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ABSTRACT: Stroke is a leading cause of death and disability worldwide, significantly impairing motor and cognitive
functions. Effective rehabilitation is often hindered by the heterogeneity of stroke lesions, variability in recovery
patterns, and the complexity of electroencephalography (EEG) signals, which are often contaminated by artifacts.
Accurate classification of motor imagery (MI) tasks, involving the mental simulation of movements, is crucial for
assessing rehabilitation strategies but is challenged by overlapping neural signatures and patient-specific variability.
To address these challenges, this study introduces a graph-attentive convolutional long short-term memory (LSTM)
network (GACL-Net), a novel hybrid deep learning model designed to improve MI classification accuracy and
robustness. GACL-Net incorporates multi-scale convolutional blocks for spatial feature extraction, attention fusion
layers for adaptive feature prioritization, graph convolutional layers to model inter-channel dependencies, and bidi-
rectional LSTM layers with attention to capture temporal dynamics. Evaluated on an open-source EEG dataset of
50 acute stroke patients performing left and right MI tasks, GACL-Net achieved 99.52% classification accuracy and
97.43% generalization accuracy under leave-one-subject-out cross-validation, outperforming existing state-of-the-art
methods. Additionally, its real-time processing capability, with prediction times of 33–56 ms on a T4 GPU, underscores
its clinical potential for real-time neurofeedback and adaptive rehabilitation. These findings highlight the model’s
potential for clinical applications in assessing rehabilitation effectiveness and optimizing therapy plans through precise
MI classification.
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1 Introduction
Stroke, a severe medical condition caused by the sudden disruption of blood flow to the brain, is a

leading global cause of death and disability, affecting millions annually. It profoundly impacts brain function
and structure, particularly in regions responsible for movement coordination and sensory processing.
Consequently, stroke survivors often face motor deficits, impaired coordination, and disrupted fine motor
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skills, significantly hindering daily activities such as walking, grasping, and writing [1]. Beyond physical
limitations, these impairments adversely affect emotional well-being, often leading to depression, anxiety,
and social isolation. The prolonged rehabilitation required for stroke recovery places a considerable burden
on healthcare systems and involves complex, time-intensive processes [2].

Brain-computer interface systems have emerged as promising tools for enhancing cognitive and motor
rehabilitation in stroke survivors. Among the various methods used to assess rehabilitation effectiveness,
electroencephalography (EEG) is the most widely adopted due to its ability to measure brain activity
noninvasively [2,3]. Stroke often disrupts oscillatory patterns in the brain, particularly in motor control and
cognitive processing, leading to abnormalities such as reduced coherence, disrupted functional connectivity,
and slowed brain waves [4,5]. These EEG biomarkers provide valuable insights for monitoring recovery and
tailoring rehabilitation programs [6]. However, challenges such as lesion heterogeneity, individual recovery
variability, and the inherent complexity of EEG signals due to artifacts necessitate advanced signal processing
and machine learning (ML) techniques to derive meaningful insights [7].

Motor imagery (MI), a technique where patients imagine specific movements to activate corresponding
motor regions in the brain, has gained traction in EEG-based rehabilitation [8–10]. MI tasks, such as
imagining left- or right-hand movements, promote neuroplasticity and motor recovery by engaging the
motor cortex and associated neural pathways. Studies have demonstrated that MI tasks improve cortical
reorganization and motor learning, making them effective tools for stroke rehabilitation [11,12]. When com-
bined with therapies such as physiotherapy and transcranial magnetic stimulation, MI-based rehabilitation
can further enhance motor function recovery [13].

Despite its potential, MI-based rehabilitation faces several challenges. One primary challenge is the
variability in patients’ ability to perform MI. Not all stroke survivors can accurately visualize or engage in the
motor networks required for effective imagery [14–18]. Variability remains a function of several factors, such
as stroke severity, cognitive impairments, and differences in individual imagery skills [19–22]. Moreover,
measuring MI quality is challenging due to its subjectivity, making it difficult for therapists to ensure patients
perform tasks correctly [23,24].

Advanced classification methods are required to address these limitations and improve the effectiveness
of personalized rehabilitation strategies. For example, accurately differentiating between left and right MI
can ensure the activation of correct motor networks, leading to improved recovery outcomes [25,26].
Nevertheless, accurate classification of MI tasks remains challenging because neural signatures can overlap
between left and right MI, particularly in stroke patients who may have restructured brain networks.
Misclassification can lead to incorrect feedback and negatively affect the therapeutic benefits of MI-based
rehabilitation [24,27]. Some advanced ML methods such as convolutional neural networks (CNNs), EEGNet,
and hybrid networks have shown improved classification outcomes [18–20]. However, the high variability
in EEG data across stroke patients limits their generalizability. Compensatory neural mechanisms and the
diversity of lesion locations further hinder the accuracy of detecting MI-specific patterns [21,23].

This study addresses the following key challenges associated with MI-based classification models:

1. The variability in EEG patterns of stroke-induced individuals is challenging. Lesion location and
severity can result in diverse EEG responses, making it difficult to produce generalized classification
models [17,20,23].

2. Accurately distinguishing between left and right MI is difficult due to subtle and overlapping brain
patterns. Traditional models often exhibit poor classification outcomes with nuanced details [19,27].

