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ABSTRACT: Social media has significantly accelerated the rapid dissemination of information, but it also boosts
propagation of fake news, posing serious challenges to public awareness and social stability. In real-world contexts, the
volume of trustable information far exceeds that of rumors, resulting in a class imbalance that leads models to prioritize
the majority class during training. This focus diminishes the model’s ability to recognize minority class samples.
Furthermore, models may experience overfitting when encountering these minority samples, further compromising
their generalization capabilities. Unlike node-level classification tasks, fake news detection in social networks operates
on graph-level samples, where traditional interpolation and oversampling methods struggle to effectively generate
high-quality graph-level samples. This challenge complicates the identification of new instances of false information.
To address this issue, this paper introduces the FHGraph (Fake News Hunting Graph) framework, which employs a
generative data augmentation approach and a latent diffusion model to create graph structures that align with news
communication patterns. Using the few-sample learning capabilities of large language models (LLMs), the framework
generates diverse texts for minority class nodes. FHGraph comprises a hierarchical multiview graph contrastive learning
module, in which two horizontal views and three vertical levels are utilized for self-supervised learning, resulting
in more optimized representations. Experimental results show that FHGraph significantly outperforms state-of-the-
art (SOTA) graph-level class imbalance methods and SOTA graph-level contrastive learning methods. Specifically,
FHGraph has achieved a 2% increase in F1 Micro and a 2.5% increase in F1 Macro in the PHEME dataset, as well as a
3.5% improvement in F1 Micro and a 4.3% improvement in F1 Macro on RumorEval dataset.
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1 Introduction
The swift growth of social networks has made our daily lives more convenient, yet it has also turned into

a breeding ground for the proliferation of fake news. The proliferation of such false information poses a real
threat to key areas such as politics [1], and economy [2]. For example, during the COVID-19 (Coronavirus
disease 2019) pandemic, the spread of false health information could significantly impact public health
decisions, promoting erroneous prevention and treatment practices [3]. Therefore, developing effective
methods for detecting fake news has become an important and urgent task, with the aim of identifying and
minimizing the serious consequences of such misinformation.

In the realm of fake news detection, despite the promise shown by deep learning methods such as
Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs) [4], and Transformer-based

Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2025.060455
https://www.techscience.com/doi/10.32604/cmc.2025.060455
mailto:sfzhang@seu.edu.cn


310 Comput Mater Contin. 2025;83(1)

models like BERT (Bidirectional Encoder Representations from Transformers) [5] in automatic learning
and text feature extraction, these approaches often neglect the social context in which news is disseminated.
To bridge this gap, graph neural network (GNN)-based detection methods have emerged as critical tools
in the extraction of contextual information related to news dissemination [6]. GNNs effectively capture
dynamic associations and dissemination patterns by modeling nodes (e.g., news articles and replies) and
edges (propagation paths) within the news dissemination network, offering a vital perspective on the spread
of misinformation through social networks.

By providing a structured way to view interactions and propagation paths, graph-based approaches
allow for a deeper understanding of the complex challenges involved in modeling information spread. For
example, TRMCPM [7] utilizes GraphSAGE to encode the propagation graph, while BiGCN [8] adopts a dual
graph approach, modeling news propagation patterns from top-down and bottom-up perspectives. These
innovations underscore the evolving nature of fake news detection, highlighting the need for models that
can adapt to the intricacies of social interactions and the mutable nature of news spread.

One significant challenge in fake news detection is the imbalance among graph-level categories. In
real online environments, the number of rumors is substantially lower than that of nonrumors, making it
difficult for detection models to develop effective recognition capabilities from limited rumor samples [9,10].
Currently, addressing this challenge involves several issues. First, existing graph-level minority class sample
enhancement methods rely primarily on oversampling [11] and interpolation synthesis [12,13], which often
result in a lack of diversity and difficulty in generating high-quality samples. Although resampling can
balance the data set by adjusting the proportion of samples across categories, it risks overfitting the model to
duplicate samples, thereby diminishing its generalizability to new data. Furthermore, interpolation methods,
such as GraphSMOTE [13], may introduce artificial features that do not align with the actual distribution,
increasing noise. Therefore, an effective strategy should enhance sample diversity while maintaining data
representativeness. Second, due to the limited number of rumor samples, the models struggle to capture
their diversity and complexity, which can lead to overfitting on a small number of samples and reduced
generalization capacity for minority classes. We summarize the most representative and relevant studies
in Table 1.

Table 1: Comparison of methods in fake news detection. Abbreviation: Class Imbalance (CI), Content Feature Focus
(CFF), Graph Structure Focus (GSF), Sample Diversity (SD), Self-Supervised Learning (SSL)

Model CI SD GSF CFF SSL
RvNN [14] × × × ✓ ×
BiGCN [8] × × ✓ × ×

G-mixup [15] ✓ × (mix up) ✓ × ×
GACL [16] × × ✓ × ✓

G2GNN [17] ✓ × ✓ × ×
FHGraph (this work) ✓ ✓ ✓ ✓ ✓

To address these challenges, this paper introduces a novel learning framework called FHGraph (Fake
News Hunting Graph), designed to mitigate class imbalance while enhancing the model’s dynamic recogni-
tion and generalization capabilities for fake news. Specifically, to generate samples from the minority class,
we develop a dynamic sample generator that uses the robust generative capabilities of the latent diffusion
model [18] to create graph structures that align with the news dissemination patterns, informed by the
statistical features of these structures. By integrating the few-sample learning capabilities of large language
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models (LLMs), we can effectively combine structural information and generate diverse text content, thereby
alleviating the scarcity of rumor samples.

For rumor feature learning, we implement a hierarchical graph contrastive learning module that
performs self-supervised learning through two views and three levels, allowing for a deep exploration of the
consistency between source news content and dissemination content. This approach promotes the model’s
ability to learn effectively from limited samples. We conducted extensive experiments on two benchmark
datasets from real social networks, and the results demonstrated that FHGraph outperforms existing
methods in imbalanced fake news detection tasks. By efficiently detecting false information, FHGraph can
serve as an effective tool for social media platforms, government agencies, and public organizations, helping
to promptly address the spread of misinformation, enhance social trust, and increase the transparency of
public decision-making.

The contributions of this paper are summarized as follows:
1. Graph-level sample generation method: We propose a method that utilizes a latent diffusion model to

generate graph structures informed by statistical features. By integrating the few-sample learning capabilities
of LLM, we achieve a tight coupling between graph structure and news content, dynamically generating
diverse minority class samples. This approach effectively mitigates the decline in false news detection
performance caused by class imbalance.

2. Augmentation strategy of the text attribute graph data using LLM: For the text attribute graph
associated with the news content, we employ an LLM chain generation method to create contextually relevant
text based on neighboring information within the graph structure. Additionally, we introduce a method that
improves LLM-generated complete graph data by supplementing attributes with contextual information.

3. Hierarchical multiview graph-level contrastive learning method: We explore the structural con-
sistency between the source news text and dissemination content, implementing a three-level, multiview
comparative self-supervised learning approach. This method focuses on the relationships between nodes,
node-graph interactions, and graph-graph comparisons, enhancing the model’s learning capabilities.

2 Related Work

2.1 Fake News Detection
Deep learning models for detecting fake news can be categorized primarily into text-based and social

networks-based approaches. Text-based detection models rely on the semantic features of news articles to
differentiate between true and false information. For example, Ajao et al. employ emotional features of news
texts for the detection of fake news [19]. Luvembe et al. improve detection accuracy by integrating the dual
emotional characteristics of news publishers with social emotions [20]. Zhu et al. improve the generalization
capabilities of fake news detection models by extracting entities from news texts and constructing a debiased
framework [21]. However, these methods predominantly focus on textual content, limiting the range of
available information for analysis.

