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ABSTRACT: Instance segmentation is crucial in various domains, such as autonomous driving and robotics. However,
there is scope for improvement in the detection speed of instance-segmentation algorithms for edge devices. Therefore,
it is essential to enhance detection speed while maintaining high accuracy. In this study, we propose you only look
once-layer fusion (YOLO-LF), a lightweight instance segmentation method specifically designed to optimize the speed
of instance segmentation for autonomous driving applications. Based on the You Only Look Once version 8 nano
(YOLOv8n) framework, we introduce a lightweight convolutional module and design a lightweight layer aggrega-
tion module called Reparameterization convolution and Partial convolution Efficient Layer Aggregation Networks
(RPELAN). This module effectively reduces the impact of redundant information generated by traditional convolutional
stacking on the network size and detection speed while enhancing the capability to process feature information.
We experimentally verified that our generalized one-stage detection network lightweight method based on Grouped
Spatial Convolution (GSconv) enhances the detection speed while maintaining accuracy across various state-of-the-art
(SOTA) networks. Our experiments conducted on the publicly available Cityscapes dataset demonstrated that YOLO-
LF maintained the same accuracy as yolov8n (mAP@0.5 = 37.9%), the model volume decreased by 14.3% from 3.259 to
2.804 M, and the Frames Per Second (FPS) increased by 14.48% from 57.47 to 65.79 compared with YOLOv8n, thereby
demonstrating its potential for real-time instance segmentation on edge devices.
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1 Introduction
Automated vehicle driving is an application of Internet of Things (IoT) technology, and a fundamental

requirement for automated driving is a comprehensive understanding of the surrounding environment,
including complex traffic scenes, commonly referred to as outdoor scene understanding [1]. Outdoor scene
understanding is a promising topic in computer vision; thus, deep-learning-based object detection algo-
rithms and instance segmentation algorithms can be employed to understand outdoor scenes in autonomous
driving. The research results derived from these algorithms have been extensively utilized in developing
various autonomous driving applications [2].

According to the network structure and detection principle, deep-learning-based object detection
algorithms can be broadly classified into two categories: two-stage and one-stage object detection methods.
The former initially generates candidate frames and then accurately locates these candidates through
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subsequent filtering using classification and positional regression networks. Representative examples of this
approach include the Region-based Convolutional Neural Networks (R-CNN) [3], Faster R-CNN [4], and
Cascade R-CNN [5]. In contrast, the latter directly predicts the location and class of objects from frames by
defining dense a priori or anchor frames on images and employing classification and regression networks, has
the advantages of simplicity and speed, and is more suitable for real-time detection field. The YOLO family
of algorithms [6–9] and single-shot detector (SSD) [10] are representative methods in this category. Both of
them have more applications in transportation, but SSD has the defects of easy to confuse background in
scene understanding and misdetection in some complex scenes [11], YOLO is better than SSD in this aspect,
and the combination with segmentation is more suitable for applications in outdoor scene understanding.

Instance segmentation is a further step in object detection algorithms, which can be classified into
two categories: two-stage instance segmentation and one-stage instance segmentation, based on the object
detection network. In 2017, Kaiming et al. proposed Mask R-CNN [12], a top-down two-stage instance
segmentation algorithm that builds upon the object detection network Faster R-CNN. It introduces a
novel mask prediction branch to achieve instance segmentation using a simple approach and capitalizes on
advancements in the object detection field. By replacing the Faster R-CNN network in Mask R-CNN with
an improved detector, stable enhancements in the performance of instance segmentation can be achieved.
The Cascade Mask R-CNN of Zhaowei Cai et al. is also based on this thinking for network design [13].
In 2019, significant advancements were made in the onestage instance segmentation algorithms field with
the introduction of YOLACT by D. Bolya et al. [14]. This algorithm builds upon RetinaNet, an object
detection network. It utilizes operations such as channel-weighted summation, convolution, or clustering
to predict a set of instances using shared 1/4 or 1/8 global features. The series of articles, BlendMask [15],
EmbedMask [16], and Condinst [17], are all based on the framework proposed by YOLACT. In 2020, Wang
et al. proposed SOLOv1 [18], which eliminates the bbox branch of the object detection network, leaving only
the classification branch and the mask branch, and experimentally verifies the feasibility of improving the
network performance by replacing the backbone and the head based on the idea of YOLO series. Xing Shen
et al. proposed a new mask method, DCT-Mask [19], using the discrete cosine transform (DCT) to encode
high-resolution binary mesh masks as tight vectors. In 2022, Tao Zhang et al. proposed a contour-based
instance segmentation method, E2EC [20], which employs a learnable contour initialization architecture and
a multi-directionally aligned label sampling scheme, demonstrating state-of-the-art performance. Haoliang
Liu et al. (2023) proposed the YOLO-based contour regression network YOLO-CORE [21]. In 2024, Kang
et al. proposed an ASF-YOLO based on attention-scale sequence fusion and YOLO framework [22]. The
two-stage instance segmentation algorithm not only inherits the disadvantage of slow detection speed of
two-stage object detection, which conflicts with real-time, but also introduces the problem of information
loss on spatial features of large objects, especially in the edge part, which leads to poor edge prediction of
large objects, especially those with complex contours. The one-stage instance segmentation algorithm has a
higher detection speed than the two-stage instance segmentation algorithm, and at the same time, there is
sufficient research on the accuracy, and real-time instance segmentation becomes possible.