3. Compensatory neural mechanisms in stroke patients can alter MI-generated EEG patterns, complicat-
ing accurate classification. Thus, models often perform poorly under such scenarios [21,24].
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To overcome these challenges, this paper proposes a graph attentive convolutional long short-term
memory (LSTM) network (GACL-Net). The model comprises a hybrid deep learning architecture specifically
designed to enhance the generalization and classification performance of MI tasks for stroke patients under
highly variable patterns. The model includes a multi-scale convolutional block with parallel one-dimensional
(1D) convolutions that enable multi-scale feature extraction to capture diverse signal patterns. An attention
fusion layer combines spatial, temporal, and frequency attention mechanisms to focus on relevant features
adaptively, improving the model’s ability to handle higher data variability. A graph convolutional layer sim-
ulates inter-channel connectivity and captures complex dependencies between EEG channels. Bidirectional
LSTM layers with attention capture sequential dependencies and emphasize significant temporal features,
capturing subject-specific data.

Hierarchical feature aggregation is enabled through a network of global average pooling and dense
layers that further refine the extracted features, with regularization techniques such as L2 regularization. This
stacked architecture provides a comprehensive framework to enhance generalization robustness under high
subject variability. The model has been combined with a feature extraction routine targeting spatial, temporal,
and spectral characteristics of the data and tested on an open-source dataset comprising EEG patterns of
stroke patients. Overall, this study makes the following contributions:

1. Introduces a novel model architecture integrating multi-scale convolutional layers, graph convolution,
and attention fusion to capture spatial, temporal, and spectral patterns in stroke EEG data. This aids in
enhancing the extraction of relevant features across diverse frequency bands.

2. Offers enhanced generalization and subject variability handling, thus providing robustness across inter-
subject and intra-subject differences while focusing on MI tasks.

3. Combines deep learning techniques with adaptive attention mechanisms and feature extraction routines
to address data heterogeneity and variability inherent in EEG signals from stroke patients.

The remainder of this paper is structured as follows. Section 2 reviews existing models for MI classi-
fication in stroke rehabilitation. Section 3 details the proposed GACL-Net architecture. Section 4 presents
experimental results, and Section 5 provides a comparative analysis and discussion. Section 6 concludes
the study.

2 Literature Review
MI classification for rehabilitation has spawned numerous models, from traditional ML approaches to

sophisticated deep hybrid networks. Traditional models relying on manual feature extraction have proven
inadequate for complex MI tasks, particularly in stroke patients. Similarly, conventional deep learning
architectures like CNNs [28] and LSTM [26] show limited classification rates, failing to capture subtle
patterns even with increased network depth.

Cyclic generative adversarial networks (GAN) have addressed data availability constraints [20,25], yet
their classification capabilities remain restricted for complex patterns. While transformer-based modeling
captures long-range dependencies and temporal patterns in EEG signals, these networks struggle with
data variability and demand substantial computational resources. Graph neural networks with temporal
convolutions, designed to model dynamic brain region interactions, face scalability issues and accuracy
degradation across variable EEG patterns. Hybrid networks combining multiple layers often compound
individual layer limitations, particularly under high variability conditions.

Several studies have investigated MI tasks specifically for stroke patients. Voinas et al. [17] imple-
mented a random forest (RF) algorithm incorporating wavelet packet decomposition (WPD), higher-order
statistics (HOS), and common spatial pattern features (CSP), and filter-bank common spatial pattern
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(FBCSP) achieving 71% accuracy with six stroke patients but showing limited cross-subject generalization.
Djamal et al. [18] developed a CNN-based classification using frequency band features, reaching 90%
accuracy across 25 stroke patients and 25 healthy subjects. EEGNet [19], achieved 69.75% accuracy with
ten hemiparetic stroke patients performing left and right MI tasks. Xu et al. [20] combined cycle GAN
for data generation with CNN evaluation, attaining 78.3% accuracy. Miladinović et al. [21] compared
spatial filtering techniques including source power co-modulation (SPoC), spectrally weighted CSP (Spec-
CSP), and FBCSP, with FBCSP achieving 85.1% accuracy across five stroke patients, though cross-subject
variability remained challenging. Benzy et al. [23] explored phase locking value (PLV) and event related
desynchronization/synchronization (ERD/ERS), reaching 74.4% accuracy but struggling with diverse stroke
condition generalization. EEGNet with transfer learning (TL) was proposed [24] to improve generalization,
the performance was still limited by the high variability in stroke patient data.

A critical analysis as shown in Table 1 reveals persistent limitations despite these advancements.
TL approaches using pre-trained EEGNet models show generalization potential but face computational
constraints and struggle with stroke patient data variability. CycleGAN-based data generation techniques
address limited data availability but remain sensitive to distribution shifts and struggle to capture EEG data
nuances in stroke rehabilitation. These limitations underscore the need for more sophisticated approaches
addressing the complex, variable nature of stroke-affected EEG signals. The proposed GACL-Net tackles
these challenges through an innovative architecture combining multi-scale feature extraction, attention
mechanisms, and graph convolutional layers to enhance generalization and classification performance.

Table 1: Comparative analysis of MI classification methods for stroke rehabilitation

Study Method EEG dataset Features Accuracy Key limitation
[17] RF 6 stroke patients WPD, HOS, CSP,

and FBCSP
71.0% Poor

generalization
[18] CNN 25 stroke patients,

25 healthy subjects
Frequency bands 90.0% Limited

variability
[19] EEGNet 10 stroke patients Auto-learned 69.8% Cross-subject

variance
[20] CycleGAN-CNN 25 stroke patients,

25 healthy subjects
S-transform 78.3% Distribution

shifts
[21] SPoC, Spec-CSP,

FBCSP
5 stroke patients Frequency bands 85.1% Poor scalability

[23] PLV-ERD/ERS 16 stroke patients Mu and beta bands 74.4% Neural
variability

[24] EEGNet with TL 5 stroke patients, 6
healthy subjects

Auto-learned 66.4% High
computation

cost

3 Methodology
The system design encompasses feature generation and model training stages, preceded by data

preprocessing. Raw EEG data undergoes filtering, normalization, windowing, augmentation, and splitting.
The model incorporates non-conventional layers strategically stacked for optimal boundary decisions. The
workflow of GACL-Net is shown in Algorithm 1.
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3.1 Dataset
The study utilized a publicly available dataset [29] comprising EEG responses from 50 acute stroke

