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ABSTRACT: Relation extraction plays a crucial role in numerous downstream tasks. Dialogue relation extraction
focuses on identifying relations between two arguments within a given dialogue. To tackle the problem of low
information density in dialogues, methods based on trigger enhancement have been proposed, yielding positive results.
However, trigger enhancement faces challenges, which cause suboptimal model performance. First, the proportion
of annotated triggers is low in DialogRE. Second, feature representations of triggers and arguments often contain
conflicting information. In this paper, we propose a novel Multi-Feature Filtering and Fusion trigger enhancement
approach to overcome these limitations. We first obtain representations of arguments, and triggers that contain
rich semantic information through attention and gate methods. Then, we design a feature filtering mechanism that
eliminates conflicting features in the encoding of trigger prototype representations and their corresponding argument
pairs. Additionally, we utilize large language models to create prompts based on Chain-of-Thought and In-context
Learning for automated trigger extraction. Experiments show that our model increases the average F1 score by 1.3% in
the dialogue relation extraction task. Ablation and case studies confirm the effectiveness of our model. Furthermore, the
feature filtering method effectively integrates with other trigger enhancement models, enhancing overall performance
and demonstrating its ability to resolve feature conflicts.
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1 Introduction
Relation extraction (RE) is a fundamental and important task [1,2] in information extraction, aimed at

optimizing models to identify factual relations among arguments in unstructured text [3,4]. It has diverse
applications, including knowledge graph construction [5,6], information retrieval [7,8], text summarization
generation [3], sentiment classification [9,10], question answering [11], and more. These applications have
significant impacts, ranging from enhancing search engine capabilities to powering intelligent assistants.

Among various RE tasks, dialogue relation extraction (DRE) aims to predict the relations between two
arguments within a given dialogue, which is highly valuable for developing advanced dialogue systems [12].
DRE enhances conversational agents by improving their contextual understanding and intent recognition,
which are essential for effective dialogue management [13,14]. Additionally, DRE provides critical insights
into speaker interactions and dialogue semantics, contributing to research in computational social science
and human-computer interaction.
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With the remarkable success of pre-trained language models in natural language processing [15], these
models have been tailored to address DRE tasks. This is the first type of DRE model, known as sequence-
based models (e.g., BERTs [16], RoBERTas [17], CoIn [18] and SimpleRE [19]), transforms dialogues into
ultralong texts by adding special symbols and inputs them into a pre-trained language model for encoding
and further relation classification. Recognizing the similarity between knowledge graph completion and
DRE, graph-based models have been developed. These algorithms first construct a graph with linked
elements from the dialogue, and use graph-based reasoning mechanisms to predict relations between
arguments, incorporating token-based graphs [20], that consist of speaker, argument, utterance nodes [21],
and even semantic networks [22] to capture interactions for DRE. Given the low information density in
dialogues [23], where only a few meaningful phrases significantly aid DRE tasks, trigger-enhanced models
have emerged to mine and utilize these critical elements, known as triggers, to improve DRE performance.
This includes multi-task models, TREND [24], GRASP [25], and KEPT [26], which predict relations while
simultaneously identifying triggers [27,28], whereas TLAG [29] concatenates the embeddings of predicted
triggers with other learned representations for DRE.

While preliminary studies highlight the effectiveness of trigger-enhanced models, two key issues remain
unaddressed. First, regarding trigger prediction, existing trigger-enhanced models have not addressed the
issue of insufficient trigger annotations. Annotated triggers account for less than 30% of the samples in
DialogRE. The lack of trigger annotations prevents the model from learning how to predict triggers and
establish strong associations between triggers and target relations [30]. While triggers help narrow down
relation categories, their scarcity limits the model’s ability to learn associations effectively. Without enough
triggers, the model is forced to rely on ambiguous information, which reduces its performance. Second,
in terms of feature fusion, the learned representations of triggers and arguments often contain conflicting
information, which is a problem that was not investigated and addressed in previous trigger-enhanced
models. Triggers frequently associate with multiple relations, and arguments can have different relations
across various pairs. This results in triggers and arguments having features that point to different relations,
creating potential conflicts. If trigger and argument features are blindly concatenated for relation extraction,
the model may struggle to determine the correct relation category for a sample. As shown in Fig. 1, the
example includes the argument pair Emily and Speaker3, along with the corresponding trigger “honeymoon”.
The trigger “honeymoon” signifies two relations, per:girl/boyfriend and per:spouse, while Emily is associated
with Speaker2 through the relation per:parents, it becomes challenging for the model to determine the
correct relation category for the argument pair among per:girl/boyfriend, per:spouse, and per:parents, when
using the concatenated representation of the trigger and argument pair.

