feature set data is first input,
the Relief-F algorithm is used for feature selection, the optimal feature subset is obtained, and the data is
preprocessed. Then, the weights and thresholds of the BP neural network are initialized. According to the
training results of the BP neural network, the initial weights and thresholds are converted into the position
vector of WOA, and other basic parameters of the WOA algorithm are initialized. WOA algorithm is used
to randomly search and prey on targets, calculate individual fitness value, and find out the position of
the optimal fitness value by judging whether the output is stable, so as to obtain the optimal weight and
threshold value. Finally, the weight and threshold values are constantly updated by calculating errors, and the
optimization algorithm is terminated when the maximum number of iterations is met or the error accuracy
is reached. The current optimal parameters are assigned to the BP neural network, and the output is obtained
to obtain the WOA-BP model. The main role of the WOA algorithm is to overcome the tendency of BP neural
networks to fall into local optimal solutions. In this paper, the damage recognition accuracy of the model is
tested by fatigue damage monitoring tests of composite materials.

In the figure, iω and ib represent the weights and thresholds from the input layer to the hidden layer,
respectively. Oω and Ob represent the weights and thresholds from the hidden layer to the output layer. With
the WOA method, each whale individual represents a set of weights and thresholds of the BP neural network,
where M, H, and N are the number of nodes in the input layer, hidden layer, and output layer, respectively. For
the composite structural damage identification studied in this paper, the subset of signal features screened
by the Relief-F algorithm is the input, and the predicted damage size is the unique output, i.e., N = 1.

3 Fatigue Loading Damage Diagnostic Test of Composite Materials

3.1 Testing Setting
This paper uses the data set of fatigue aging tests of CFRP composites conducted by the Stanford

Structure and Composites Laboratory (SACL) in collaboration with the Prediction Center of Excellence
(PCoE) at NASA Ames Research Center [37]. In this test, a group of specimens was subjected to a tensile
fatigue test under cyclic load control with a frequency of 5.0 Hz and a stress ratio of R = 0.14, as shown
in Fig. 4.

Figure 4: Schematic diagram of the specimen

The specimen was made of Torayca T700G uniaxial carbon prepreg with a size of 15.24 cm × 25.4 cm
and a geometric shape of a dog bone. A 5.08 mm × 19.3 mm notch was created in the specimen to induce
stress concentration. Three composite material samples with different lay-up configurations were tested. In
this paper, the Layup1: [02/904]s was selected for specimen L1S19.
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All tests were performed on MTS test machines in accordance with ASTM standards D3039 and
D3479. The ultrasonic guided wave signal is transmitted and received through 12 PZT sensor SMART Layer
(including 6 actuators and 6 sensors). The 36 “actuator→sensor” paths in the range of 150–450 KHz at 50 KHz
intervals produce 7 excitation frequencies with an average input voltage of 50V. The fatigue cycle test was
stopped at a specific fatigue cycle number, PZT sensor data for all paths and frequencies were collected, and
X-ray imaging of the specimen was performed.

The fatigue data of the samples were collected under three different boundary conditions: 1) The samples
were loaded with average load; 2) The sample was unloaded but supported; 3) The specimen was removed
from the (absolute 0 load) test machine. In the data file, the experimental record file describes the state of the
specimen and the loading process in detail, including the sound emitted by the specimen during the loading
process, the surface shape of the specimen, and the abnormal response of the guided wave signal.

When the fatigue load is applied to the composite structure, fatigue damage such as matrix micro-cracks
and delamination will occur in the structure. During guided wave propagation, these local defects can be
captured into the sensor signal, allowing us to detect and locate them within the structure. Specifically, the
path away from the damaged area is considered to be in a healthy state, while the path directly through the
damaged area is considered to be in a damaged state [38]. Therefore, in this paper, three signal features of the
“actuator-sensor” path, 4#→9#, 5#→8#, 6#→7#, which can reflect the damage state of specimens, are selected
respectively to form the sample library.