patients performing 40 MI tasks each. The dataset included 33 EEG and electro-oculography (EOG) channels
focusing on the motor cortex, with participants executing left and right hand MI guided by visual prompts.
Each 8-s trial consisted of instruction, MI, and rest phases. Participants (31–77 years old, 7.8:2.2 male-to-
female ratio) underwent 20-min sessions, including preparation. The dataset incorporated clinical metrics
such as National Institute of Health stroke scale, modified Barthel index, and modified Rankin scale scores,
facilitating MI classification by capturing subtle differences between left- and right-hand movement patterns
in acute stroke patients. Table 2 summarizes key parameters of the dataset.

Algorithm 1: GACL-Net workflow
Require: EEG signals EEGwi

chn
Ensure: Trained GACL-Net model and evaluation metrics
1: Step 1: Remove null outliers: EEGwi

chn
→ EEGcl ean

2: Step 2: Normalize: EEGcl ean → EEGnorm
3: Step 3: Augment data: EEGnorm → EEGau gmented
4: Step 4: Extract features: EEGau gmented → Features
5: Features:
6: Powerband: Spectral information in alpha and beta bands for motor function.
7: Ampl itudeEnvelope: Temporal variability using H (EEGwi

chn
).

8: Cxy: Spatial functional connectivity across channels.
9: ERD/ERS: Task-related frequency changes.
10: FD: Nonlinear signal complexity.
11: λ: Chaotic neural behavior variability.
12: Step 5: Apply GACL-Net model: Features → Model
13: Key layers:
14: Multi-scale Conv block: Captures spatial patterns via Conv(EEGwi

chn
).

15: Attention fusion: Integrates spatial, temporal, and frequency features.
16: GraphConv: Inter-channel dependencies via Ai j ⋅Conv(EEGwi

chn
).

17: Bi-LSTM with attention: Temporal patterns via ht = LSTM(��→EEG ,
←��
EEG).

18: Dense layers: Refines high-level features with regularization.
19: Step 6: Train model: Model , Features → Trained Model
20: Step 7: Test model: Trained Model → Metrics
21: Metrics: Accuracy, precision, recall, and F1-score.
22: return Trained model and Metrics

Table 2: Key parameters of the dataset

Parameter Details Additional information
Sampling frequency 500 Hz High temporal resolution

Sampling points 4000 per trial 8 s trial duration
Total samples 2000 trials 50 subjects × 40 trials

(Continued)
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Table 2 (continued)

Parameter Details Additional information
Channels 33 (30 EEG, 2 EOG, 1 marker) Event timing markers

included
Stimuli Left/right-hand MI tasks Visual and audio

instructions
Trial structure 1 s instruction, 4 s MI, 3 s rest 8 s total duration

Subjects 50 acute stroke patients 39 male, 11 female; 31–77
years

Electrodes Ag/AgCl semi-dry 3% NaCl solution
dampened

Electrode placement 29 EEG + 2 EOG International 10–10
system

Preprocessing 0.5–40 Hz bandpass, baseline removal EEGLAB toolbox in
MATLAB

MI instructions Left/right-hand gripping videos Played during trials
Task labels 1: left-hand MI, 2: right-hand MI For classification

purposes

3.2 Data Preprocessing
Data preprocessing encompassed filtering, windowing, normalization, augmentation, and dataset split-

ting into training, testing, and validation data. The process began with baseline correction using mean (μ)
removal for drift reduction, followed by bandpass filtering (0.5–40 Hz) to eliminate noise. Data underwent
windowing with 2 s windows and 1 s overlap, then augmentation through Gaussian noise insertion (standard
deviation (σ) between 0–0.05) and 1D axis rotation. Z-score normalization was applied using Eq. (1):

xscaled =
XEEG − μ

σ
(1)

3.3 Features Generation
The feature extraction framework enhances model performance under high-variability conditions in

stroke patients by capturing diverse signal characteristics across spatial, temporal, and spectral domains.
This framework targets the complex patterns inherent in EEG data, focusing on multi-scale characteristics
to ensure robustness across heterogeneous patient data.

The extracted features include alpha- and beta-band power (Powerband), calculated using Welch’s
method as shown in Eq. (2) to analyze motor functions typically disrupted in stroke patients. The amplitude
envelope, derived through Hilbert-Huang transform calculated by using Eq. (3), captures instantaneous
amplitude characteristics sensitive to stroke signal anomalies. Coherence (Cx y) calculated by Eq. (4) mea-
sures phase and amplitude coupling between EEG signals, highlighting functional connectivity changes
common in stroke patients.

Powerband = ∫
fhigh

flow
PSD( f ) d f (2)
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where chn denotes the channel and wi denotes the window. Monitoring was performed at 8–13 Hz and 13–30
Hz for alpha and beta bands, respectively.

Ampl itudeEnvelope = ∣H (EEGwi
chn
)∣ (3)

where EEGwi
chn

is the input and H is the Hilbert transform. Using this feature, local amplitude variations
were modeled to represent neuronal excitability and brain response variability in patients with stroke.

Cx y( f ) =
∣Sx y( f )∣ 2

Sx x( f )Sy y( f ) (4)

where Sx y( f ) is the cross-spectral density and Sx x( f ), Sy y( f ) are the auto-spectral densities. Any connectiv-
ity disruptions across channels can be captured through coherence, signifying the monitoring and recovery
of stroke patients.