To address the issues outlined above, we propose a novel trigger-enhanced model with Multi-Feature
Filtering and Fusion (MF2F) for DRE. In MF2F, we implement a feature filtering mechanism to eliminate
conflicting features in the trigger prototype representation and the encodings of the argument pair. The core
technique used is average pooling. Inspired by the concept of class-center vectors, which retain consistent
features while discarding inconsistencies, we employ the embeddings of the arguments to create a filtering
template. This template undergoes an average pooling operation with the trigger’s prototype representation.
Additionally, we construct another filtering template using one argument’s embedding and the trigger’s
prototype representation, which is then subjected to average pooling with the other argument’s embedding.
This process enables the model to retain the trigger and argument features that align with the same relation
while filtering out their conflicting features. The filtered trigger representation and argument embeddings are
then concatenated for relation classification. Furthermore, to mitigate the shortage of manually annotated
triggers in the dataset, we leverage the powerful text understanding capabilities of large language models
(LLMs) to automatically annotate triggers for the samples lacking manual annotations. We design prompts
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based on chain of thought (CoT) [31,32] and in-context learning (ICL) [33,34] to facilitate this automatic
trigger annotation. In our experiments, our model achieves state-of-the-art (SOTA) performance on the
benchmark dataset, significantly surpassing the strong baselines in previous works. Results from ablation
studies, and availability validation further demonstrate the effectiveness, robustness, and scalability of the
proposed feature filtering mechanism and LLM-based automatic trigger annotation. Beyond improving DRE
performance, this work introduces a novel method for extracting triggers and presents a new perspective on
their utilization.

Figure 1: An example of feature conflicts in triggers and arguments

Our contributions are as follows:
We introduce a novel DRE model, denoted as MF2F, which integrates an average-pooling-based feature

filtering mechanism to eliminate conflicting features from the trigger prototype representation and the
encodings of the given argument pair.

We utilize prompt tuning with an LLM to automatically annotate triggers for the samples lacking manual
annotations, effectively addressing the challenge of insufficient manually annotated triggers in the dataset.

We conducted extensive experiments that demonstrate the proposed method achieves the SOTA
performance in the DRE task while also validating its effectiveness, robustness, and scalability.

2 Related Work
DER models can be categorized into three types: sequence-based models, graph-based models, and

trigger-enhanced models. Sequence-based models represent the earliest approach in DER, which later
evolved into two branches: graph-based models and trigger-enhanced models.

Sequence-based models. These models concatenate the utterances, speakers, and special symbols into
a long sentence, which is then input into a pre-trained language model for the DRE task. For instance,
BERTs [16] uses BERT [35] as the encoder and adds special tokens to the input to indicate the start positions
of the arguments. RoBERTas [17] follows a similar input pattern as BERTs, with the only modification being
the replacement of the encoder with RoBERTa [36]. CoIn [18] introduces a mask mechanism along with a
fusion gate and mutual attention to extract bi-grained embeddings for relation classification. SimpleRE [19]
incorporates multiple [CLS] tokens in the input to capture various relations among different arguments and
proposes a relation refinement gate to adaptively obtain relation-specific semantic embeddings. However,
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these models fail to adequately utilize the structural information present in dialogues, making them
less effective.

Graph-based models. This category of methods transforms the sequential structure of a dialogue into
a graph structure, framing the predicting of relations between arguments as a knowledge reasoning task.
GDPNet [22] builds and refines a latent multi-view graph of tokens, whose representation is concatenated
with the sequence-based representation for DRE. HGAT [21] employs graph neural networks to encode
the relational information between arguments from a heterogeneous graph composed of linked speaker,
argument, type, and utterance nodes. TUCORE-GCN [17] constructs a heterogeneous dialogue graph to
capture interactions among dialogues, speakers, utterances and arguments. AMR [37] creates a sentence-
level semantic network for each utterance, which are then interconnected to form a dialogue-level semantic
network for modeling the entire dialogue. However, these methods do not adequately address the issue of
low information density within dialogues.