In contrast, models based on social networks leverage news dissemination patterns on social networks
to identify fake news. Bian et al. utilize two Graph Convolutional Networks (GCNs) to capture bottom-up
and top-down propagation patterns, thereby fully modeling news dissemination [8]. He et al. introduce a
data augmentation strategy that randomly modifies propagation graphs (e.g., by removing edges or masking
subgraphs) and trained GCN models using contrastive learning [22]. Yin et al. develop an unsupervised
graph autoencoder that employs the context and content of news dissemination as self-supervised signals
through masking and contrastive learning, reducing reliance on labeled datasets [23]. Fang et al. proposed
a novel propagation tree variational autoencoder model that reconstructs sentiment labels along the propa-
gation tree of factual tweets and uses a cross alignment method to align the tree structure and propagation
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features [24]. Che et al. proposed a fake news detection method based on social content categories, which
constructs a third-order tensor through the links and interactions of social networks, and employs a sparse
and graph-regularized tensor decomposition learning method to effectively reveal the complex relationships
between users and news [25].

2.2 Solutions for Imbalanced Graph Dataset
Data imbalance classification poses a significant challenge in the realm of graph neural networks.

Although the issue of node-level class imbalance has garnered considerable attention, research on graph-
level class imbalance has emerged primarily in the past two years. G-Mixup applies the mixup technique to
combine different categories of graphs, generating composite graphs as additional training data. However,
this method often lacks diversity in the characteristics of the generated sample [15].

G2GNN addresses the graph imbalance problem by establishing a graph of graphs (GOG) that integrates
global neighboring graph information with local random enhancements based on kernel similarity [17].
Similarly, ImbGNN introduces an optional enhancement strategy for the average degree distribution, based
on G2GNN to tackle both class imbalance and structural imbalance simultaneously [26]. However, both
methods rely on GOG implementations and may not be suitable for graph datasets lacking correlation
between samples.

Moreover, there is a scarcity of research specifically addressing class imbalance in the context of fake
news detection. SynDGN utilizes a dual graph network to fuse news text and user information features
for rumor detection, employing synthetic embedding techniques to mitigate data imbalance problems [27].
However, this synthesis method has limitations in terms of sample diversity.

2.3 Graph Contrastive Learning
Contrastive learning is a discriminative method focused on generating similar representations for

similar samples while distancing the representations of dissimilar samples. Graph contrastive learning seeks
to develop an encoding model that encodes similar nodes (or graphs) to yield similar representations while
separating those of dissimilar samples. However, research on graph-level contrastive learning is relatively
limited compared to node-level contrastive learning.

GraphCL, proposed by You et al., implements an instance-based node-level graph contrastive learning
framework for graph-level contrastive learning. This approach generates positive samples by defining
different augmented representations of the same graph and creates negative samples using representations
of other graphs within the same batch [28]. Luo et al. were the first to proactively train negative samples
to enhance graph contrastive learning effectiveness [29]. Liang et al. introduced Implicit Graph Contrastive
Learning (iGCL), which improves graph-level contrastive learning by reconstructing graph topology and
leveraging the hidden space learned through variational graph autoencoders, thereby eliminating the need
for manual dataset tuning and enhancement [30]. On this basis, extending the concept of graph contrastive
learning to the field of fake news detection, Li et al. proposed a novel rumor detection model called graph
contrastive learning with feature augmentation (FAGCL), which injects noise into the feature space and
learns contrastively by constructing asymmetric structures [31].

3 Problem Definition
We define a dataset G = {g1 , g2, . . . , gn}, where each graph gi consists of a node set Vi and an edge set

Ei . The node set Vi includes the source news tweet and its associated comment nodes, while the edge set
Ei represents the relationships between comments and replies, thus forming the connectivity structure of



Comput Mater Contin. 2025;83(1) 313

the news dissemination graph. Each graph gi is assigned a label yi ∈ {0, 1}, indicating the authenticity of
the source news, with 0 representing fake news and 1 representing real news. The objective of the fake news
detection task is to predict the authenticity of the source news, denoted as ŷi ∈ {0, 1}.

4 Methodology

4.1 Overview of the Proposed FHGraph Framework
Fig. 1 illustrates the overall structure of our proposed FHGraph framework. FHGraph aims to solve

the imbalance problem in fake news detection through sample generation and self-supervised learning.
First, it adopts a collaborative large language model and a diffusion model as a graph-level sample generator
to dynamically create diverse rumor samples. This combined approach can leverage the powerful text
generation capabilities of LLMs and the structure generation capabilities of diffusion models to work
together to generate graph structures and text content that are consistent with the news dissemination
model. This not only improves the diversity of samples but also enhances the model’s ability to identify
minority-class samples.

Figure 1: Overview of the FHGraph framework. This framework addresses the class imbalance in fake news detection
using a sample generator and a hierarchical multi-view graph contrast learning module. Initially, FHGraph utilizes
the latent diffusion model’s structured information to create sample structures, and chain generation from LLMs to
enhance the dataset with synthesized sample node content. In the contrast learning phase, the graph is perturbed to
create an enhanced view, improving graph representation through dual-view and three-level contrast learning. The
process culminates in a binary classification task at the graph level
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Second, FHGraph incorporates a hierarchical multiview graph-level contrastive learning module to
enhance graph representation through contrastive learning across dual-view and three-level graphs. This
module performs self-supervised learning through two horizontal views and three vertical levels to optimize
representation learning between nodes, node graphs, and graphs. This multiview structure allows informa-
tion from various perspectives to complement each other, improving the model’s overall performance.

Finally, the collaboration between modules significantly improves the overall performance of the
system: the dynamic and diverse graph-level samples provided by the sample generator provide rich training
materials for the contrastive learning module, which through its layering and multi-view. The mechanism
effectively learns the deep graph structure and node content consistency from these samples, further
improving the model’s ability to identify news authenticity in binary classification tasks at the graph level.

4.2 Graph-Level Sample Generator Based on LLM and Diffusion Model
In real social networks, the distribution of news samples is often uneven, with fake news usually

accompanied by a significant amount of genuine content. Additionally, merely generating new samples
through oversampling can undermine the model’s dynamic adaptability. To enhance the dynamic recognition
capabilities of the model in the presence of imbalanced samples, this paper proposes a collaborative sample
generator that integrates the LLM and diffusion model.

From a network structure perspective, we employ a pre-trained latent space diffusion model that uses
the statistical features of the graph as guiding conditions to dynamically generate the network structure of the
target sample. For node content generation, we leverage LLM-based prompt engineering to utilize its few-
sample generation capabilities, creating coherent discussion and reply chains based on the target network
structure. This approach deeply integrates the content generated by the LLM with the structure produced by
the diffusion model, resulting in robust, dynamic, and diverse minority class samples.

4.2.1 Graph Structure Generator Based on Latent Diffusion Model
Inspired by the work of [18], we design a conditionally guided latent diffusion model to generate

dissemination graph structures. Instead of merely expanding minority class samples through resampling,
the latent diffusion model generates graph structures in an innovative way by capturing and simulating news
dissemination patterns. This allows for the creation of graph structures not found in the training set yet still
conforming to realistic news dissemination patterns. This approach not only enhances the diversity of the
generated data, but also avoids potential repetition and bias in the sampling process.