ERD/ERS calculated by Eq. (5) assess frequency band changes during motor tasks, crucial for evaluating
motor impairment. The fractal dimension (FD) calculated by Eq. (5) quantifies signal complexity, which can
fluctuate due to neural changes in stroke patients. The Lyapunov exponent (λ) calculated by Eq. (7) captures
signal predictability and chaos, providing insights into disrupted neural dynamics post-stroke.

ERD/ERS = PowerTask − PowerBaseline

PowerBaseline
× 100% (5)

FD = log
⎛
⎝

σ (EEGwi
chn
)

μ (EEGwi
chn
)
⎞
⎠

(6)

λ = lim
t→∞

1
t

n
∑
i=1

log ∣Δxi ∣ (7)

where Δxi represents differences in EEG signal values.
This comprehensive feature set enables the model to capture signal variability and neural dynamics

effectively. The integration of these features enhances model generalization through detailed functional
connectivity analysis in stroke patients. Each feature contributes unique insights into the complex patterns of
neural activity, making the model particularly suited for analyzing stroke-affected EEG signals. The featured
representation serves as input to the GACL-Net model, enabling robust classification of MI tasks.

3.4 GACL-Net Architecture
The proposed GACL-Net was designed to classify left and right MI tasks as MIleft and MIright, respec-

tively. The overall architecture is illustrated in Fig. 1. The input of the model (EEGwi
featured), which is a featured

representation of the raw EEG data for each channel over window. The architecture comprises several
key components, including multi-scale convolutional blocks (Eq. (8)), attention fusion layers (Eq. (9)),
graph convolution layers (Eq. (10)), bidirectional LSTM layers with attention (Eq. (11)), and dense layers
with softmax activation function (Eq. (12)). Each of these blocks and layers was stacked to extract and
integrate relevant spatiotemporal and spectral features. The model passes the input through a multi-scale
convolutional block, which aids in capturing features at different scales using three convolutional layers using
kernel sizes (3, 5, 7) for capturing diverse spatial patterns. The convolutional operation is defined as:

Conv(EEGwi
featured) =

K
∑

k=−K
wk ⋅ EEGwi−k

featured (8)
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where wk are the learnable weights of the convolutional filters and K represents the kernel size. The
concatenation of these layers, followed by batch normalization and dropout, further aids in stabilizing
learned features. The outcomes from the convolutional layers are passed through the attention fusion layer,
which helps combine the spatial, temporal, and frequency patterns of EEG signals by adapting spatial and
temporal attention mechanisms. This layer focuses on relevant features by allocating dynamic weights to
them, considering their importance. The attention fusion layer captured the following patterns:

Attention(Q , K , V) = softmax(QKT
√

dk
)V (9)

where Q, K, and V are the query, key, and value matrices, respectively, derived from the input. The next
block for extracting information is the graph convolutional layer, which focuses on interchannel connectivity.
This helps to simulate the brain’s functional network by capturing the dependencies between different EEG
channels. Thus, the model transforms and captures information through inter-channel interactions. The
outcomes are expressed as follows:

GraphConv(EEGwi
featured) = ∑

n
Ai j ⋅Conv(EEGwi

featured) (10)

where Ai j denotes the adjacency matrix representing the connectivity between channels. Following the
capture of these dependencies, the model incorporated a Bi-LSTM layer that captured the temporal
dependencies in the EEG data by processing the input in the forward and backward directions. The layer
takes information from the past and future and is embedded to improve the overall feature-learning process.
The procedure was as follows:

ht = LSTM(
������→
EEGwi

featured,
←������
EEGwi

featured) (11)

where
������→
EEGwi

featured and
←������
EEGwi

featured represent the forward and backward passes of the LSTM network,
respectively. The outcomes from these layers are passed through global average pooling, which condenses
the feature representation and is followed by fully connected layers and regularization. This ensures that the
model captures high-level abstractions and avoids overfitting. The final layer is a softmax layer that outputs
the probabilities for each class (MIleft and MIright) as follows:

Softmax(zi) =
ezi

∑ j ez j
(12)

where zi is the input to the softmax function for class i.
The rationale for integrating these components into GACL-Net can be analyzed from a biologically

informed perspective. The model design has been developed to capture the spatio-temporal and spectral
dynamics that are inherent in the EEG signals. The multiscale convolutional blocks have been employed with
varying kernel sizes of 3, 5 and 7 to capture the neural activities at different spatial scales. These can help
explore the varying spatial resolutions of brain signal patterns. The attention fusion layers help emphasize
spatial, temporal, and frequency features, and serve as adaptive mechanisms to focus on relevant neural
activities (associated with the targeted classes). The graph convolutional network module helps in improving
connectivity modeling by capturing inter-channel dependencies through the use of an adjacency matrix.
The module offers strength to the model by capturing both spatial and functional network information. The
bi-LSTM layer then captures the sequential dependencies and ensures that the variability and overlapping
patterns in the EEG data are fully understood. Overall, this combination of convolutional, attention, graph
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convolution, and LSTM layers allows the model to effectively learn complex patterns from EEG data. Thus, it
is highly suitable for distinguishing between MIleft and MIright. The hierarchical structure ensures that both
spatial and temporal dynamics are captured.