Trigger-enhanced models. These methods increase the information density in dialogues by mining and
utilizing information from triggers, thereby improving the performance of DRE models. They either conduct
relation classification simultaneously with trigger prediction, or combine trigger representations with other
learned representations. TREND [24] employs a multitask model to enhance relation classification through
trigger identification. GRASP [25] (with an SOTA of 75.5) utilizes a prompt-based fine-tuning approach that
performs mask-based relation prediction alongside argument and trigger detection. KEPT [26] introduces a
DRE model that leverages the semantics of triggers and labels concurrently. TLAG [29] incorporates label-
aware knowledge to guide the generation of trigger embedding, which are then integrated with other learned
representations for DRE. However, two issues remain unresolved. First, in terms of trigger prediction, the
proportion of annotated triggers in the dataset is low. Second, in feature fusion, the learned representations
of triggers and arguments each contain conflicting features.

Unlike previous trigger-enhanced models that only relied on manually annotated triggers in the original
dataset, we leverage LLMs to annotate triggers for unlabeled samples. This approach effectively mitigates
the issue of trigger scarcity. Additionally, to address the feature conflict problem overlooked by existing
trigger-enhanced models, we introduce a feature filtering mechanism. This not only improves the accuracy of
relation extraction but also demonstrates the potential to scale DRE systems to more complex and dynamic
conversational environments.

3 Proposed Methodology

3.1 Task Definition
In the DRE task, a dialogue d is defined as a tuple (S , U , A), comprising a set of speakers S = {sk}K

k=1, a
set of utterances U = {un}N

n=1 and a set of entity pairs A = {(ei , e j)g}G
g=1, where un = {sk , xn ,1 , xn ,2 , ..., xn ,M},

xn ,m refers to the m-th token in the n-th sentence spoken by the k-th speaker sk , and ei and e j refer to the
subject and object of the g-th entity pair, respectively. Given an argument pair (ei , e j) within the dialogue d,
the goal of DRE is to predict the relations ri , j ∈ R between ei and e j, where R refers to the relation set of the
dataset. Additionally, the datasets often include several useful words from the sentences as triggers to assist
in relation prediction for specific argument pairs.

3.2 Model Overview
To effectively filter out conflicting features and further fuse the consistent features of the arguments and

triggers, we propose the MF2F model. This model comprises five modules that form a cohesive pipeline, as
illustrated in Fig. 2.
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Figure 2: The model architecture of MF2F. MF2F consists of five modules: a) Dialogue Encoding module includes
pre-trained model encoding, local and speaker mask attention mechanisms, and fusion gate structures; b) Arguments
Encoding module incorporates the mutual attention mechanism; c) Trigger Prediction module has trigger prediction
and trigger pooling methods; d) Feature Filtering module includes feature filtering units designed to mitigate the feature
conflict issue; e) Prediction and Training module encompasses relation prediction and training loss calculation

The first module is the dialogue encoding module, which utilizes a pre-trained language model with
the mask-based multihead self-attention mechanism to obtain three scales of dialogue token embeddings.
The second module is the argument encoding module, where an attention mechanism aggregates different
mentions to form the argument embedding. Using the three scales of dialogue token embeddings, we
derive three corresponding argument embeddings. The third module is the trigger prediction module,
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which includes a discriminator followed by an average pooling layer to identify trigger tokens and generate
their original prototype embeddings for a given argument pair. The fourth module is the feature filtering
module, which constructs a filter unit to eliminate conflicting features between the argument and the trigger.
The filtering unit primarily utilizes average pooling to preserve consistent features between the original
representation and the filtering template while discarding inconsistent features, which are likely the culprits
of conflict. Specifically, for a trigger and its corresponding two arguments, when one of the three requires
feature filtering, the representations of the other two are aggregated into a template via a fully connected
layer. Finally, in the prediction and training module, the filtered trigger and argument representations are
combined and fed into a relation classifier for RE.

We then incorporate a relation classification loss alongside the trigger prediction loss to optimize
the model, transforming our MF2F into a multitask model and further enhancing its performance in the
DRE task. Specifically, before training, we utilize prompt tuning with an LLM to automate the annotation
of triggers for samples lacking manual annotations, thereby addressing the issue of insufficient annotated
triggers in the dataset.

3.3 Dialogue Encoding
In this section, we obtain three types of dialogue encodings: global, local, and speaker-based. The first

two encodings capture dependencies between tokens at the dialogue and utterance levels, respectively, while
the third focuses on token dependencies based on whether the utterances are spoken by the same person.