As illustrated in Fig. 2, the graph structure generator consists of three main components: an autoen-
coder, a latent diffusion model, and diffusion guidance conditions. The encoder initially transforms the input
data into a representation within a hidden space. During the forward propagation of the diffusion model,
noise is progressively added to perturb this hidden space representation. Subsequently, Gaussian noise is
sampled, and a denoising network is employed to iteratively reduce the noise based on the learned conditional
probabilities. The resulting denoised vector is then transformed into a generated image through a decoder.

a) The autoencoder comprises both an encoder and a decoder. The encoder E encodes the graph Gi
into a latent embedding z = E (Gi), while the decoder D uses this latent vector z to reconstruct the original
graph as Ĝi = D(z) = D(E (Gi)), where z residesin R

d .
Encoder. To mitigate the high variance in hidden space caused by traditional autoencoders, we employ

a Variational Autoencoder (VAE). Using fully connected layers MLPμ and MLPσ , we project the graph
data onto the parameters of a Gaussian distribution. Furthermore, we embed a standard regularization term
within the loss function to apply constraints corresponding to a standard normal distribution on the latent
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representation, thus guaranteeing the smoothness and continuity of the latent space. Finally, we sample the
vector z from the Gaussian distribution obtained during training as Eq. (1).

μ = MLPμ (hGi) , σ = MLPσ (hGi) , z = μ + σ ⊙ ε (1)

Figure 2: Graph structure generator based on latent diffusion model. This diagram depicts the main components of
the generator: an autoencoder, a latent diffusion model, and conditioning on graph statistics. Initially, the autoencoder
transforms a graph G into a latent space. This representation is then altered through a diffusion process that
incrementally adds noise, which is subsequently refined by a denoising model using learned conditional probabilities.
The process culminates with the decoder reconstructing the denoised latent representation into a synthetic graph G′

Here, ⊙ indicates element-wise multiplication, and ε denotes a noise vector drawn from the normal
distribution N (0, I). hGi refers to a graph representation derived from message-passing neural networks,
such as Graph Isomorphism Networks (GIN) and Graph Convolutional Networks (GCN).

Decoder. The decoder D accepts the latent vector z as input to reconstruct the structure of the original
graph. Specifically, we implement the decoder using a multilayer perceptron (MLP) composed of fully
connected layers, represented as Eq. (2):

Â = MLPD(z) (2)

Here, Â ∈ Rnmax×nmax , where nmax is the predefined maximum map size. The elements of Â are continuous
values that signify the likelihood of an edge being present between two nodes. To convert these continuous
probabilities into actual graph representations (i.e., determining the presence of edges), we apply the
Gumbel-Softmax technique for discretization. By introducing Gumbel noise and utilizing the softmax
function, we can obtain discrete results through sampling during forward propagation, while continuous
softmax outputs facilitate gradient calculations in backward propagation. Subsequently, we contrast the
reconstructed matrix Â with the adjacency matrix A to calculate the reconstruction loss.

b) Latent Space Diffusion Model: After training the autoencoder, it effectively maps graph data into
low-dimensional embeddings that capture both the local and global characteristics of the input graph. The
key benefit of the latent diffusion model, compared to traditional diffusion models, is its increased efficiency
due to lower dimensionality, which speeds up the diffusion process. The latent diffusion model comprises
two components: an additive noise model and a denoising network.
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Noise model incrementally degrades the latent embedding z of the input graph, progressively increasing
the noise level until it transforms into pure Gaussian noise. In fact, in the forward diffusion phase, the noise
sampled from the Gaussian distribution at the time step t − 1 is added to the representation at time step t, as
shown in Eq. (3):

q(zt ∣zt−1) = N (zt ;
√

1 − βtzt−1 , βtI) (3)

Here, βt represents a known variance schedule, where 0 < β1 < . . . βt < 1, controlling the amount of noise
added at each step. The forward process is predetermined, allowing zt to be directly derived from z during
training. Specifically, we have Eq. (4):

q(zt ∣z) = N (zt ;
√

ātz, (1 − āt)I) (4)

Denoising network. The objective of denoising networks is to predict the noise added at each state
during the forward diffusion process, specifically inferring the ratio of raw data to noise incrementally. To
train the denoising network, we aim to reduce the discrepancy between the true noise ε and the estimated
noise ε0(⋅) using the following loss function Eq. (5):

LLDM = EE (Gi),ε∼N (0,1),t [∥ε − ε0(zt , t)∥2
2] = EE (Gi),ε∼N (0,1),t [∥ε − ε0 (

√
ātz +

√
1 − āt ε, t)∥2

2] (5)

We implemented a multilayer perceptron (MLP) as a denoising neural network ε0 to predict and remove
noise at each time step t. To enable the network to recognize different time steps, we input the vector zt into
the MLP and introduce positional embeddings based on sine functions for each time step. These embeddings
are added to each hidden layer of the MLP to enhance its sensitivity to time. This approach allows the network
to respond not only to the current state of noise zt but also to its specific temporal position during the
diffusion process, thereby facilitating a more accurate recovery of the original data.

c) Guiding Conditions: The hidden diffusion model can represent the conditional distribution by
incorporating additional conditional information c during the denoising process. Specifically, various
information such as statistical features can be embedded in a hidden space to customize the model to generate
output with intended attributes. Considering the information noted as c, the latent diffusion model employs
the conditional denoising network εθ (zt , t, τθ(c)) to model the conditional distribution p(z∣c):

LLDM = EE (G),ε∼N (0,1),t [∥ε − εθ(zt , t, τθ(c))∥2
2] (6)

Here, τθ() is a conditional encoder implemented with an MLP, which encodes the conditional infor-
mation into a suitable format for the model. The vectors zt and τθ(c) are then concatenated and fed into the
denoising neural network.

In this paper, the conditional information comprises the statistical features of the input propagation
graph, detailed in Table 2. We selected 14 specific statistical attributes. These features cover multiple dimen-
sions of the graph, aiding in our understanding of its topology, internode relationships, and information
propagation patterns. We have chosen 14 specific statistical attributes based on the following considerations:

1. Global Graph Characteristics: Key attributes like the number of nodes, edges, and graph density provide
essential information about the size and connectivity of the graph. These help us to understand how
densely connected the graph is and how quickly information might spread.

2. Node Connectivity: Important metrics such as maximum degree, minimum degree, average degree,
and assortativity indicate how nodes are connected and highlight important nodes within the network.
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These nodes are often crucial in the propagation of false information, making them key targets in the
detection of fake news.

3. Information Propagation Routes: Measures like the average clustering coefficient, the maximum
k-core, and diameter gauge the intensity and lengths of the pathways for the spread of information.
A higher clustering coefficient suggests tight clusters of connections, k-core analysis reveals important
substructures, and the diameter shows the longest distance between two nodes, impacting the spread’s
efficiency and scope.

4. Tree-Like Structures: In news spread, especially with fake news, the diffusion often follows a tree-like
structure. Characteristics such as maximum depth, degree of root nodes, branching factor, and number
of leaf nodes allow us to see the hierarchical organization and the spread paths, crucial for tracing and
understanding the dissemination of false information.