1D CNN layer
32 filters,

 3, 3 kernel

Spatial 
attention

Global 
average 
pooling

E
E

G
 fe

at
ur

ed
 d

at
a

1D CNN layer
32 filters,

 5, 5 kernel

Multi-scale convolutional block

Temporal 
attention

Spectral 
attention

Attention fusion block

1D CNN layer
32 filters,

 7, 7 kernel

Batch 
normalization

Dense layer
128 neurons

activation ReLU

Dropout
0.3 Dense layer

64 neurons
activation ReLU

1D CNN Layer
64 Filters,

 3, 3 Kernel

Batch 
normalization

Dropout 
0.3

Graph convolutional layer block

Bi-LSTM
64 Units

LSTM Attention
Bi-Directional

Dropout 
0.3

Bi-LSTM with attention

Dropout
0.3

Dense layer
2 neurons

activation softmax

Figure 1: Schematic architecture of the proposed GACL-Net for MI classification in stroke patients. The model
incorporates multi-scale convolutional blocks for diverse feature extraction, attention fusion layers for adaptive feature
focus, graph convolutional layers to capture inter-channel dependencies, and bi-directional LSTM layers with attention
for temporal dynamics modeling. This hierarchical structure enables effective learning of complex spatial-temporal
patterns in EEG signals

The architecture of GACL-Net is developed as modular blocks. Each of these blocks has been designed to
process the EEG signals hierarchically. The input data are initially in the form of samples, channels, windows,
and features. The last three dimensions are combined to return a shape of 1848 feature samples passed on the
model. An overall flow of input shapes between the model blocks is presented in Table 3.

Table 3: Shape transformations and feature integration in the GACL-Net. B denotes batch_size, representing the
number of samples processed in parallel during training

Module Input shape Output shape Description
Input layer (B, 1848, 1) (B, 1848, 1) Raw EEG input data, single channel.
Multi-scale

convolutional
block

(B, 1848, 1) (B, 1848, 96) Extracts spatial features using three parallel
Conv1D layers (kernels: 3, 5, 7).

Attention fusion
layer

(B, 1848, 96) (B, 1848, 96) Applies spatial and temporal attention to
emphasize relevant features.

(Continued)
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Table 3 (continued)

Module Input shape Output shape Description
Graph

convolutional
layer

(B, 1848, 96) (B, 1848, 64) Captures inter-channel dependencies using
Conv1D with 64 filters.

Bi-directional
LSTM layer with

attention

(B, 1848, 64) (B, 1848, 128) Processes sequential data with Bi-LSTM;
highlights temporal dependencies.

Global average
pooling layer

(B, 1848, 128) (B, 128) Reduces temporal dimension.

Dense layers (B, 128) (B, 64)→ (B, 2) Refines features for binary classification.

The attention fusion layer, strategically positioned after the multi-scale convolution, processes enriched
spatial features through sophisticated spatial and temporal attention mechanisms. While maintaining the
input shape, this layer adaptively refines feature representations, ensuring subsequent layers operate on
the most salient aspects of the data. This integration significantly enhances the model’s robustness to EEG
variability, ultimately improving classification performance across diverse patient populations.

The GACL-Net model was trained using the Adam optimizer with a learning rate of 1 × 10−4. The
dataset was split into training and testing sets with an 80:20 ratio, with 20% of the training data reserved for
validation. Training was conducted over 20 epochs using a batch size of 32. The model employed categorical
cross-entropy as the loss function, with accuracy as the primary performance metric. Model evaluation
incorporated multiple metrics including accuracy, precision, recall, and F1-score on the test data.

4 Results
This section presents the results generated for the proposed model, indicating the presence of nuanced

boundaries highlighted using feature visualization and the corresponding power of the GACL-Net model
to correctly classify the classes in the presence of such decision boundaries. Additionally, the use of cross-
validation further helps analyze the generalization capabilities of the model. These outcomes have been
presented in the ensuing paragraphs.

4.1 Statistical Analysis under Stroke Conditions
To analyze the variability across subjects with stroke records, statistical analysis was performed for the

left and right MI conditions. Variability was determined in terms of μ and σ under visualization and high-end
statistics, including analysis of variance (ANOVA).

Analysis of the μ and σ across subjects (including all channels) indicated high variability. The mean
variations across subjects are shown in Fig. 2. The variations ranged from as low as 3331.66 to as high
as 33,276.57. This wide range indicates that different subjects have markedly different average EEG signal
magnitudes. For instance, Subject 19 had a low μ EEG signal of 3331.66, whereas Subject 22 had a significantly
high μ of 33,276.57. These differences indicate variations in baseline EEG activities across individuals;
therefore, a more generalized model is required to effectively capture such differences when performing
cross-subject variations. The overall pattern is shown in Fig. 3.

A similar σ analysis was performed to measure the variability and dispersion of the signal values, as
shown in Fig. 2. The σ analysis showed a considerable range among the participants, with values ranging from
172.63 to 1320.13. Such variations reflect different levels of signal fluctuation and noise across subjects. For
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instance, Subject 24 had a high σ of 1320.13, which indicates substantial variability in the EEG signals. Subject
20 had a significantly lower σ of 172.63, which suggests a relatively stable EEG signal behavior. Significant
differences in σ across subjects revealed that the extent of signal variability was not uniform. This highlights
the diversity of the EEG signal characteristics among individuals.
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Figure 2: Statistical analysis of EEG signal variability across stroke patients. (a) μ of EEG signal values for each subject,
demonstrating high inter-subject variability ranging from 3331.66 to 33,276.57. (b) σ of EEG signals for each subject,
illustrating diverse levels of signal fluctuation across patients, with values ranging from 172.63 to 1320.13
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Figure 3: Statistical analysis and model performance. (a) Distribution of mean EEG signal values across all subjects,
illustrating the heterogeneity in baseline EEG activity among stroke patients. (b) Confusion matrix showing the
classification performance of the GACL-Net model on the test dataset

ANOVA analysis revealed key insights into EEG signal variability under stroke conditions for left
and right MI tasks. The μ of EEG signals showed an F-value of 0.704 with a p-value of 0.593, while σ
analysis yielded an F-value of 0.435 with a p-value of 0.783. These high p-values indicate no significant
differences in either μ or σ between left and right MI tasks. While substantial inter-subject variability was
observed, the consistency between classes within subjects suggests considerable pattern overlap. This pattern
suggests neural restructuring post-stroke, where left and right brain activities become more convergent.
These findings highlight the challenge of distinguishing between MI classes due to nuanced patterns, making
high accuracy classification particularly demanding.
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4.2 Capturing Nuanced Patterns
Topographic map analysis was conducted to examine the similarities between MI classes. The analysis

revealed subtle pattern differences that are typically challenging to distinguish between classes. Despite these
minimal differences, the model’s sophisticated architecture successfully classified these instances with over
99% accuracy.