First, we concatenate the utterances and special tokens into a long sequence X:

X = [[CLS], x1,1 , ..., x1,M1 , ..., xN ,1 , ..., xN ,MN , [SEP]] (1)

where [CLS] and [SEP] serve as special tokens indicating the classification and the end of the dialogue,
respectively. This dialogue X is then fed into a pre-trained model [38,39], such as RoBERTa, to obtain the
token embeddings H:

H = RoBERTa(X) = [h′[CLS], h′x1,1
, ..., h′x1,M1

, ..., h′xN ,1
, ..., h′xN ,MN

, h′[SEP]] (2)

Next, we add the sinusoid position information Hpos and argument type information Ht y pe to H to
generate the global token embeddings Hg :

Hg = H + Hpos + Ht y pe = [h[CLS], hx1,1 , ..., hx1,M1
, ..., hxN ,1 , ..., hxN ,MN

, h[SEP]] (3)

To capture local interactions between a token and others within the same utterance or neighboring
utterances, we design a local mask within the multihead self-attention mechanism [40]:

Hq = [headq
1 ; . . . , headq

i ; . . . , headq
Na

] (4)

headq
i = softmax

⎛
⎜
⎝

HgW Q
i ⋅ (HgW K

i )T

√
dk

+ Mq
⎞
⎟
⎠

Hg (5)

where W Q ∈ Rd×dq , and W K ∈ Rd×dk are trainable parameters, and Mq represents the local mask. There are
two types of local masks: one is the self-local mask Msl , that is defined as:

Msl [i , j] =
⎧⎪⎪⎨⎪⎪⎩

0, if the ith and the jth token belongs to the same utterance
−∞, otherwise

(6)
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The other is the neighbor-local mask Mnl , that is defined as:

Mnl [i , j] = { 0, if the ith and the jth token belongs to the adjacent utterance
−∞, otherwise (7)

We calculate self-local token embeddings Hsl and neighbor-local token embeddings Hnl using Eqs. (4)
and (5) with respective local masks. These embeddings are then fused together to generate the local token
embeddings Hl using a gate mechanism:

Hl = Gl ○ Hsl + (1 − Gl ) Hnl (8)
Gl = sigmoid (FC(Il )) (9)

where Il = [Hsl ; Hnl ; Hsl − Hnl ; Hsl ○ Hnl ]; and FC() represents a fully connected layer.
Because the speaker information is particularly relevant in dialogue encoding, we employ two speaker-

based masks: the self-speaker mask Mss [41] and the other-speaker mask Mos as defined in Eqs. (4) and (5),
to obtain embedding Hss and Hos , respectively. The two speaker masks are defined as:

Mss [i , j] = { 0, if the ith and the jth token is spoken by the same speaker
−∞, otherwise (10)

Mos [i , j] = −∞ − Mss [i , j] (11)

Finally, self-speaker token embeddings Hss and other-speaker token embeddings Hos are blended into
the speaker-based token embeddings Hs using a gate mechanism similar to that in Eqs. (8) and (9).

3.4 Argument Encoding
After obtaining different scales of dialogue encodings, we use them to calculate three types of argument

encodings: global argument encoding, local argument encoding, and speaker-based argument encoding.
While these encodings follow the same calculation process, they differ in the type of dialogue encoding
they utilize.

To capture the various dependencies between an argument and the other mentions, we apply the
mutual attention mechanism to obtain the global encoding hg

ei , the local encoding hl
ei

and the speaker-
based encoding hs

ei
for the argument ei . Let hq

ei represent a specific embedding of the argument ei , where
q ∈ {g , l , s}. It is defined as follows:

hq
ei =

Ni

∑
m=1

α j , i ,m ⋅hq
i ,m (12)

where Ni represents the number of mentions for the argument ei , and hq
i ,m represents the embedding of the

m-th mention of ei . This is calculated as follows:

hq
i ,m = 1

bm − cm + 1

cm

∑
z=bm

hq
z (13)

where hq
z represents the token embedding corresponding to the j-th mention of ei ; and z is the index of

the token in the dialogue encoding, ranging from the start bm to the end cm . α j , i ,m represents the attention
weight between hq

i ,m and the embedding of the other argument e j in a given argument pair. It is defined as:
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α j , i ,m =
ex p (h′qe j

⋅hq
i ,m)

∑Ni
n=1 ex p (h′qe j

⋅hq
i ,m)

(14)

h′qe j
= 1

N j

N j

∑
m=1

hq
j ,m (15)

where hq
j ,m represents the embedding of the m-th mention of e j.