Table 2: Attributes and description of guiding conditions

ID Properties Description
1 Nodes Number of nodes in graph
2 Edges Number of edges in graph
3 Density Density of edges in graph
4 Maximum degree Maximum of number of edges related with node
5 Minimum degree Minimum of number of edges related with node
6 Average degree Average of number of edges related with node
7 Assortativity The degree to which nodes in a graph tend to connect

with other nodes of similar degrees
8 Average clustering coefficient The average value of the degree to which neighboring

nodes of a node are connected to each other
9 Maximum k-core K-core is the largest subgraph with all nodes having a

degree of at least k
10 Diameter The length of the longest and shortest path between any

two nodes in the graph
11 Maximum depth The maximum depth of a tree
12 Root node degree The number of child nodes of the root node
13 Branching factor Average number of child nodes per non-leaf node
14 Leaf nodes The number of nodes without child nodes

4.2.2 Node Content Generation Based on LLM Prompt
LLMs have demonstrated remarkable capabilities in text content generation, particularly in few-

shot and zero-shot scenarios. Using their generative strengths, LLMs can produce coherent and logically
structured text even with minimal or no sample prompts. This paper presents two approaches for generating
node content for new graph samples using LLM, which are categorized into a direct generation strategy and
an enhancement strategy. For detailed strategies and the corresponding prompts utilized in these approaches,
refer to Table 3.
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Table 3: Strategies and prompts for node content generation using LLM)

Strategy Prompt
Chain generation Task Description + Graph Structure Input + Source Node Content

Provision + Output Format
I will input the content of a Twitter graph’s propagation, where

node 0 is the tweet, and the remaining nodes are comments and
reply nodes. The graph structure is composed of source nodes
pointing to target nodes. Source nodes:{source_nodes}, Target
nodes:{target_nodes}. Now I will provide you with the content
for Node0, and I need you to generate the propagation content

in a chain {Node [0]:node0_content}. You will output the content
of all nodes in this format: node[x]: content.

Zero/One-shot generation Task Description + Graph Structure Input + Source Node Content
Provision + Output Format + Learning Sample

I will input the content of a Twitter graph’s propagation, where
node 0 is the tweet, and the remaining nodes are comments and
reply nodes. The graph structure is composed of source nodes
pointing to target nodes. Source nodes:{source_nodes}, Target
nodes:{target_nodes}. Now I will provide you with the content
for Node0, and I need you to generate the propagation content

in a chain. Node [0]:{node0_content}. You will output the
content of all nodes in this format: node[x]: content. Here is an

example:{example}.
LLM as a text replacer Task Description + Output Format

Rewrite the sentence using a completely different phrasing, but
ensure the meaning remains unchanged. Please output the new

sentence directly {sentence}.
LLM as a context completion tool Task Description + Graph Structure Input + Source Node Content

Provision + Comment Node Content Provision + Output Format
I will input the content of a Twitter graph’s propagation, where

node 0 is the tweet, and the remaining nodes are comments and
reply nodes. The graph structure is composed of source nodes
pointing to target nodes. Source nodes:{source_nodes}, Target
nodes:{target_nodes}. I will provide the content for Node0 and
some random comment nodes, and I need you to complete the
entire propagation tree in a chain. {Node [0]:node0_content},
{Node[X]:nodex_content}. You will output the content of all

nodes in this format: node[x]: content.

Generation Strategies:
1. Chain Generation: This strategy is designed to handle related content, such as source news articles,

comments, and their replies-often a significant challenge for traditional text generation systems. However,
LLMs, with their exceptional memory and comprehension abilities, can generate a series of coherent replies
using simple prompts, mimicking real Twitter conversations. Specifically, based on the graph structure
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outlined in Section 4.2.1, we input (source node, endpoint node) pairs and instruct the LLM to ensure that
the content of the endpoint node is closely related to that of the source node. The LLM then outputs the
content for all nodes sequentially.

2. Zero/One-Shot Generation: The one-shot generation strategy enables the model to produce content
based on a task description after receiving a single example. In contrast, the zero-shot generation strategy
allows the model to generate content based solely on task descriptions without specific sample guidance.
For example, in a zero-shot scenario, we can instruct the LLM to generate a complete Twitter spread map,
including the source news, based on the core content of a news story. In a one-shot scenario, we might provide
a simple graph containing four nodes and their textual relationships as a learning sample for the LLM to
guide its content generation.

Enhancement Strategy:
1. LLM as a Text Replacer: The LLM can replace wording and sentence structures in the text while

preserving the semantic consistency of the original content. This capability is particularly valuable for
enhancing news articles, as it increases text diversity and robustness. In this approach, text content from a
propagation graph is randomly selected from the original dataset, and the LLM is used as a sentence replacer
to generate new text. The newly generated text serves as the node content in the graph.

2. LLM as a Context Completion Tool: Given its strong contextual understanding and reasoning abilities,
the LLM can be employed to automatically complete the text content in a propagation graph. The method
involves randomly selecting a graph from the original dataset and sampling a proportion of node content.
This sampled content is then filled in some nodes of the generated graph. Subsequently, the graph structure
information is provided to the LLM in the form of (source node, endpoint node) pairs, with instructions to
ensure that the endpoint node content is closely related to the source node content. Through this approach,
the LLM can effectively establish contextual associations and automatically complete the text content for
all nodes.

4.3 Hierarchical Multi-View Graph Level Contrastive Learning
We develop a hierarchical multiview graph contrastive network that generates enhanced views by

perturbing the input graph, facilitating comparisons at three levels: node-node, node-graph and graph-
graph across two views. The first two types of comparison occur within the same view, whereas information
from different views is integrated using a balance index. The node-node comparison primarily captures the
correlation between the content of the source news text and the structural propagation content. In contrast,
the graph-graph comparison operates between the two views, optimizing the embedding information of the
graph, which significantly enhances the node-subgraph level comparisons. Fig. 3 illustrates the framework
of hierarchical multiview graph contrastive learning.

4.3.1 Node-Node Embedding Contrastive Learning
The dissemination patterns of fake news typically differ from those of real news, and discussions in the

comments can help identify fake news. Comparing text embeddings with propagation embeddings allows
us to learn the correlation and consistency between the source news content and the content of comment
nodes. This forms the basis for our node-node-level comparison.
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Figure 3: Architecture of hierarchical multi-view graph level contrastive learning

In this context, the source news is represented as the source node v0
i in graph g i , characterized by

embedding the source news content after BERT encoding. A multilayer perceptron (MLP) can be used to
map these features into a hidden space, yielding the text embedding ec tnt

i for the source node. The hidden
layer of the MLP is represented as Eq. (7):

H(l+1) = σ(W(l)H(l) + b(l)) (7)

The dissemination characteristics of the news cover both the dissemination structure and the content
of the comments. These characteristics can be extracted by masking the features of the input graph gi
corresponding to the source node v0

i , and then processing them through an L-layer graph encoder, such
as a Graph Convolutional Network. This process aggregates the features of the comment nodes within the
propagation tree, resulting in embedding of the propagation e pro p

i for v0
i . In this study, we employ GCN to

derive the propagation representation of the source node:

H(l+1)
i = σ (D̃−

1
2

i ÃD̃−
1
2

i H(l)
i W(l)) (8)

The hidden states at the l + 1 and l-th layers are denoted by H(l)
i and H(l+1)

i , respectively. The matrices
D̃i and Ã represent the degree and adjacency matrices used in the normalization process. The weight matrix
for the l-th layer is indicated by W(l), while σ represents the activation function.