With the advent of the IoT, automotive chips have transitioned from microcontroller unit (MCU) to
system-on-chip (SoC) heterogeneous chips, and the deployment of instance segmentation algorithms on
edge devices has reached a level of maturity. Consequently, there is an increasing demand for the real-
time deployment of instance segmentation algorithms on edge devices. Running the instance segmentation
algorithm in real time on edge devices can be implemented in two parts, the lightweighting of the algorithm
and the accelerated deployment of the lightweighted algorithm on edge devices. Thus, a lightweight network
model based on YOLOv8n is proposed. The main contributions of this study are as follows:
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(a) We introduce a novel lightweight convolution technology and design a lightweight layer aggregation
module called RPELAN. Based on this, we propose a lightweight instance segmentation method based
on yolov8n. Through experimental verification, we propose a generalized one-stage detection network
lightweight method based on GSconv. In addition, our research results provide theoretical support for the
full implementation of embedded platforms.

(b) By analyzing the last layer (the largest number of channels) of the one-stage backbone network, the
use of traditional convolution will lead to the increase of redundant information. We propose a lightweight
method of one-stage detection network based on GSconv. This characteristic offers an opportunity to explore
a generalized lightweight method for one-stage detection networks.

(c) This GSconv-based lightweight method for one-stage detection networks replacing traditional
convolution is validated on multiple one-stage State of the arts (SOTA) networks using the publicly available
datasets Cityscapes and VOC2012, and this GSconv-based lightweight method for one-stage detection
networks has generalizability.

(d) By integrating the design concepts of the C2f and ELAN modules and incorporating a lightweight
convolution module, we propose a novel lightweight layer aggregation module called RPELAN. The RPELAN
module enhances the gradient circulation ability through Repconv, merges multilevel features, and eliminates
the redundancy caused by traditional convolutional stacking using Pconv. This approach making enabling
realtime instance segmentation in edge devices possible.

(e) We deployed our algorithm on an edge device four-wheeled open source intelligent cart (ANS-
OMOVE-I) and experimentally verified the performance improvement of the proposed algorithm over the
original one.

2 Related Work

2.1 YOLOv8n Model
The YOLOv8 model represents a cutting-edge advancement in the field, building on the achievements

of previous iterations to enhance performance and flexibility. With its emphasis on speed, accuracy, and
user-friendliness, YOLOv8 emerges as an optimal solution for various tasks, including object detection,
image segmentation, and pose estimation [23]. The YOLOv8 algorithm has five small and large models
known as YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l, and YOLOv8x.The demand for deploying instance
segmentation algorithms on edge devices in autonomous driving application scenarios is high. To achieve
real-time performance, the network architecture of YOLOv8n, as shown in Fig. 1, is divided into two main
parts: the Backbone part extracts image features. In contrast, the Head part processes fused features and
performs instance segmentation through the segment header. The YOLOv8 algorithm extensively utilizes
C2f, a multi-branch stacking module corresponding to a denser residual structure. Residual networks are
known for their ease of optimization, which enhances the nonlinear and representational capabilities of the
network to model complex data effectively. The internal residual blocks employ jump connections to address
the vanishing gradients associated with increasing depths in deep neural networks.