3.5 Trigger Prediction
Based on previous studies [16,42], most triggers are notional words, including nouns, verbs, and

adjectives. We collect noun, verb, and adjective tokens as candidate triggers. A discriminator is then
constructed to calculate the probability P of each candidate c being a trigger token for a given entity pair ei
and e j. The probability P is calculated as follows:

p (c ∣ei , e j ) = sigmoid (FC (h′c)) (16)
h′c = [hg

c ; hg
ei ; hg

e j ] (17)

where hg
ei and hg

e j represent the global embeddings of ei and e j, respectively, and hg
c represents the global

embedding of c. We select the top-Kt candidates with the highest probabilities as the true triggers, which are
then used to obtain their original prototype trigger embedding ht

ei ,e j
using an average pooling layer as:

ht
ei ,e j

= 1
Kt

Kt

∑
k=1

hg
k (18)

where hg
p represents the global embedding of the k-th final predicted trigger token.

3.6 Feature Filtering
Before combining the embeddings of the trigger with those of the arguments for relation classification,

it is essential to filter out features that may mutually influence each other. On the one hand, because multiple
relations often share the same triggers, the features of a trigger carry semantic information from various
relations. On the other hand, an argument may belong to more than one relation, meaning its features also
encompass semantic information from diverse relations. This overlap can lead to incorrect classification
outcomes if the full features of the trigger and argument pair are used. To address this issue, we propose a
filtering unit. Its core technique is average pooling, which retains consistent features from the original vectors
while filtering out inconsistent ones. Given a trigger t and two arguments ei and e j, the feature filtering
process for t is defined as follows:

ζ t
ei ,e j

= 1
2

(ht
ei ,e j

+ hg
ei ,e j ) (19)

hg
ei ,e j = FC ([hg

ei ; hg
e j ]) (20)

where ht
ei ,e j

represents the prototype embedding of t; hg
ei and hg

e j represent the global embedding of ei and
e j, respectively; and hg

ei ,e j represents the filtering template generated by hg
ei and hg

e j . Similarly, the feature
filtering process for ei and e j is defined as follows:

ζq
ei = 1

2
(hq

ei + hq
e j ,t) (21)
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hq
e j ,t = FC ([hg

e j ; ζ t
ei ,e j

]) (22)

where hq
e j represents one of the local embedding and speaker-based embedding for the argument e j, i.e.,

q ∈ {l , s}; and hq
e j ,t represents the filtering template created by hq

ei and ζ t
ei ,e j

.

3.7 Prediction and Training
We combine the results of relation existence prediction and relation classification to make the

final prediction.
For relation existence, we use a binary classifier to evaluate the relation between the two given arguments

ei and e j:

f l agex ist = {True if Pex ist ≥ 0.5
False otherwise (23)

Pex ist = Binary Classifier(X) (24)

where X represents the dialogue tokens sequence.
For relation classification, we concatenate the filtered embeddings and input them into a multiclass

classifier to predict relations for the argument pair:

r̂c l ass = {i ∈ {1, . . . , r, . . . , ∣R∣} , pi ≥ 0.5} (25)
P = [p1 , . . . , pr , . . . , p∣R∣] = sigmoid(FC(Hcon)) (26)

Hcon = [ζ l
ei

; ζ l
e j

; ζs
ei

; ζs
e j

; ζ t
ei ,e j

] (27)

where r̂c l ass represents the predicted relations for relation classification; pr denotes the probability of the
argument pair belonging to the r-th relation; ζ t

ei ,e j
is the filtered embedding of trigger t; and ζq

e represents
one of the two embeddings of argument e (i.e., q ∈ {l , s}).

The final RE result is obtained as follows:

r̂ = { r̂c l ass if f l agex ist = True and r̂class ≠ ϕ
unanswerable otherwise (28)

where “unanswerable” represents that the argument pair has no relation.
We then adopt both relation classification loss and trigger prediction loss to optimize the model,

transforming our MF2F into a multitask model, which enhances performance in the DRE task. The final loss
of our model is defined as follows:

loss = α ⋅ lossre l + (1 − α) ⋅ losstr i (29)

where α is a hyperparameter that regulates the balance between the two losses; and lossre l and losstr i
represent the relation classification loss and the trigger prediction loss, respectively, which is defined as:

lossre l = − 1
∣A∣ ∑
(ei ,e j)∈A

∑
r∈R

[yei ,e j ,r log pei ,e j ,r + (1 − yei ,e j ,r) (1 − log pei ,e j ,r)] (30)

losstr i = − 1
∣A∣ ∑
(ei ,e j)∈A

1
∣T can

ei ,e j
∣

∑
t̂∈T pre

ei ,e j

wt̂ (yt̂
ei ,e j

log pt̂
ei ,e j

+ (1 − yt̂
ei ,e j

) (1 − log pt̂
ei ,e j

)) (31)
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where T pre
ei ,e j denotes the set of predicted trigger tokens for the given arguments ei and e j; yt̂

ei ,e j
represents

the true label for the token t̂; pt̂
ei ,e j

= p (t̂ ∣ei , e j ) calculated by Eq. (15); and wt̂ represents a weight that
encourages the model to identify tokens with similar semantics to the trigger tokens as supplements. It is
defined as follows:

wt̂ = {1 − scoret̂ , if scoret̂ > scoreth
1 otherwise (32)

scoret̂ = max
t∈T tru

ei ,e j

cos (t̂, t) (33)

where T tru
ei ,e j

represents the set of true trigger tokens for two given arguments ei and e j; and scoreth represents
a threshold that determines whether the semantics between t̂ and t is close enough with SBert [43].