In each view, text embeddings and propagation embeddings derived from the same graph constitute
positive sample pairs, whereas embeddings from different graphs form negative sample pairs. This paper
employs a bilinear model to assess the similarity between ec tnt

i and e pro p
i in Eq. (9).

s1
i = Bilinear(ec tnt

i , e pro p
i ) = σ (ec tnt

i
⊺We pro p

i ) (9)

In general, text embeddings and propagation embeddings exhibit opposite characteristics, with s1
i = 1

indicating similarity within the same graph, while s1
i = 0 indicates dissimilarity between negative sample

pairs from different graphs. This paper leverages this relationship by employing binary cross-entropy Eq. (10)
to train the contrastive loss function.

L1
N N = −

N
∑
i=1

(yi log(s1
i) + (1 − yi) log(1 − s1

i)) (10)
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Here, yi represents the true label for a sample pair, where yi = 1 for positive pairs and yi = 0 for
negative pairs.

Similarly, similarity s2
i and loss L2

N N can be computed in the perturbed view. Consequently, the final
node comparison loss function comprises two components, as in Eq. (11):

LN N = αL1
N N + (1 − α)L2

N N (11)

where α ∈ (0, 1) is a fusion parameter that regulates the information sharing between the two views.

4.3.2 Node-Graph Embedding Contrastive Learning
The node graph embedding contrast facilitates an effective cross-level comparison, allowing the learning

of semantic consistency between the source news nodes and the entire propagation graph by aligning the
representations at various levels of granularity. The representation of the source node v0

i establishes a positive
relationship with its corresponding graph representation while negatively correlated with representations
from other input graphs, denoted g i .

To derive the embedding for the input graph, we employ a new Graph Convolutional Network encoder
that maps features from all nodes in the input graph to the embedding space. The hidden layer representation
of subgraphs is defined as Eq. (12):

H′(l+1)
i = σ (D̃−

1
2

i Ã′i D̃
− 1

2
i H′(l)

i W ′(l)) (12)

where H′(l+1)
i and H′(l)

i denote the hidden states at the l + 1-th and l-th layers, respectively.
Next, we apply the READOUT function to obtain the graphical representation zi of graph g i . In this

paper, an average pooling layer is utilized for read-out operations to compute graph embeddings zi as Eq. (13):

zi = READOUT(H′(l+1)
i ) = READOUT({h(l+1)

j ∶ j ∈ V(gi)}) (13)

Here, READOUT(⋅) can be a simple average function or a more complex pooling function, while V(gi)
represents the set of nodes in graph gi , and h(l+1)

j is the feature representation of the j-th node at the
(l+1)-th layer.

Consequently, the representation of the source node v0
i utilizes the text embedding ec tnt

i from the
previous section, which is transformed via a Multi-Layer Perceptron (MLP) to match the hidden space of the
graph embedding. As in the previous section, we compute the similarity ŝ1

i between the text embedding of
the source node ec tnt

i and the graph embedding zi using a bilinear model, and we train the contrastive loss
L1

N N with BCE as Eqs. (14) and (15):

ŝ1
i = Bilinear(zi , ec tnt

i ) = σ (z⊺i Wec tnt
i ) (14)

L1
NG = −

N
∑
i=1

( ŷi log(ŝ1
i) + (1 − ŷi) log(1 − ŝ1

i)) (15)

where ŷi equals 1 for positive pairs and 0 for negative pairs.
We can similarly derive the similarity ŝ2

i and BCE loss L2
N N from the perturbed view. Thus, the final

node graph comparison loss function is expressed as:

LNG = αL1
NG + (1 − α)L2

NG (16)
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Notably, the fusion parameterα remains consistent with the previous section due to the shared network
architecture and parameters across both views.

4.3.3 Graph-Graph Embedding Contrastive Learning
To enhance the input graph ĝ i , we apply random edge deletion perturbations, resulting in a structurally

enhanced image gi . The comparison between the regular graph and the enhanced graph embeddings is
conducted across two views, aiming to elucidate semantic differences and to discover more representative
and robust graph representations. This approach also facilitates the differentiation of relationships between
source nodes and their comments through node graph comparisons.

The graph representation of g i forms a positive sample pair with itself, while creating negative pairs
with the representations of other graphs g i or their enhanced counterparts. By introducing enhanced views,
we expand the possibilities for negative sample comparisons beyond the conventional one-on-one method.
The optimization of this comparison process is achieved through the following loss function Eq. (17):

LGG =
n
∑
i=1

log
⎛
⎜
⎝

exp (z1
i ⋅ z2

i )
exp (z1

i ⋅ z1
j) + exp (z2

i ⋅ z2
j)

⎞
⎟
⎠

(17)

Here, z1
i and z2

i denote the embeddings of the regular graph g i and the enhanced graph ĝ i , respectively,
with the method to obtain the embeddings of the graph consistent with Section 4.2.2. The terms z1

j and z2
j

represent the embeddings of another input graph g j in both views. The numerator exp (z1
i ⋅ z2

i )quantifies the
similarity of the positive sample pairs through their inner product mapped via the exponential function. The
denominator aggregates the similarities of all negative sample pairs associated with both the regular view
and its enhanced counterpart. This loss function encourages the model to minimize the distance between
positive sample pairs while maximizing the distance between negative sample pairs.

4.3.4 Loss Function
To leverage the strengths of the three comparison types, we optimize a joint loss function. The total

loss function for hierarchical multiview contrastive learning at the graph level incorporates three levels of
contrastive loss: point-point, point-graph, and graph-graph as Eq. (18):

L = βLNG + (1 − β)LN N + γLGG (18)

In this equation, the weight parameters β and γ adjust the significance of contrastive loss functions on
different scales, facilitating joint optimization.

4.4 Detection of Fake News
Following the self-supervised graph contrastive learning, we apply the learned hidden layer repre-

sentations of the source nodes for the detection and classification of fake news. During the classification
phase, we employ MLP as the downstream classification model. The MLP effectively processes the high-
dimensional feature vectors generated through graph contrastive learning and abstracts these complex data
for classification via its multi-layer architecture. Ultimately, the final prediction ẏi is calculated using the
softmax function:

ẏi = softmax(W ⋅ h + b) (19)
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Here, ẏi indicates the predicted probability that a tweet is a rumor, while W and b represent the weights
and biases of the classification model. We optimize the difference between the predicted values and the actual
labels yi ∈ {0, 1} using cross-entropy loss.

4.5 Computational Complexity Analysis
In the sample generation stage, the FHGraph framework primarily involves the generation of the

graph structure and node content. The generation of graph structure includes the encoding and decoding
operations of all nodes in each graph, with a computational complexity of O(g × d × n) where g is the
number of input graphs, d is the number of layers in the autoencoder and MLP, and n is the average number
of nodes per graph. Furthermore, all nodes in each graph undergo a diffusion and denoising process, the
complexity of which is O(g × k) where k is the number of steps in the diffusion process. The generation of
node content involves the use of LLM to generate text for each graph node based on given prompts, with a
complexity of O(g × p × s) where p is the number of parameters in the LLM and s is the average sequence
length of the generated text.

In the hierarchical multiview graph contrastive learning stage, the algorithm deals with both intergraph
and intragraph contrastive learning. Firstly, by randomly perturbing edges to generate enhanced views, the
computational complexity of this part is O(g × αe) where α is the proportion of edges perturbed and e is
the total number of edges per graph. Subsequently, graph encoding is performed to obtain node and graph
embeddings, with a computational complexity of O(g × n2) where n is the number of nodes per graph.
Finally, the complexity of each comparison between graphs, if each layer performs c comparisons, is O(g2 ×
c × d) where c is the number of comparisons, d is the number of layers and n is the number of nodes,
assuming that each graph could potentially compare with every other graph. This multiview learning strategy
allows the model to learn graph characteristics from different perspectives and levels, enhancing the model’s
adaptability and accuracy in detecting fake news.