2.2 Lightweight Convolution
The design of lightweight convolutions aims to minimize convolutional network models’ parameter

count, computational complexity, and memory requirements [24]. These convolutions employ various
composition techniques to reduce resource consumption, enhance computational efficiency, and maintain
the model performance. in order to pursue better performance networks become deeper and deeper. Wider
and wider, with a consequent significant increase in the number of parameters and computation, which is
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detrimental to the deployment of algorithms on edge devices. Therefore, lightweight convolutional design
is necessary.

Figure 1: The network architecture of YOLOv8n

2.2.1 Repconv
Repconv is a streamlined yet robust convolutional neural network architecture comprising only 3 × 3

convolutions and Rectified Linear Unit (ReLU) activation-function stacks [25]. It employs multibranched
convolutional layers during training and reparameterizes the branch parameters to the main branch during
inference. This approach effectively reduces computational complexity and memory consumption, ensuring
optimal learning capability during training while enhancing speed during inference.

The batch normalization (BN) layer is calculated as follows: first calculate the mean μ and variance σ
of all the elements in an input feature (xi), then subtract the mean divided by the standard deviation for xi
finally utilize the learnable parameters γ and β to carry out affine transformations to obtain the final BN
output:

x̂i = γ ⋅ xi − μ√
σ 2 + ε

+ β = γ√
σ 2 + ε

⋅ xi + (β − γ ⋅ μ√
σ 2 + ε

) (1)

Can be viewed as:

y = wx + b (2)
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The formula for the convolutional layer is:

Conv (x) =W (x) + b (3)

The convolutional layer + BN merged:

x̂i = γ ⋅ xi − μ√
σ 2 + ε

+ β

= γ√
σ 2 + ε

⋅ (W (x) + b) + (β − γ ⋅ μ√
σ 2 + ε

)

= γ√
σ 2 + ε

⋅W (x) + (γ ⋅ (b − μ)√
σ 2 + ε

+ β)

(4)

The merged Repconv still maintains the basic formula Conv(x) =W(x) + b. This enables the fusion of
3 × 3 convolution and BN (Batch Normalization) layers.

2.2.2 GSconv
Li et al. proposed GSconv, a hybrid convolution method that combines multiple techniques and offers

the advantages of depth-separable convolution while preserving all the feature information. This approach
is more suitable for replacing the traditional convolution blocks directly used in neural networks. The first
step involved reducing the number of channels by half using a 1 × 1 convolution to retain the feature
information [26]. Subsequently, a copy was made for depth-separable convolution, and the resulting output
feature maps were concatenated and subjected to a shuffle operation to prevent model bias caused by the
data order, as shown in Fig. 2.

Figure 2: GSConv architecture

2.2.3 Pconv
The Pconv method proposed by Chen et al. introduced a novel partial convolution technique, as shown

in Fig. 3. Numerous related studies have highlighted that the visualization of feature information from
different channels in a feature map exhibits a significant level of similarity, which can be interpreted as
redundant information that is neglected by traditional convolutions to ensure accurate and comprehensive
processing [27]. To enhance the network learning capability, the YOLO series of detection algorithms
incorporates a multi-feature information fusion module, enabling the elimination of these redundancies
through Pconv for accelerated detection.
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Figure 3: Pconv architecture

3 Architecture

3.1 Lightweight Network Structure
The YOLOv8 model demonstrated exceptional performance across various public computer vision

datasets, whereas the YOLOv8n variant represented the most compact iteration of this model. As
autonomous driving continues to advance, there is an increasing demand for real-time instance segmentation
algorithms that can be deployed on edge devices, and existing instance segmentation algorithms have the
potential to improve detection speed. We propose improvements to the algorithm to maintain the detection
accuracy of YOLOv8n while increasing its speed. First, we introduce RPELAN as a replacement for the
C2f module in the network, enabling lightweight layer aggregation and enhancing the feature-processing
capability without compromising the inference speed. Second, during the investigation of the lightweight
convolution module, it was observed that the final layer of the one-stage detection method backbone
possessed the highest number of channels compared with the other layers in the entire network. This
excessive redundancy can be effectively reduced by employing lightweight convolutions in this particular
layer, thereby facilitating the overall network optimization. Based on the experimental results, we present
the YOLO-LF network architecture by incorporating the RPELAN module (Table 1 and Fig. 4).