Before training, we leverage the strong text comprehension abilities of an LLM to automatically annotate
triggers for samples lacking manual annotations. We design prompts based on CoT and ICL to facilitate this
task. In constructing the CoT, we break down the trigger annotation process into three subtasks. First, we
prompt the LLM to explain why a given argument pair has such a particular relation, encouraging the model
to explore the semantics relevant to the task. Second, we prompt the LLM to predict the trigger and assess its
accuracy. Third, we prompt the LLM to provide an explanation for each predicted trigger. The prompt also
includes a contextual example to help the LLM learn the thought patterns necessary for trigger identification
and to master the correct output format. For quality control in predicting triggers [44], we employ the
Local Outlier Factor (LOF) [45] to evaluate the quality of the explanations. Outliers are considered poor
explanations, and the corresponding triggers are discarded to ensure the acquisition of high-quality triggers.

4 Experiments

4.1 Datasets
The dataset used in our experiments is the DialogRE dataset, which comprises dialogues extracted from

the American TV series Friends. It includes two versions: DialogREv1 and DialogREv2. DialogRE contains
1788 dialogues, 37 relations, and 8119 relational triplets, the majority of which describe the relations between
characters in the dialogues. Notably, annotated triggers are provided for a subset of these triplets. For our
experiments, we utilize the standard three partitions of the data: training, development, and testing, as
structured in the DialogRE dataset.

4.2 Baselines and Evaluation Metrics
To conduct a comprehensive performance evaluation, we compare our model against 11 baselines and

SOTA methods, which are categorized into three groups, including Sequence-based models: BERTs [16],
RoBERTas [17], CoIn [18] and SimpleRE [19]; Graph-based models: HGAT [21], GDPNet [22], AMR [37] and
TUCORE-GCN [17]; and Trigger-enhanced models: TREND [24], GRASP [25], TLAG [29] and KEPT [26].
We use the standard Precision (P), Recall (R) and micro-F1 (F1) to evaluate the model performance:

P = TP
TP + FP

(34)

R = TP
TP + FN

(35)

F1 = 2 ∗ P ∗ R
P + R

(36)
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where TP, FP and FN stand for true positive, false positive, and false negative, respectively. In the rest of the
paper, F1 refers to micro-F1 unless otherwise specified.

4.3 Implementation Details
Our model utilizes AdamW as the optimizer with a Cosine Annealing scheduler, with a weight decay of

1e-3. The pre-trained model RoBERTa-large serves as our encoder, with a learning rate of 5e-6. We trained
the model using a batch size of 2 for 30 epochs, with a learning rate of 1e-4 for parameters other than those
of the pre-trained model. The multitask learning loss weights are assigned as 0.90 for RE and 0.10 for trigger
prediction. We insert special tokens to represent speaker indices between the utterances, forming an input
sequence. This sequence is then divided into sub-word tokens. If the length of the tokenized sequence exceeds
512, we split it into two overlapping sub-sequences. Experiments were conducted on a server equipped with
two NVIDIA TITAN RTX GPUs, while the environment for LLM-based trigger annotation experiments was
based on an Intel Core i7-12700K processor.

4.4 Overall Results
As shown in Table 1, our MF2F achieves the best performance among all models, reaching an F1 score

of 76.3% on DialogREv1 and 77.0% on DialogREv2. It surpasses the best baseline, GRASP, by 1.2% and
1.5% on both versions of the DialogRE dataset, respectively. This clearly demonstrates the effectiveness of
our approach.