5 Experiments

5.1 Experiment Settings
Experimental Environment. All experiments were carried out on computers running the Windows 10

operating system, each equipped with one Intel Core i7-13490F processor, one NVIDIA GeForce RTX 3060
Ti G6X graphics card with 8 GB of VRAM, and 32 GB of system memory. The experiments utilized two
open-source frameworks: PyTorch 2.0.1 and PyTorch Geometric 2.5.3.

Dataset. To evaluate the performance of the proposed framework, FHGraph, we conducted experi-
ments on two widely used real-world datasets: PHEME [32] and RumorEval [33]. These datasets consist
of conversation threads collected from Twitter and Reddit, respectively, including source tweets, their tree-
structured replies (comments), and authenticity labels (fake or real). Table 4 presents statistical information
for both PHEME and RumorEval, which exhibit slight class imbalances.

Table 4: Statistical characteristics of the datasets

Dataset PHEME RumorEval
Thread 2079 219

True 1621 145
False 458 74

Replies 38,268 3550
Imbalance rate 3.54 1.96
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Baseline Methods. We employed 10 random seeds to train each baseline model, selecting the model
parameters that achieved the best performance in the validation set for classifying the test data. We evaluated
representative baselines for fake news detection using F1 Macro and F1 Micro scores, focusing on three
main categories: (1) Deep Learning Methods: SVM, CNN, RvNN; (2) Advanced Graph Neural Network
Methods Based on GCN: BiGCN, EBGCN; (3) Graph-Level Class Imbalance methods: G-mixup, G2GNN.
(4) Contrastive learning methods:GACL, iGCL. The baseline methods are as follows:

(a) SVM [34]: Support Vector Machine is a traditional supervised learning algorithm effective in classifica-
tion and regression tasks. Although SVM performs well with low-dimensional features, its effectiveness
may be limited in high-dimensional and nonlinear contexts.

(b) CNN [35]: Convolutional Neural Networks utilize convolutional kernels to extract local features to
identify key patterns, making them widely applicable in text analysis and other one-dimensional data.

(c) RvNN [14]: This method recursively processes data to capture hierarchical structures, making it
particularly suitable for data with clear hierarchical formats, such as language and sentences.

(d) BiGCN [8]: This approach employs two GCN modules that operate in both descending and ascending
directions to capture the news dissemination patterns on social networks.

(e) EBGCN [36]: The Edge Enhanced Graph Convolutional Network improves traditional GCNs by
enhancing edge feature representation, thus capturing more robust structural representations.

(f) G-mixup [15]: A sample generation technique that employs category primitives for graph-level
interpolation, generating soft samples with mixed labels to balance category distribution.

(g) G2GNN [17]: This method connects independent graphs based on kernel similarity, improving
representation learning for minority classes through additional signals propagated between graphs,
thus addressing class imbalance.

(h) GACL [16]: This method leverages contrastive learning within the loss function to differentiate
between positive and negative samples, thereby improving the robustness of the model and improving
the detection of fake news.

(i) iGCL [30]: This method improves graph-level contrastive learning by reconstructing the graph
topology and leveraging the hidden space learned through variational graph auto-encoders.

Hyperparameters. In the sample generation phase of the latent diffusion model, we first pretrain the
model using a synthetic tree-structured graph dataset and then fine-tune it on a real news dataset. During the
pre-training phase, the learning rate is set to 0.001, while in the fine-tuning phase, the learning rate is adjusted
to 0.0001. The batch size is set to 128, with 800 epochs for autoencoder training, 500 epochs for denoising
training, and 300 diffusion steps. The dimension of the latent space is set to 32. In the graph contrastive
learning module, we utilized a unified hidden dimension size of 128, a batch size of 128, Adam optimizer, a
learning rate of 0.005, a dropout rate of 0.5, and a maximum of 250 epochs with an early stopping strategy.
For other parameters in the baseline methods, we applied the recommended values specific to each approach.
The data set was randomly divided into training, validation and testing sets with a ratio of 8:1:1.

Prompt selection. In this study, we utilized OpenAI’s ChatGPT-3.5-turbo API as our LLM to perform
these tasks. We cross-used the generation and enhancement prompt strategies to ensure contextual relevance
and accuracy. Specifically, when processing source news content, we mainly adopted the “LLM as a text
replacer” strategy, and replaced the tweet content with the help of the prompt engineering “rewrite while
retaining the original semantics”. For the generation of node content, we adopted the “one-shot generation”
and “LLM as a Context Completion Tool” strategies.

The number of generated samples. We determine the number of generated news samples using a
mathematical formula, adjusting the sample size based on different class balance requirements. The number
of samples generated varies under different balance settings due to the different ratios needed for each setting.
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The number of minority class samples to be added, X, is calculated by: x = ( N1
b×a ) − N2, where N1 is the

number of majority class samples, N2 is the number of minority class samples, and a ∶ b is the target class
ratio to be adjusted. We set different values for a and b based on the needs of the experiment.

Performance Metrics. In the task of dealing with class imbalance, we selected two commonly used
performance metrics: F1 Micro and F1 Macro. These two metrics can effectively evaluate the performance
of the model in multi-class classification, especially when dealing with imbalanced class distribution.

The F1 Micro score is the weighted average of precision and recall across all classes:

F1 Micro = 2 × Precisionmicro × Recallmicro

Precisionmicro + Recallmicro
(20)

where

Precisionmicro = ∑i TPi

∑i(TPi + FPi)
, Recallmicro = ∑i TPi

∑i(TPi + FNi)
(21)

Here, TPi represents the true positives for class i, FPi represents the false positives, and FNi represents
the false negatives for class i.

The F1 Macro score is calculated by first determining the F1 score for each class individually and then
taking the arithmetic mean of these F1 scores:

F1 Macro = 1
N

N
∑
i=1

2 × Precisioni × Recalli

Precisioni + Recalli
(22)

where N represents the number of classes and Precisioni and Recalli are the precision and recall of class
i, respectively.

5.2 Result and Analysis
Tables 5 and 6 present a performance comparison between our proposed FHGraph framework and

several benchmark methods on the two datasets. The results include not only the F1 Macro and F1 Micro
scores but also the 95% confidence intervals for these metrics, providing a more comprehensive view of
model performance. The tables highlight that our model significantly outperforms the benchmark models
in both F1 Macro and F1 Micro scores, as indicated in bold. In addition, the inclusion of 95% confidence
intervals help to illustrate the statistical significance and reliability of our results.