The topographic maps in Fig. 4 illustrate the left and right MI class patterns, generated from the mean
of the 10 most nuanced trials across subjects. Using normalized activation values (0 to 1) for individual
channels, the analysis revealed minimal class differences of approximately 0.004. Although these magnitude
differences are small, the spatial activation patterns showed class-specific variations, demonstrating the
model’s capability to detect and classify subtle EEG pattern differences.

Figure 4: Topographic maps for mean activation patterns (10 closes class samples) for MI tasks. (a) Class 1 activation
map highlights the average spatial distribution of activations across EEG channels for left MI. (b) Class 2 activation
map highlights the average spatial distribution of activations across EEG channels for right MI. (c) Difference map,
highlighting subtle differences in activation intensities between the two classes

This analysis validates the model’s effectiveness in capturing fine-grained neural patterns, a crucial
capability for accurate MI classification in stroke rehabilitation. The successful differentiation of such subtle
patterns underscores the model’s sensitivity to small but significant variations in neural activity.

4.3 Training and Validation Performance
The training and validation performances of the proposed model were evaluated using several metrics.

Initially, the training outcomes were determined by investigating the loss and accuracy performance over
increasing epochs using the training and validation subsets. The model was found to converge suitably
when and gradually with increasing epochs without depicting any instances of overfitting or underfitting.
The training accuracy started at 0.495 and gradually exceeded 99% across both the training and validation
datasets. Similarly, compared to an initial loss of 0.7103, the model converged to a loss value of 0.185. These
outcomes are depicted in Fig. 5 for accuracy and loss performance.

Model evaluation was conducted on a held-out 20% test subset, completely separate from the training
data. The test set performance closely matched the training and validation results, with the model achieving
99.52% accuracy, demonstrating robust generalization without overfitting. The confusion matrix in Fig. 3
and the performance metrics in Table 4 confirm these findings at a 95% confidence interval.

To validate the model’s generalization capabilities, leave-one-subject-out cross-validation (LOSO-CV)
and performance evaluation on an additional dataset (Dataset 2) [30] were conducted. The LOSO-CV
methodology assessed the model’s performance by completely excluding one subject’s data during training,
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providing a rigorous test of generalization to unseen subjects. This process was repeated 50 times, with each
iteration holding out a different subject’s data as the test set. The model maintained robust performance,
showing only a 2.1% accuracy decline as shown in Table 4.

(a)
Epoch

Ac
cu

ra
cy

0.5

0.6

0.7

0.8

0.9

1.0

0 5 10 15 20 25 30

Training accuracy
Validation accuracy

Epoch
(b)

Lo
ss

0.2

0.3

0.4

0.5

0.6

0.7

0 5 10 15 20 25 30

Training loss
Validation loss

Figure 5: Training and validation performance of the GACL-Net over 30 epochs. (a) Training and validation accuracy
curves, demonstrating consistent improvement and convergence of the model. The final accuracy exceeds 99% for both
training and validation sets, indicating robust learning without overfitting. (b) Training and validation loss curves, show
a steady decrease from an initial value of 0.7103 to a final value of 0.185, further confirming the model’s effective learning
and generalization capabilities

Table 4: Performance comparison of GACL-Net across standard evaluation, LOSO-CV, and Dataset 2

Metric Standard evaluation LOSO-CV Standard evaluation Dataset 2
Accuracy 0.9952 0.9743 0.9817
Precision 0.9952 0.9743 0.9822

Recall 0.9951 0.9742 0.9815
F1-Score 0.9953 0.9744 0.9819

Further validation utilized Dataset 2, containing EEG recordings during left and right MI tasks involving
paretic and unaffected hands of 15 stroke patients, with each participant performing 40 trials. The recordings
featured 63-channel EEG data sampled at 512 Hz, with each trial containing 3500 data points (6.84 s). The data
underwent bandpass filtering (0.5–40 Hz) for baseline removal. When evaluated using standard protocols,
the model demonstrated comparable performance, exhibiting only a 1.3% accuracy reduction compared to
the primary dataset results, as detailed in Table 4.

4.4 Model Complexity and Feature Selection
A feature selection routine has been implemented in this study to analyze the impact of model

performance and complexity levels [31]. A genetic algorithm (GA) has been employed to optimize the subset
of features that contribute most significantly to the model’s performance [32]. During experimentation, the
number of generations (ngen) in the GA was varied, resulting in different combinations of selected features.
These groups were then evaluated using the existing GACL model. The primary objective of the GA is to
identify the set of features that maximizes performance while potentially reducing computational complexity.
The complexity has been characterized as logarithmic big-O, as described by using Eq. (13):

O = log10(F) ⋅ log10(33 ⋅ 480 + 2 ⋅ (332 ⋅ 32 + 33 ⋅ 1024 ⋅ F) + 33 ⋅ 6144) (13)
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where F represents the number of selected features, and the terms correspond to the contributions from the
multi-scale convolutional block, attention fusion layer, and graph convolutional layer, respectively.