Table 1: Interlayer information in the YOLO-LF backbone

Input Operator Out
640 × 640 × 3 CBS 16
320 × 320 × 16 CBS 32
160 × 160 × 32 RPELAN 32
160 × 160 × 32 CBS 64
80 × 80 × 64 RPELAN 64
80 × 80 × 64 CBS 128
40 × 40 × 128 RPELAN 128
40 × 40 × 128 CBS 256
20 × 20 × 256 RPELAN 256
20 × 20 × 256 SPPF (with GSconv) CBS +Maxpool + Concat 512
20 × 20 × 512 GBS 256
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Figure 4: YOLO-LF network architecture

The inputs to each network layer are presented in Table 1 and Fig. 4. Notably, the one-stage detection
algorithm incorporates the highest number of channels in the final layer of the backbone, enabling a straight-
forward and effective lightweight approach by employing lightweight convolutions instead of traditional
ones. This strategy preserves essential features, eliminates the redundancy associated with conventional
convolutional stacking, and significantly accelerates network performance. Furthermore, an application
study of lightweight convolutions showed that GSconv, a hybrid convolution, is more suitable for replacing
independently used traditional convolutions within the network architecture [28]. Consequently, we propose
a generalized method for lightweight one-stage detection networks based on GSconv.

3.2 Lightweight Network Structure
The YOLOv8n network extensively utilizes the C2f module, which employs a Split operation to divide

the features into two parts. One part of the features remains unprocessed, while the other part undergoes
processing through multiple BottleNeck layers. Subsequently, all branches are concatenated and integrated
using 1 × 1 convolution to in- corporate channel information [23]. By regulating the shortest and longest
gradient paths, the network demonstrates efficient learning and convergence capabilities. Moreover, the
ELAN module built upon this design strategy exhibited remarkable proficiency in preserving network
accuracy during large-scale deployment, irrespective of the gradient pathlengths or computational block
stacks [29]. As shown in Fig. 5a,b, both the C2f and ELAN modules use gradient circulation branching to
achieve hierarchical information circulation.
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Figure 5: Lightweight Layer Aggregation Network RPELAN.RPELAN incorporates the Repconv and Pconv lightweight
convolution modules based on ELAN’s gradient flow branching and C2f architecture. This design effectively eliminates
the redundancy generated by traditional convolution while enhancing the feature extraction capability through gradient
flow branching

This study proposes the RPELAN, a lightweight layer aggregation network, as illustrated in Fig. 5c. The
ELAN module employs conventional convolutions extensively, whereas the ELAN’s gradient flow branch
is designed as a gradient path to prevent excessive stacking of conventional convolutions. To eliminate
redundancy caused by such stacking, PConv replaces the conventional convolutions on the gradient flow
branch. Meanwhile, to compensate for the performance degradation resulting from discarding the residual
block, RepConv processes a subset of features split by Split, thereby enhancing feature extraction capability
and gradient propagation. Repconv enables the parameter fusion of specific structural components as
a model re-referencing technique, consolidating multiple computational modules into one during the
inference stage, thus achieving an improved inference speed without sacrificing accuracy. The RPELAN
network exhibits superior efficiency and agility; therefore, in this study, we substituted YOLOv8n’s C2f
module with RPELAN.

4 Experimental Results
The timeliness of the proposed lightweight instance segmentation method is validated and analyzed

in conjunction with the experimental results in this section. First, we investigated the impact on model
performance by replacing traditional convolution with GSconv at a fixed position for different one-stage
object detection and instance segmentation algorithms. Second, we compare our approach with the state-
of-the-ar model and provide experimental results and analysis. Finally, the effectiveness of the improved
method was verified through ablation experiments.