Table 5: Overall performance comparison on PHEME dataset

Model PHEME

F1 Micro 95% CI F1 Macro 95% CI
SVM [34] 0.768 [0.768, 0.778] 0.703 [0.692, 0.714]
CNN [35] 0.787 [0.775, 0.799] 0.756 [0.743, 0.769]
RvNN [14] 0.763 [0.750, 0.776] 0.728 [0.715, 0.741]
BiGCN [8] 0.864 [0.850, 0.878] 0.833 [0.820, 0.846]

EBGCN [36] 0.876 [0.863, 0.889] 0.837 [0.824, 0.850]
G2GNN [17] 0.784 [0.770, 0.798] 0.766 [0.752, 0.780]
G-mixup [15] 0.835 [0.798, 0.872] 0.820 [0.801, 0.839]

(Continued)
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Table 5 (continued)

Model PHEME

F1 Micro 95% CI F1 Macro 95% CI
GACL [16] 0.850 [0.838, 0.862] 0.829 [0.818, 0.841]
iGCL [30] 0.865 [0.849, 0.881] 0.834 [0.825, 0.843]
FHGraph 0.896 [0.883, 0.909] 0.862 [0.851, 0.873]

Table 6: Overall performance comparison on RumorEval dataset

Model RumorEval

F1 Micro 95% CI F1 Macro 95% CI
SVM [34] 0.722 [0.709, 0.735] 0.668 [0.655, 0.681]
CNN [35] 0.744 [0.732, 0.756] 0.702 [0.690, 0.714]
RvNN [14] 0.779 [0.767, 0.791] 0.754 [0.741, 0.767]
BiGCN [8] 0.843 [0.830, 0.856] 0.819 [0.806, 0.832]

EBGCN [36] 0.865 [0.855, 0.875] 0.86 [0.846, 0.874]
G2GNN [17] 0.832 [0.809, 0.854] 0.827 [0.809, 0.845]
G-mixup [15] 0.846 [0.834, 0.858] 0.830 [0.818, 0.842]

GACL [16] 0.880 [0.868, 0.892] 0.864 [0.850, 0.878]
iGCL [30] 0.876 [0.865, 0.887] 0.861 [0.849, 0.873]
FHGraph 0.912 [0.899, 0.925] 0.907 [0.896, 0.918]

As expected, traditional learning methods based on low-dimensional features, such as SVMs, show
the poorest performance. Deep learning methods like CNNs focus only on local spatial features. Although
RvNN can analyze top-down and bottom-up propagation relationships in news dissemination trees, they
perform poorly due to only considering Euclidean distances, losing structural information in non-Euclidean
graph data.

Graph-based models such as BiGCN and EBGCN perform better on two datasets. In particular,
EBGCN, which incorporates an edge-enhanced Bayesian Graph Convolutional Network, captures more
robust structural features, achieving a suboptimal F1 Micro score of 0.876 on the PHEME dataset. This
suggests that graph-based methods may be more effective in handling complex relationships.

In methods addressing graph-level class imbalance, G-mixup, as an augmentation strategy to expand
decision boundaries, shows positive effects. However, as an interpolation synthesis method, the performance
of G-mixup depends on the quality of the synthesized samples. When the structural and embedding
differences between two target samples are significant (e.g., large vs. small dissemination graphs, or news
content from different domains), the interpolated samples fall in between, not conforming to realistic
patterns, thus leading to significant performance variability. This can be observed in the broad confidence
intervals for the F1 Macro scores in Table 5. G2GNN, based on the GOG architecture and graph homogeneity
theory to propagate minority class information, shows notably reduced performance in the PHEME data set
due to a low homogeneity rate of about 60% in the constructed GOG graph, where low-quality connections
introduce significant noise.

Graph-level contrastive learning methods, such as GACL and iGCL, generally achieve superior
performance. Particularly in the RumorEval dataset, where data volume is smaller, graph contrastive
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learning strategies enable the model to self-learn from limited samples and explore better optimization
representations, thus achieving suboptimal results in both metrics. The graph-level contrastive strategy
effectively narrows the distance between samples with the same labels while distancing those with different
labels, enhancing model performance by deeply mining sample label information. However, both methods
primarily rely on perturbations in graph structure to form different views of the same graph as positive
samples, without deeply integrating text content, thus hitting a performance bottleneck.

Ultimately, FHGraph stands out among all models, especially in achieving the highest F1 Macro and
F1 Micro scores in both inherently imbalanced datasets. Improves the instability of traditional graph-level
class imbalance methods by effectively generating diverse independent minority class samples. By employing
hierarchical multiview graph contrastive learning, which deeply integrates graph structure and text content
to mine graph-text consistency, it breaks through the traditional bottlenecks of graph-level contrastive
learning methods, significantly enhancing the model’s generalization ability and accuracy in recognizing
minority class samples. Compared to state-of-the-art (SOTA) graph-level class imbalance methods and
SOTA graph-level contrastive learning methods, FHGraph has improved by 2% in F1 Micro score and 2.5%
in F1 Macro score on the PHEME dataset, and by 3.5% in F1 Micro score and 4.3% in F1 Macro score on the
RumorEval dataset.

5.3 Results on Class Imbalance
We compared the performance of FHGraph with baseline methods in the context of class imbalance.

In the experiment, we set the sample size of fake news to a specific proportion (k) of the real news data
to simulate scenarios where real information significantly exceeds false information in social networks,
specifically k ∈ {5%, 10%, 15%, 20%, 25%, 30%}. By adjusting the ratio of fake news samples to real news
samples, we create more extreme imbalanced situations in order to test and verify the robustness and
effectiveness of our method. Especially in the RumorEval dataset, when the imbalance ratio is set to 5%, the
model faces great challenges because the absolute number of fake samples may be very limited, sometimes
even only in the single digit.

In this imbalanced setting, the F1 Macro score becomes particularly important as it provides a fair
evaluation of the model’s classification performance across all categories, irrespective of the sample size for
each category. Consequently, we focused on comparing the F1 Macro scores of different methods, with the
results presented in Fig. 4. As the k value decreases from high to low, the challenges faced by the models
gradually increase because a lower k value means fewer fake news samples in the dataset, thus making it
more difficult for the models to recognize and correctly classify these minority class samples.

From the results shown in Fig. 4, it is evident that when the k value is high, meaning that there are more
fake news samples, most models achieve higher F1 Macro scores, indicating better classification performance.
However, as the k value decreases, particularly to extremely imbalanced situations such as k = 5%, the
performance of all models generally declines, especially traditional deep learning methods, which exhibit
a rapid decrease in performance. This is because the number of minority class samples is very limited,
significantly increasing the complexity of learning effective decision boundaries.

Graph-level class imbalance methods like G-mixup and graph-level contrastive methods maintain good
performance even under severe imbalance. The former alleviates imbalance by interpolating to generate new
samples, while the latter enhances the optimization representation of the minority class through deep graph
contrastive learning. From an experimental perspective, both types of method are beneficial in enhancing
the model’s ability to handle imbalances, improving the model’s generalization and robustness. Our model
is designed in fact on the basis of these two ideas.
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Figure 4: F1 Macro scores of different methods across k values

FHGraph exhibits the best performance across all k value settings, especially in extremely imbalanced
conditions, where it still maintains a high level of performance. This is attributed to its diverse minority
class generation module and hierarchical multi-view graph contrastive learning method. The former, based
on news dissemination patterns and LLM’s external knowledge, generates diverse minority class samples,
mitigating the issues of sample scarcity and class imbalance. The latter, by deeply mining the structural and
content features of minority class samples, enhances the model’s ability to recognize fake news.

Overall, as the k value decreases, the class imbalance in the dataset increases, posing greater challenges
to the model. The performance of FHGraph validates its effectiveness in addressing these challenges,
highlighting its potential in handling class-imbalanced datasets, particularly in applications like fake news
detection where data quality and model robustness are critically demanded.

5.4 Ablation Study
In this section, we conduct ablation studies to clarify the importance of each element within our

proposed FHGraph model. The purpose of this analysis is to determine the role of each component by
systematically eliminating them and observing the effect on the overall performance of the model. We then
benchmark FHGraph against its variants:

(a) FHGraph − Generator: This variant removes the sample generator, relying solely on the original
dataset for graph contrastive learning and downstream classification. The removal of the generator
allows us to assess the value of generating synthetic samples in enhancing model performance
and robustness.