The outcomes of the feature selection and complexity analysis are summarized in Table 5. This table
illustrates the complexity and performance of the model based on varying ngen and selected features. It
was found that maximum model performance was achieved with all eight features selected; as features were
reduced, model performance correspondingly decreased. Nevertheless, model complexity is proportional to
the number of features, highlighting a trade-off between performance and computational efficiency.

Table 5: Outcomes of feature selection with GA and simplified logarithmic model complexity (O)

ngen Features selected Model accuracy O
0 Alpha power, beta power, ERD/ERS value 0.9824 2.943
1 Coherence value, standard deviation of envelope 0.9856 1.784
2 Fractal dimension, alpha power, Lyapunov exponent 0.9891 2.943
3 Mean envelope, ERD/ERS value, coherence value 0.9913 2.943

Non GA All of the above features 0.9952 6.161

4.5 Ablation Experiments
Comprehensive ablation experiments systematically evaluated the contribution of key components in

the GACL-Net architecture. The first ablation model (A1) excluded the multi-scale convolutional block,
responsible for capturing spatial patterns at various scales. This omission reduced classification accuracy
by 8% to 0.9255 on the test dataset. The second ablation model (A2) removed the attention fusion layer,
which extracts spatial, temporal, and frequency-specific features, decreased accuracy by 9.3% to 0.9023,
demonstrating the importance of adaptive feature weighting. The third ablation study (A3) removed the
graph convolutional layer, designed for modeling inter-channel dependencies and functional connectivity.
This elimination of channel interactions reduced model performance by 5% to 0.9454. Excluding the
bidirectional LSTM with attention is the fourth experiment (A4), which captures sequential dependencies
and temporal dynamics, decreased accuracy by 7.2% to 0.9239, highlighting the significance of temporal
information in MI classification.

Further studies investigated component synergies and their combined effects. The fifth ablation (A5)
removed both the multi-scale convolutional block and attention fusion layer, resulting in a substantial 14.5%
accuracy reduction and revealing strong synergistic relationships. The sixth study (A6) eliminated the graph
convolutional layer and bi-directional LSTM with attention, reducing accuracy by 12.5% and demonstrating
the importance of combined temporal dynamics and channel relationships. The final ablation (A7) removed
the attention fusion layer and graph convolutional layer, causing an 11.5% accuracy drop and highlighting
the interdependence of adaptive attention and inter-channel connectivity. A summary of the ablation studies
performance is shown in Table 6.

Table 6: Performance comparison of GACL-Net against ablation models

Model Impact Accuracy Precision Recall F1-score
GACL-

Net
– 0.995 0.995 0.995 0.995

A1 Removing spatial features 0.926 0.926 0.925 0.926
A2 Removing adaptive attention 0.902 0.902 0.902 0.902

(Continued)
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Table 6 (continued)

Model Impact Accuracy Precision Recall F1-score
A3 Removing channel connectivity 0.945 0.945 0.945 0.946
A4 Removing temporal features 0.924 0.924 0.924 0.924
A5 Removing spatial and attention 0.850 0.850 0.850 0.850
A6 Removing connectivity and temporal 0.870 0.870 0.870 0.870
A7 Removing attention and connectivity 0.880 0.880 0.880 0.880

5 Discussion
The proposed GACL-Net model demonstrates outstanding performance in MI classification for stroke

rehabilitation, achieving 99.52% accuracy on the test dataset and 97.43% under LOSO-CV. These results
surpass existing methods, addressing key challenges in EEG-based MI classification, including patient
variability, overlapping neural signatures, and compensatory mechanisms. Statistical analysis revealed
substantial EEG signal variability among stroke patients, with μ ranging from 3331.66 to 33,276.57 and σ from
172.63 to 1320.13. Despite this heterogeneity, GACL-Net maintains robust generalization, underscoring its
ability to detect subtle neural patterns that conventional models often miss. The model’s efficient processing
speed (33–56 ms on a T4 GPU) further enhances its practical utility for real-time clinical applications, where
immediate feedback is critical.

5.1 Performance Comparison
Comparative analysis in Table 7 demonstrates GACL-Net’s superior performance against existing

approaches in MI classification for stroke patients. Traditional ML models like RF, which rely on hand-crafted
features (such as WPD or CSP) [17], struggle with inter-subject variability and overlapping neural signatures
due to EEG data complexity. Lightweight architectures such as EEGNet [19] and CNN [18] show limited
ability to capture nuanced temporal and spatial patterns. Even with TL [24], EEGNet’s performance remains
constrained by the unique complexities of stroke patient EEG data, particularly in handling non-stationary
signals. Similarly, spatial filtering methods [21] and PLV approaches using ERD/ERS [23] achieve moderate
performance but fall short due to disrupted brain connectivity patterns in stroke patients.

Table 7: Comparative analysis of MI classification methods for stroke rehabilitation. Methods evaluated across different
populations, featuring diverse approaches and corresponding classification accuracies

Method EEG dataset Features Highest observed accuracy
RF [17] 6 stroke patients WPD, HOS, CSP, and

FBCSP
71.0%

CNN [18] 25 stroke patients, 25
healthy subjects

Frequency bands 90.0%

EEGNet [19] 10 stroke patients Auto-learned 69.8%
SPoC, Spec-CSP,

FBCSP [21]
5 stroke patients Frequency bands 85.1%

PLV-ERD/ERS [23] 16 stroke patients Mu and beta bands 74.4%
EEGNet with TL [24] 5 stroke patients, 6

healthy subjects
Auto-learned 66.4%

(Continued)
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Table 7 (continued)

Method EEG dataset Features Highest observed accuracy
GACL-Net 50 acute stroke patients Frequency band power,

coherence, and
non-linear dynamics

99.52%

GACL-Net’s exceptional classification accuracy stems from its sophisticated architectural features.
Multi-scale convolutional blocks capture diverse spatial patterns at different scales, enabling detection of
subtle EEG signal differences. Attention fusion layers adaptively focus on relevant features, addressing high
variability in stroke-induced patterns. Graph convolutional layers model complex brain functional con-
nectivity through inter-channel dependencies, particularly crucial for stroke patients with disrupted neural
patterns. The bi-directional LSTM with attention mechanisms captures long-term temporal dependencies
bidirectionally, essential for understanding dynamic EEG signals during MI tasks. This comprehensive
architecture enables superior MI classification in stroke patients.