Table 1: The F1 (%) on DialogREv1 and DialogREv2 test datasets. The best results are bold

Type Models DialogREv1 DialogREv2
BERTs [16] 61.2 59.5

RoBERTas [17] – 71.3
Sequence-based CoIn [18] 72.3 –

SimpleRE [19] 66.3 66.7

HGAT [21] – 56.1
GDPNet [22] 64.9 60.2

Graph-based AMR [37] 67.3 67.1
TUCORE-GCN [17] – 73.1

TREND [24] – 67.8
Trigger-enhanced GRASP [25] 75.1 75.5

TLAG [29] – 66.6
KEPT [26] – 73.6

MF2F 76.3 (↑ 1.2) 77.0 (↑ 1.5)

Trigger-enhanced models outperform the other two categories. Compared to sequence-based and
graph-based models, trigger-enhanced models achieve an average improvement of at least 2.3% in F1 score
on the test dataset. This confirms the efficacy of enhancing the DRE model with triggers through multitask
learning and feature filtration.

Moreover, our model outperforms all other trigger-enhanced models. In addition to multitask learning
and feature filtration, it incorporates feature filtering and LLM-based automatic trigger annotation. These
mechanisms further enhance the model’s performance in the DRE task.
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4.5 Ablation Study
To showcase the efficacy of the feature filtering mechanism, we established two ablation scenarios. The

first scenario, labeled MF2Frdm_tpl, uses filtering templates from randomly initialized vector, replacing each of
the three filter templates with random templates individually and calculating the average results. The second
scenario, denoted as MF2Fwot_tpl, utilizes the original embeddings of the arguments and the trigger prototype
directly for relation classification, bypassing feature filtering.

As indicated in Table 2, we observe an average drop of 3.2% in the F1 score across the dataset when
the feature filtering step is removed, underscoring the effectiveness of this mechanism. Interestingly, even
when using a randomly initialized vector to create the filtering template, the model still achieves over
0.8% improvement compared to the scenario without feature filtering, although this does not match the
performance of templates derived from the argument or trigger. This suggests that the model can learn a
relatively effective filtering template from scratch through optimization, further confirming the utility of the
feature filtering mechanism from a different perspective.

Table 2: The results of ablation experiments

Model DialogREv1 DialogREv2

P R F1 P R F1
MF2F 78.7 74.1 76.3 79.2 75.0 77.0

MF2Frdm_tpl 75.5 73.0 74.2 75.2 73.2 74.3
MF2Fwot_tpl 77.1 70.2 73.5 75.7 71.2 73.4
MF2Fwot_aua 75.9 72.8 74.3 77.5 72.9 75.2
MF2Fful_aua 77.3 72.0 74.6 78.9 73.2 75.9

We also developed two additional ablation scenarios to assess the effectiveness of our LLM-based
automatic trigger annotation strategy. In the first scenario, MF2Fwot_aua, triggers automatically annotated by
the LLM are excluded from the training phase. In the second scenario, MF2Fful_aua, all triggers used in the
training phase are obtained through automatic annotation by the LLM.

The results presented in Table 2 show an average performance reduction of 1.9% when triggers automat-
ically annotated by the LLM are excluded. Furthermore, the model’s performance drops by 1.4% on average
when the triggers are entirely annotated by the LLM; however, it still outperforms the case without any
automatically annotated triggers. These findings suggest that LLM-based automatic trigger annotation based
is a valid approach for improving model performance in the DRE task.

4.6 Loss Weight Study
In trigger-based dialogue relation extraction, the loss function weight is a critical hyperparameter

that balances the losses of the two tasks during training. It ensures that while relation extraction remains
the primary focus, the trigger prediction task is also optimized. To investigate its impact, we conducted
experiments with α values of 0.80, 0.85, 0.90, 0.95, and 1.00 on DialogREv2, while keeping all other
parameters constant.

As shown in Fig. 3, experimental results indicate that an excessive or insufficient focus on the relation
extraction task negatively impacts performance. When training exclusively focuses on the relation extraction
task, the F1 drops to its lowest value of 75.0%.
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Figure 3: The results of the loss weight study

4.7 Availability Validation
To evaluate the applicability of the two innovative technologies in our model, we integrated the

feature filtering and LLM-based trigger annotation into the recent trigger-enhanced DRE model, TREND.
The results are showcased in Table 3. By incorporating the feature filtering into TREND, its performance
increases by 4.7%. When applying the LLM-based trigger annotation, TREND’s performance improves by
1.7%. Notably, when both technologies are implemented simultaneously, the performance is enhanced by
5.2%. These findings suggest that both feature filtering and LLM-based trigger annotation can be utilized
individually or together in other DRE models to effectively improve their performance.