4.1 Datasets
The Cityscapes dataset [30] is a high-quality dataset widely utilized in computer vision, primarily

for the semantic segmentation of urban street-view images and object detection tasks. This dataset was
collaboratively developed by multiple esteemed universities and research institutes in Germany to promote
advancements in autonomous driving and transportation systems.
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The Cityscapes dataset comprises 5000 high-resolution Street View images collected from 50 diverse
cities, with a split of 2975 for training, 500 for validation and 1525 for testing. Professionals meticulously
annotated each image at the pixel level to encompass detailed information across 30 categories; however, only
19 categories were used for evaluation purposes. These annotations cover crucial elements relevant in real-
world traffic scenarios, such as roads, sidewalks, buildings, traffic signs, vehicles, and pedestrians. Because
of its exceptional image quality (1024 × 2048 pixels) and comprehensive annotation scheme, this dataset is
widely acknowledged as a benchmark for semantic segmentation and scene-understanding tasks.

The PASCAL VOC 2012 dataset [31] is a pivotal benchmark in computer vision, encompassing crucial
tasks such as object detection, image segmentation, and classification. This dataset was graciously provided
by the Pattern Analysis, Statistical Modelling and Computational Learning (PASCAL) Challenge organizing
team with the primary objective of fostering advancement and assessment of cutting-edge computer
vision algorithms.

The VOC 2012 dataset comprises 20 object categories encompassing humans, animals, vehicles, and
everyday objects that represent common scenarios in real-world applications. It is partitioned into training,
validation, and test sets. The training and validation sets comprised 11,530 labeled images, and the number of
images in the test set remained undisclosed for challenge evaluation purposes. Each image was accompanied
by a detailed bounding box and pixel-level segmentation annotations to facilitate diverse research tasks. The
dataset’s meticulous annotation quality and diversity rendered it an essential benchmark for evaluating object
detection algorithms.

4.2 Training Details of Model
The experiments were conducted in a Python 3.8, PyTorch 1.13.1, CUDA 11.7, Torchvision 0.14.1

environment with an Intel Xeon W2223, 16 G DDR4 2666 mhz RAM, DELL Precision Tower 5820 graphic
workstation, and a graphics card with NVIDIA GeForce RTX 2080ti with 11 G RAM, depicted in Table 2.

Table 2: Details of the training platform

Equipment Name
Hardware enviroment CPU: Intel Xeon W2223; Memory:16 G DDR4 2666 mhz RAM;

GPU: NVIDIA GeForce RTX 2080ti 11 G
Software enviroment Windows10; Pycharm2023.1.1
Network framework PyTorch 1.13.12; CUDA 11.7; Torchvision 0.14.1

Programming language Python 3.8

Transfer learning is employed in the network training process to ensure stable and efficient training and
enhance the overall training outcomes. Given the potential challenges associated with expensive or limited
availability of training data, it is imperative to develop high-performance learners by leveraging readily
accessible data from diverse domains. This approach is commonly referred to as migration learning [32].
The weights utilized for migration learning are commonly referred to as pretraining weights. This approach
effectively mitigates the cost of data labeling and training time while enhancing the model performance and
generalization, rendering it a practical and scalable solution for real-world applications. Training a neural
network typically requires multiple iterations to optimize the model parameters, where the batch size denotes
the number of training samples employed in a single iteration.
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The RGB image inputs to the network were resized to 640 × 640 pixels. The network weights were
initialized using pre-trained weights from the COCO2017 dataset, and a batch size of 16 was set. The training
process continued until there was no significant improvement in the model performance for more than
50 epochs, with a maximum of 300 epochs. An Adam W optimizer was employed. All the algorithms and
ablation experiments in this study were conducted under identical experimental conditions and training
parameters to ensure a fair comparison.

4.3 Evaluation Indicators of Model
The following evaluation metrics were used: parameters, FLOPs, mean average precision (mAP),

detection speed, and model size.
Precision is the proportion of samples classified as positive categories that are truly positive:

precision = TP
TP + FP

× 100% (5)

The proportion of samples in which the recall is truly a positive category is correctly categorized as
follows:

recal l = TP
TP + FN

× 100% (6)

The mean average precision (mAP) is calculated as follows:

AP = ∫
1

0
P (R) dR (7)

mAP =

i=1
∑
C

APi

C
(8)

The detection speed was quantified in (FPS). In the given equation, TP represents true positive cases
(the number of samples correctly predicted by the model as positive categories), FP represents false positive
cases (the number of samples incorrectly predicted by the model as positive categories), FN represents false
negative cases (the number of samples incorrectly predicted by the model as negative categories), C denotes
the total number of categories, and AP denotes average precision, where P signifies precision, R signifies
recall, and P(R) indicates the level of recall achieved at a specific level of precision [31].