(b) FHGraph − Lal l : In this variant, we exclude the graph contrastive learning loss function and utilize
only GCN to learn and classify the enhanced dataset.

(c) FHGraph − LN N/LNG/LGG : These variants sequentially remove the node embedding loss function,
node graph embedding loss function, and graph graph embedding loss function from the graph
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contrastive learning process. This helps us understand the impact of different levels of contrast loss on
graph representation learning.

The results presented in Table 7 indicate that each module positively impacts the model’s predictive
performance, with the hierarchical multi-view graph contrastive learning module demonstrating the most
significant contribution. This module allows the model to effectively learn the alignment between graph
structure and text content at three different granularities, thereby enhancing the generation of optimized
graph representations. Additionally, the minority class sample generator exhibited a greater performance
improvement on the RumorEval dataset compared to the PHEME dataset. This disparity can be attributed to
the smaller size of the RumorEval dataset, which leads to both sample imbalance and label scarcity issues. Our
proposed sample generator leverages the knowledge base of large language models to generate diverse and
high-quality samples from a limited set of examples, effectively mitigating the performance loss associated
with sample scarcity and class imbalance.

Table 7: Ablation experiment

Sub-model PHEME RumorEval

F1 Macro F1 Micro F1 Macro F1 Micro
FHGraph − Generator 0.878 0.831 0.881 0.865

FHGraph − Lal l 0.838 0.824 0.847 0.840
FHGraph − LN N 0.850 0.828 0.863 0.859
FHGraph − LNG 0.873 0.843 0.879 0.862
FHGraph − LGG 0.882 0.837 0.888 0.877

FHGraph 0.896 0.862 0.912 0.907

6 Discussion

6.1 Limitations
In this section, we discuss the limitations of the FHGraph model.
(1) Challenges with Extreme Class Imbalance. Although FHGraph performs excellently in handling

graph-level imbalances, its performance can still be affected in cases of extreme class imbalance. Specifically,
when the dataset contains a severely limited number of positive samples, the model may struggle to learn
effectively due to the insufficient number of positive examples. Although we address this issue by synthesizing
minority-class samples through the use of a latent diffusion model combined with a large language model
(LLM), the generated samples may still be insufficient to adequately represent the entire minority class
distribution, especially when the number of fake news samples is extremely low. This can hinder the model’s
learning ability.

(2) Challenges in Identifying Out-of-Distribution Fake News. FHGraph has been trained to cover
a wide range of fake news propagation patterns and news domains, thus performing well in simulating
and learning from known fake news samples. However, when faced with unseen fake news patterns or
content from unknown domains, the model’s generalization ability may be impacted, particularly in the
graph contrastive learning module, which is more susceptible to the effects of unknown domain content.
Although the introduction of LLM brings in external knowledge and increases diversity, the knowledge
introduced remains domain specific. This limitation means that the model’s performance may degrade when
encountering entirely new and unknown domains in real-world applications.
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6.2 Future Optimization
We integrate several future directions to demonstrate the potential and challenges of FHGraph in the

field of fake news detection:
(1) Real-Time Fake News Detection: While FHGraph performs well on static datasets, real-time fake

news detection presents unique challenges, especially on social media and news platforms where information
spreads rapidly and fake news is almost instantly generated and disseminated. Future research could explore
the extension of FHGraph to real-time fake news detection, focusing on processing real-time data streams,
dynamic model updates, and efficient information flow processing.

(2) Multilingual Adaptation: Adapting FHGraph for multilingual fake news detection involves not only
processing multilingual text, but also capturing cross-cultural communication patterns. This involves under-
standing and analyzing the patterns of information dissemination across different cultural backgrounds,
further enhancing the model’s applicability globally.

(3) Cross-Domain Fake News Detection: Given the widespread dissemination of fake news across
various fields such as healthcare, finance, and politics, FHGraph could explore cross-domain fake news
detection capabilities. Enhancing domain adaptation abilities through methods such as transfer learning
or domain adaptation can enable FHGraph to leverage knowledge from different domains and effectively
identify domain-specific patterns of false information dissemination.

(4) Incorporating External Knowledge Bases and Real-Time Data: To address unseen fake news
content, future plans include incorporating external knowledge bases (such as real-time news, fact-checking
databases, etc.) to further enhance the authenticity and diversity of the generated text, helping the model
better capture false patterns.

6.3 Model Applicability
FHGraph is a graph-level framework designed for fake news detection that leverages graph contrastive

learning and generative learning. It effectively detects fake news in social networks and can be adapted
for misinformation detection in healthcare and finance, particularly for text attribute graphs. In node-level
detection, FHGraph uses the h-hop subgraph of a node.

In healthcare, false information, such as incorrect drug recommendations or health rumors, spreads
through various channels like academic articles, forums, and news reports. FHGraph excels by tracing
complex information dissemination paths within graph structures, incorporating text attributes to effectively
manage textual and graphical data. This enhances its ability to identify false health information, crucial when
data on health falsehoods are limited.

In finance, the spread of false information can severely affect markets, involving fake financial reports,
stock manipulation, or investment scams. FHGraph addresses this by dynamically generating high-quality
false financial information samples and using graph contrastive learning to model how such information
spreads across markets, ensuring accurate detection and tracing of financial misinformation.

6.4 Ethics
In discussing the FHGraph model, it is important to address ethical concerns related to its powerful

analytical capabilities. Although the model can serve legitimate purposes, such as combating misinforma-
tion, it also has the potential for misuse in areas such as privacy invasion and information manipulation.
Ensuring the transparent and responsible use of such technology is essential. Developers and users must
maintain transparency in the FHGraph application process, rigorously review and supervise model outputs,
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and adhere to ethical standards. Establishing robust legal and ethical frameworks to guide the development
and application of AI technologies is crucial to maximizing their benefits while preventing potential harms.

7 Conclusion
This paper introduces a novel framework for the detection of fake news that uses graph-level generative

data augmentation and graph-level contrastive learning. The primary motivation behind this approach
is to tackle the challenge of degraded model performance due to the significant imbalance between the
abundance of real samples and the scarcity of fake news samples. The proposed FHGraph firstly employs a
space-diffusion model to create graph structures that accurately reflect news dissemination patterns. Then
FHGraph produces a series of diverse texts corresponding to the minority class nodes leveraging the few-
sample learning capabilities of LLMs. The FHGraph framework also implements a sophisticated learning
strategy that utilizes hierarchical multiview graph contrastive learning. The experimental results, derived
from public datasets, demonstrate that FHGraph significantly outperforms baseline methods in various
data imbalance scenarios. The results of the ablation studies further affirm that each component of the
framework contributes positively to overall predictive performance. In particular, the hierarchical multiview
graph contrastive learning module stands out for its ability to align different granularities of data, leading to
substantial improvements in model accuracy. Moreover, the sample generator, which leverages the extensive
knowledge base of large language models, is particularly effective in generating high-quality and diverse
samples, especially evident in the smaller RumorEval dataset. This capability allows the framework to excel
even when the available fake news samples are limited, highlighting its potential for real-world applications
in combating misinformation. Despite its strong performance, FHGraph may face challenges in handling
out-of-distribution (OOD) samples. To address these limitations, future research could explore enhancing
FHGraph’s capabilities for detecting OOD samples, extending FHGraph to cross-domain news detection,
accommodating diverse cultural and linguistic contexts, could further broaden its applicability and utility in
combating misinformation on a global scale.
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