Table 3: Performance of TRNED using feature filtering and LLM annotating

Model DialogREv2 DialogREv2+LLM
annotating

P R F1 P R F1
TRNED 69.7 69.4 69.6 71.4 71.2 71.3

TRNED+filter 74.0 74.6 74.3 74.7 75.0 74.8

4.8 Case Study
To demonstrate the working principle of the large model data augmentation method and the feature

filtering mechanism in MF2F, we conducted four case studies on the DialogREv2 test dataset. In the Case1,
we focus on investigating whether LLMs can extract appropriate trigger words to enhance the training of
our MF2F. In the Case2, we focused on scenarios where a single trigger corresponds to two relations, using
MF2Fwottpl (without filtering templates) and MF2F (with filtering templates) to perform relation prediction
on the test set, and visualized the representation space of the relation using principal component analysis
(PCA). In the Case3, we focused on scenarios where a single entity corresponds to two relations, using
MF2Fwottpl and MF2F to perform relation prediction and also visualized the representation space of the
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relation. In the Case4, to further investigate the capability of MF2F under complex conditions, we divided
DialogREv2 based on the number of arguments, and compared the results of MF2F and GRASP under
these conditions.

As shown in Table 4, we selected three examples that originally did not have annotation triggers to
illustrate the impact of these annotations extracted by LLMs. In Dialogue1, Speaker2 fired Tim, with the
LLM extracting the trigger “fire”, directly indicating the boss-employee relation. In Dialogue2, Speaker1
visited Vail, and the LLM’s extraction of “go skiing” suggests that Speaker1 skied during the visit. Dialogue3
follows a similar pattern. These examples highlight how LLM annotations compensate for the lack of human
annotations, effectively training the model and thereby enhancing its performance.

Table 4: LLM annotation examples of the Case1

Id Dialogue Arguments Relation Trigger
1 Speaker1: I had the best time with Tim...

Speaker2: I... I have to fire him.
Speaker2 Tim per:subordinate fire

2 Speaker1:... I can spend Thanksgiving
with my family. See, every year we go

skiing in Vail...

Speaker1 Vail per:visited_place go skiing

3 Speaker1: Oh! Okay, call me! Speaker 4:
Okay, look, I-I know what...

Speaker1 Speaker4 per:dates call me

In the Case2 and Case3, as shown in Fig. 4, we observed that without filtering templates, F1 scores
dropped by 19.8% and 9.3%, underscoring the effectiveness of the filtering mechanism in both scenarios.

Figure 4: The results of the Case2 and Case3 on DialogREv2 datasets. In the Case2, a single trigger corresponds to two
relations. In the Case3, a single entity in the test set belongs to two relations in a dialogue



Comput Mater Contin. 2025;83(1) 151

Figs. 5 and 6 illustrate that for pairs of triples corresponding to the same trigger or the same entity,
the red dots represent relation representation for one triple, while the blue dots represent those for the
other, easily confusable triple. The filtering mechanism successfully separated previously overlapping relation
representations, resulting in clearer boundaries and enabling effective classification of triples with different
relations under similar conditions.

Figure 5: The results of PCA visualization of the relation representations in the Case2

Figure 6: The results of PCA visualization of the relation representations in the Case3
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The results indicate that while MF2F performs slightly worse than GRASP by 0.9% on data with a small
number of arguments, it significantly outperforms GRASP on data with a larger number of arguments, as
shown in Fig. 7. For data with a small number of arguments, MF2F still has room for improvement, as the
limited number of conflicts restricts the model’s ability to fully demonstrate its advantages. In contrast, in
dialogues with a larger number of arguments, where conflicts occur more frequently, the model effectively
handles these challenges. This demonstrates the efficiency of our feature filtering method in mitigating
feature conflict issues.

Figure 7: The results of the Case4

5 Conclusion
In this paper, we introduce the MF2F model, which implements two innovative techniques: automatic

LLM-based trigger annotation and average pooling-based feature filtering. These techniques aim to address
issues of insufficient trigger annotations and conflicting information in trigger and argument representations
for the dialogue relation extraction task. We employ prompt tuning of an LLM to achieve automatic trigger
annotation for samples lacking manual annotations. The prompt construction follows a CoT structure, and
includes contextual examples for the LLM to learn from. In the feature filtering stage, average pooling
allows the model to retain features that point to the same relations while eliminating individual features
that indicate other incorrect relations. This enhances the discriminability of a sample concerning its correct
relation. Experiment results indicate that trigger-enhanced models outperform sequence-based and graph-
based models, with our MF2F achieving the best performance among trigger-enhanced models. Through
ablation studies, we validated the effectiveness of our two innovative techniques. Furthermore, the innovative
techniques integrated into MF2F can be easily applied to other strong trigger-enhanced models, improving
their performance in DRE tasks.
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