4.4 Experiment Results and Analysis
4.4.1 Experimental Results of a Generalized Lightweight Method Based on Gsconv

Experiments were conducted to investigate the generalization of GSconv when applied to networks, as
presented in Table 3. The number of input channels in the final layer of the one-stage detection algorithm
backbone, as described in Section 3.1, attains its maximum among all layers, where the utilization of
GSconv effectively reduces network complexity without altering its structure. The segmentation effects
are validated on the Cityscapes dataset, and the experimental results demonstrate slight fluctuations in
mAP@0.5, which remain within the ±0.3% range of network training error. However, there was a significant
improvement in the frames per second (FPS). Object detection effects were evaluated on the VOC2012
dataset, revealing enhanced accuracy and a notable increase in FPS. Therefore, incorporating GSconv into
the final layer of the one-stage detection algorithm backbone exhibits remarkable potential for enhancing
detection speed while maintaining accuracy. Empirical evidence from various state-of-the-art algorithms
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further confirms the versatility of this lightweight approach based on GSconv. This plays a crucial role in
real-time instance segmentation for autonomous driving and aligns with the desired outcome of lightweight
one-stage detection algorithms.

Table 3: Results of a generalized one-stage detection network lightweighting method in multiple networks

Models mAP(box)@0.5 mAP(mask)@0.5 Inference time (ms) FPS FLOPs/G

Validation of a GSconv-based generalized one-stage detection network light weighting approach using the Cityscapes dataset
YOLOv8n 41% 37.9% 17.4 57.47 12.0

YOLOv8n with GSconv 41.1% (+0.1%) 37.6% (−0.3%) 16.3 61.35 (+6.75%) 11.9
YOLOv5n 36.7% 32.8% 21.8 45.87 6.8

YOLOv5n with GSconv 36.8% (+0.1%) 32.7% (−0.1%) 20.9 47.85 (+4.32%) 6.7
YOLOv11 41.8% 37.8% 19.3 51.81 10.1

YOLOv11 with GSconv 41.7% (−0.1%) 37.7% (−0.1%) 18.4 54.35 (+4.9%) 10.0
YOLOv5s 42.5% 38.8% 29.1 34.36 25.9

YOLOv5s with GSconv 42.2% (−0.3%) 38.6% (−0.2%) 25.8 38.76 (+12.8%) 25.7

Validation of a GSconv-based generalized one-stage detection network lightweighting approach using the VOC2012 datase

YOLOv7tiny 65.2% – 15.6 64.10 13.2
YOLOv7tiny with GSconv 66.2% (+1.0%) – 14.9 67.11 (+4.696%) 13.1

4.4.2 Comparison with Other Algorithms
The effectiveness of the acceleration achieved by utilizing the reduced redundancy lightweight layer

aggregation network RPELAN and the lightweight convolutional module, compared with YOLOv8n,
YOLOv11, MDet-ins-tiny and YOLOv5s, was verified by training a model on the Cityscapes dataset.
Subsequently, the algorithm’s performance was evaluated, and the results are presented in Table 4 and Fig. 6.

As shown in Table 4, the proposed method maintained a high mAP value while achieving a smaller
model size and faster detection speed than the other algorithms. Specifically, compared to the YOLOv11,
the parameter and mAP value are basically the same, but the FPS of our method is significantly higher,
and compared toYOLOv8n, our method improved the FPS by 14.48%, reduced the parameters by 14.02%,
and decreased the FLOPs by 13.33%. Although YOLOv5s and RTMDet-ins-tiny have a slightly higher mAP
value in the experiment, this comes at the cost of an increase in the number of parameters by more than
100% of our method and a reduction in detection speed of more than 50%. Moreover, as demonstrated
in Fig. 6, our approach exhibits greater stability and efficiency across different features during detection with
lower misrecognition ratesowing to its lightweight layer aggregation network, which reduces redundancy
and employs GSconv convolutional module acceleration.