Fig. 5 shows the Lamb wave signal of specimen L1S19 with path 6#→7# and 150 kHz under different
fatigue cycles. As shown in the figure, with the increase of load times, the amplitude and energy of the signal
both decrease in the process of the specimen being gradually destroyed, and finally decay to zero. At the same
time, with the expansion of damage, the signal energy of signal path 6 #→7 #, 5 #→8 #, 4 #→9 # gradually
decays. The trend of decreasing energy is related to the distance between the path and the damage center.

Figure 5: Lamb wave signals under different cycle fatigue times and different signal paths: (a) Lamb wave signal under
signal path 6#→7# at 150 kHz; (b) Lamb wave signal under signal path 5#→8# at 150 kHz; and (c) Lamb wave signal
under signal path 4#→9# at 150 kHz

3.2 Fatigue Damage Characterization of Specimens
The X-ray images of specimen L1S19 after 1, 10,000, 100,000, and 125,000 fatigue cycles are shown

in Fig. 6.
From the X-ray diagram, it can be intuitively seen that with the increase of fatigue cycles, the damage

extends from signal path 6#→7# to path 1#→12# along the prefabricated gap, and the damage area keeps
increasing. The damage forms are various, including matrix crack, delamination and fiber fracture, and finally
the failure of the specimen structure.



Comput Mater Contin. 2025;83(1) 465

Figure 6: X-ray images of specimens under different cyclic fatigue times

A general rectangular frame contour damage measurement method is used in the field of nondestructive
testing for standard damage size sampling, as shown in Fig. 7a. According to X-ray images, the damage
expansion trend of different cycles was measured, as shown in Fig. 7b.

Figure 7: Measurement of specimen damage size

The damage size of coupon with different fatigue cycles is shown in Table 2. Among them, after 100,000
cycles of fatigue loading, the damage area suddenly increases, which occurs mainly due to the fatigue
characteristics of composite materials. Under the action of fatigue loading, three main modes of matrix
cracking, delamination and fiber fracture are induced within the structure of composite structures. Under
the action of fatigue loading, the above forms of damage appear one after another in a staggered manner. A
damage zone containing multiple damage forms is formed, and the expansion lacks regularity. Overall failure
often occurs suddenly.

Table 2: Damage size of different fatigue cycles

Number (times) 0 1 10 102 103 104 2 * 104 3 * 104 5 * 104 105 1.25 * 105

Measure (mm2) 0 0.30 2.00 4.99 8.63 18.02 26.99 36.02 44.10 52.66 110.54
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According to the field description, specimen L1S19 broke after more than 125,000 cycles, the load no
longer increased during loading, and Lamb wave data could not be collected. After unloading, X-ray results
showed that there was a large area of stratification inside the structure, and most sensors were damaged after
detection, so it was determined that the structure completely failed when the fatigue load times reached
125,000 times.

4 Results and Discussion

4.1 Results of the Relief-F Algorithm
Ten signal features, including signal peak value, TOF value, RMS value and ±25 kHz frequency band

energy (the main lobe bandwidth of the device is 50 kHz), were selected for the full set of signal features by
the Relief-F algorithm, and several signal features with greater weight were selected to form a signal feature
subset. For modeling purposes, the value of each feature in the above feature set containing ten signal features
are normalized.

The Relief-F algorithm results are shown in Table 3. The feature complete set includes ten signal features
(5 time domain features and 5 frequency domain features). Therefore, the signal weight average 0.1 is selected
as the threshold value to screen the signal feature subset, and the signal peak value, TOF value and ±25 kHz
frequency band energy are combined to form the signal feature subset to train the model.

Table 3: The relief-F algorithm gets the weights of different signal features

Signal feature Weights
Peak of signal 0.1538
Time of flight 0.1979

Root mean square 0.0504
Signal standard deviation 0.0598

Margin index 0.0804
Barycenter frequency 0.0775

Standard deviation of frequency domain signal 0.0403
Signal mean square frequency 0.0874
Signal band energy (±25 kHz) 0.1624

Signal relative power spectrum entropy 0.0901

Mean absolute percentage error (MAPE) and root mean square error (RMSE) were used to evaluate the
accuracy of the prediction model.