5.2 Statistical Validation of Performance Metrics
Statistical validation of GACL-Net’s performance improvements utilized paired t-tests and bootstrap

confidence intervals for comparison against baseline models. Paired t-tests revealed significant differences
in accuracy across all samples, with low p-values (p < 0.001) confirming statistical significance. Bootstrap
confidence interval analysis further validated these findings. GACL-Net demonstrated superior performance
across all comparisons as shown in Table 8, with accuracy improvements ranging from 9.53% vs. CNN to
32.99% vs. EEGNet with TL. The consistently positive, non-zero-overlapping confidence intervals provide
robust statistical evidence of GACL-Net’s enhanced classification capabilities.

Table 8: Statistical validation of GACL-Net performance against baseline models. Results show t-test statistics,
significance levels (p-value), 95% confidence intervals (CI), and observed accuracy differences

Method t p-value Lower CI Upper CI Observed difference
RF 230.307 <0.001 0.2820 0.2870 28.45%

CNN 63.753 <0.001 0.0923 0.0982 9.53%
EEGNet 234.639 <0.001 0.2938 0.2988 29.13%

SPoC, Spec-CSP,
FBCSP

96.271 <0.001 0.1390 0.1451 14.20%

PLV-ERD/ERS 168.069 <0.001 0.2476 0.2537 25.65%
EEGNet with TL 281.003 <0.001 0.3287 0.3331 32.99%

5.3 Clinical Implications
GACL-Net’s exceptional accuracy offers significant implications for clinical rehabilitation practices.

The model’s precise MI task classification enables tailored rehabilitation protocols, enhancing therapeutic
effectiveness through personalized treatment approaches. Its potential integration into real-time neuro-
feedback systems provides immediate, accurate patient feedback during MI tasks, potentially accelerating
motor function recovery. The model’s sensitivity to subtle EEG pattern changes enables precise monitoring
of rehabilitation progress, allowing clinicians to make data-driven adjustments to treatment plans. This
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capability, combined with the system’s real-time processing (33–56 ms on T4 GPU), makes it particularly
valuable for clinical applications where immediate feedback is crucial. Furthermore, GACL-Net’s robust
performance establishes new research opportunities in neural plasticity and motor recovery mechanisms,
advancing our understanding of stroke rehabilitation processes and potentially leading to innovative
therapeutic approaches.

5.4 Limitations and Future Directions
Despite GACL-Net’s strong performance, several limitations warrant attention in future research. While

the current datasets are substantial, validation across larger and more diverse patient populations remains
necessary to confirm generalizability. The study lacks longitudinal assessment of rehabilitation outcomes,
necessitating extended studies to evaluate long-term recovery tracking efficacy. Additionally, the model’s
controlled-setting performance may not directly translate to clinical environments, requiring further testing
and adaptation for practical implementation. Though achieving high accuracy, the model needs enhanced
interpretability to help clinicians understand the EEG features driving classifications.

The study excluded several advanced architectures from consideration. Transformer-based models with
self-attention mechanisms, capable of capturing long-range dependencies and temporal dynamics in EEG
data, were omitted due to their extensive computational requirements and the limited availability of stroke
patient data. Domain adaptation and TL approaches, while promising for improving generalizability, face
limitations from inherent heterogeneity in stroke EEG data. Advanced data augmentation methods like GAN
and CycleGAN were also excluded due to their sensitivity to distribution shifts and challenges in capturing
nuanced variability in stroke rehabilitation EEG data.

Future research should focus on integrating GACL-Net with complementary neuroimaging modalities
such as functional near-infrared spectroscopy or functional magnetic resonance imaging to enhance under-
standing of brain activity during MI tasks [33]. Additional priorities include exploring recovery outcome
prediction, optimizing rehabilitation strategies, and developing user-friendly clinical interfaces to facilitate
adoption in rehabilitation settings.

GACL-Net represents a significant advancement in EEG-based MI classification for stroke rehabilita-
tion, with its high accuracy and robust handling of inter-subject variability addressing key challenges in
personalized rehabilitation strategies.

6 Conclusion
The proposed GACL-Net presents significant advancements in MI classification for stroke rehabilita-

tion, achieving an impressive 99.52% accuracy. By integrating multi-scale convolutional layers, attention
mechanisms, and graph convolutional networks, the model effectively addresses key challenges in stroke
EEG analysis, including patient variability, overlapping neural signatures, and compensatory mechanisms.
This architecture enhances generalization across diverse stroke-induced EEG signals, capturing subtle
neural activity patterns crucial for individualized rehabilitation strategies. The GACL-Net’s potential clinical
applications are extensive, ranging from evaluating therapeutic interventions to providing real-time neu-
rofeedback. Its ability to offer detailed insights into motor and cognitive recovery processes, coupled with
its adaptability to various stages of recovery, positions it as a versatile tool for personalized rehabilitation.
By enabling precise monitoring of rehabilitation progress and facilitating treatment plan adjustments, the
GACL-Net paves the way for more effective, tailored stroke rehabilitation strategies, ultimately improving
patient outcomes and engagement in the recovery process.
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