MAPE = 1
n

n
∑
i=1

∣yi − f (xi)∣
yi

× 100% (25)

RMSE =
%
&&' 1

n

n
∑
i=1
(yi − f (xi))2 (26)

In the formula is the number of samples, yi is the true value, f (xi) is the predicted value of the
algorithm, the MAPE of 0% indicates the perfect model and the MAPE greater than 100% indicates the poor
model. The advantage of MAPE is that the size of the prediction error can be intuitively expressed in the
form of percentage, while the sensitivity to individual outliers is low. The smaller the value of MAPE, the



Comput Mater Contin. 2025;83(1) 467

better the fitting effect of the prediction model and the better the accuracy. RMSE is one of the commonly
used indexes to evaluate the accuracy of prediction models. The smaller the RMSE value, the smaller the
prediction error of the model and the stronger the prediction ability of the model.

4.2 WOA-BP Neural Network Prediction Model Results
The signal feature subset and complete set were used as inputs to the WOA-BP neural network algorithm

to predict damage size. The accuracy of damage size prediction of the selected signal feature subset and
complete set of the signal feature was compared to verify the suitability of the Relief-F algorithm.

In the construction of WOA-BP neural network model, according to experience and experiments,
the parameters of WOA-BP neural network in this paper are set as follows: The initial population size is
30, the maximum evolutionary algebra is 500, the training times are 1000, the learning rate is 0.01, the
target minimum error is 0.00001, the display frequency is 25, the momentum factor is 0.01, the minimum
performance gradient is 1e−6, and the maximum number of failures is 6. The sample L1S19 selected in this
paper has a total of 82 working conditions, 67 of which are randomly selected as training sets to establish
the WOA-BP neural network model, and the remaining 15 are used as test sets to test the accuracy of the
constructed WOA-BP neural network model, RMSE was used as the loss function to describe the iterative
process of the WOA-BP neural network model, and the results are shown in Fig. 8.

Figure 8: WOA-BP and BP neural network model training process based on the complete set and subset of signal
features with RMSE as loss function

The loss function is used to measure the difference between the predictions of the model and the true
value, and the smaller the value of the loss function, the better the performance of the model. Usually, the
loss function convergence condition is that the fluctuation of the value of the loss function in the training
process tends to approach 0, and the overall form of change tends to stabilize, and is no longer significantly
reduced [39]. As can be seen in Fig. 8, the trend of the loss function RMSE gradually decreases during the
training process, and after the maximum number of iterations of 500 times, The fluctuations of the loss
function RMSE converge to 0, have stabilized and are no longer significantly decreasing.

The predicted values, sample values and errors of the BP neural network and WOA-BP neural network
models established by the complete set and subset of signal features are shown in Fig. 9.
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Figure 9: Predicted values, sample values, and errors of WOA-BP and BP neural network models constructed with a
complete set and subset of signal features: (a) BP neural network constructed with a complete set of signal features; (b)
BP neural network constructed by signal feature subset; (c) WOA-BP neural network constructed with a complete set
of signal features; (d) WOA-BP neural network constructed by signal feature subset

As shown in Fig. 9, compared with the complete set of signal features, the signal feature subset can
better describe the mapping relationship between sensing signals and damage dimensions, which proves the
suitability of the Relief-F algorithm. At the same time, the model training results of the WOA-BP neural
network and BP neural network are compared, and the error between the predicted value and the sample
value obtained by the WOA-BP neural network model is smaller than that of the BP neural network model,
which proves that WOA-BP neural network model has better global search ability.

As shown in Fig. 10 and Table 4, for the same signal feature set, the MAPE and RMSE of the WOA-BP
neural network are smaller than that of the BP neural network model, indicating that the WOA-BP neural
network has higher prediction accuracy than the BP neural network.

At the same time, the prediction accuracy of the model established by different sensor path signal
characteristics is compared, and the results are shown in the figure below.

As shown in Fig. 11 and Table 5, comparing the prediction accuracy of the model established by the
signal characteristics of 3 different “exciter-receiver” paths 4#→9#, 5#→8#, 6#→7#, the prediction accuracy
of the model established by the 4#→9# path signal characteristics is significantly higher than that of the
model established by the 5#→8# and 6#→7# path signal characteristics. This is because the 4#→9# path of the
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“actuator to sensor” passes through the damaged area is larger, so the model recognition accuracy is higher
according to the 4#→9# path.

Figure 10: Comparison of MAPE and RMSE of WOA-BP and BP neural network models established by the complete
set and subset of signal features

Table 4: MAPE and RMSE of WOA-BP and BP neural network models built from the full set and subset of signal
features

Complete set of signal features Signal feature subset
BP’s MAPE 28.25% 17.91%

WOA-BP’s MAPE 4.98% 1.49%
BP’s RMSE 8.73 0.93

WOA-BP’s RMSE 0.64 0.27

Figure 11: Comparison of MAPE and RMSE of WOA-BP and BP neural network models established according to signal
feature subsets under different paths
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Table 5: MAPE and RMSE of WOA-BP and BP neural network models based on a subset of signal features under
different paths

6#→7# 5#→8# 4#→9#
BP’s MAPE 40.50% 25.65% 17.00%

WOA-BP’s MAPE 6.47% 6.40% 4.91%
BP’s RMSE 11.67 7.86 3.50

WOA-BP’s RMSE 2.86 1.22 0.70

5 Conclusion
In this paper, a fatigue damage monitoring method of composite structures based on machine learning

is proposed. A set of actuators and a set of receivers are arranged on both sides of the composite structure
to form multiple Lamb wave signal paths, and the Lamb wave signal paths are screened according to the
damaged area of the composite structure. The sample library is composed of the signal features of Lamb
wave signals obtained by the screened path, and the signal features in the sample library are selected by the
Relief-F algorithm to extract the subset of signal features related to the structural damage size. The WOA-
BP neural network model is constructed and trained by the signal feature subset, and the trained WOA-BP
neural network model is used to predict the fatigue damage of the composite structure, and the prediction
accuracy of the model is expressed by MAPE.

The results show that:
1. The weights of ten signal features are obtained according to the Relief-F algorithm, and the signal

features with weights greater than the threshold value 0.1 are screened out. In other words, the signal peak
value, TOF value, and ±25 kHz signal band energy are used as the subset of signal features to establish the
damage prediction model of the WOA-BP neural network;

2. From the model prediction results, compared with the complete set of signal features, the MAPE and
RMSE of the BP neural network decrease from 28.25% and 2.69637% to 17.91% and 1.28143%, respectively.
The MAPE and RMSE of the WOA-BP neural network decreased from 4.98% and 2.35052% to 1.49% and
0.67658%, respectively, indicating that the signal feature subset can better describe the mapping relationship
between sensing signal and damage size.

3. At the same time, compared with the BP neural network, the MAPE, and RMSE of the WOA-BP
neural network based on signal feature subset decreased from 17.91% and 1.28143% to 1.49% and 0.67658,
respectively. The results show that the WOA-BP neural network has higher prediction accuracy than the BP
neural network;

4. According to the signal characteristics of three different “actuator to sensor” paths 4#→9#, 5#→8#,
6#→7#, the prediction accuracy of the model is also different. In terms of model prediction accuracy, the
model # established by signal path 4#→9# is higher than the model established by signal path 5#→8# and
6#→7#.

The results show that the structural damage identification method proposed in this paper, which
combines feature engineering and optimized machine learning algorithms, has higher precision and stronger
global searching ability. The proposed fatigue damage monitoring method can effectively identify the damage
expansion process.

Meanwhile, the limitation of the method proposed in this paper is that it is not validated on different
datasets with different physical arrangements for each test piece, which involves migration learning. Work
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on migration learning will be considered in subsequent research. Other machine learning algorithms will
also be utilized to compare with the WOA-BP neural network model as a way to improve our work.
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