Table 4: Results of different networks on the Cityscapes dataset

Models mAP(mask)@0.5 Inference time (ms) FPS Parameter/M FLOPs/G
YOLOv8n 37.9% 17.4 57.47 3.259 12.0
YOLOv11 37.8%

(−0.1%)
19.3 51.81

(−9.85%)
2.759

(−15.34%)
10.1

(−15.83%)
RTMDet-
ins-tiny

38.5%
(+0.6%)

47.4 21.1
(−63.29%)

5.616
(+72.32%)

11.877
(−1.02%)

YOLOv5s 38.8%
(+0.9%)

29.1 34.36
(−40.21%)

7.412
(+127.43%)

25.9
(+115.83%)

(Continued)
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Table 4 (continued)

Models mAP(mask)@0.5 Inference time (ms) FPS Parameter/M FLOPs/G
YOLO-LF 37.9%

(+0%)
15.2 65.79

(+14.48%)
2.802

(−14.02%)
10.4

(−13.33%)

Figure 6: The experimental results of the comparison of different instance segmentation algorithm

4.4.3 Ablation Experiment
This section discusses the effects of the improved method on the network model. The corresponding

data are listed in Table 5. Four experiments were conducted by incorporating different modules to evaluate
the network’s performance using metrics such as mAP, GFLOPs, parameters, and FPS. To reduce network
complexity, GSconv was employed for lighting. After acceleration with GSconv (referred to as GS), RPELAN
was included in the network to eliminate redundant information and ensure the complete fusion of feature
information across stages. To ensure experimental fairness, official pre-training weights were utilized for
each experiment, with a fixed number of epochs set at 300.

Table 5: Effects of various designs module on instance segmentation

Models mAP(mask)@0.5 FPS FLOPs/G Parameter/M
YOLOv8n 37.9% 57.47 12.0 3.259

YOLOv8n+GS 37.6% 61.35 (+6.75%) 11.9 3.397
YOLOv8n+RPELAN 38.4% (+0.5%) 62.89 (+9.43%) 11.2 (−6.67%) 3.007 (−7.73%)

YOLOv8n+GS+RPELAN 37.9% 65.79 (+14.48%) 10.4 (−13.33%) 2.802 (−14.03%)

As presented in Table 5, when replacing the traditional convolution in the backbone with GSconv, the
network exhibited a significant enhancement in detection speed, resulting in a 6.75% increase in frames per
second (FPS) while maintaining the same mAP(mask)@0.5. Moreover, replacing C2f with RPELAN resulted
in a 0.5% improvement in mAP(mask)@0.5 and an impressive 9.43% improvement in FPS. Ultimately, these
modifications led to a remarkable overall improvement of 14.48% in FPS and a 14.03% reduction in the
parameter count.



Comput Mater Contin. 2025;83(1) 1053

4.4.4 Edge Device Deployment Experiment
O-MOVE four-wheeled mobile cart is Chongqing Anisen Intelligent Technology Co., Ltd.’s independent

development of teaching and competition equipment. O-MOVE uses McNamee wheel four-wheel drive
mode, can complete the left and right translation, in situ rotation, and diagonal movement, in the narrow
space moving and through the performance is excellent. The bottom driver is based on the STM32F103
multi-channel motor driver board. The main controller is an Intel NUC kit, running Ubuntu 16.04 with ROS
Kinetic. Additionally, reserved interfaces for ultrasonic sensors and Bluetooth are included. The system has
an Intel RealSense D415 depth camera, offering robust and stable performance. We deployed the proposed
YOLO-LF and the original algorithm YOLOv8n to the O-MOVE four-wheeled mobile cart and tested them
respectively, and the specific results are shown in Table 6. Our method improves the detection speed by
8.43% while keeping the map largely unchanged on the edge device. It further validates the feasibility of our
proposed lightweight approach for deployment on edge devices.

Table 6: Experimental results on edge devices (intel NUC)

Models mAP(mask)@0.5 Inference time (ms) FPS Parameter/M
YOLOv8n 38.2% 60.1 16.6 3.259
YOLO-LF 38.1% 55.7 18.0 2.802

5 Conclusion and Future Work
A lightweight instance segmentation method was proposed in this study. Building upon the YOLOv8n

network model, a series of measures were implemented to enhance the speed of instance segmentation while
maintaining accuracy. A lightweight layer aggregation module called RPELAN was devised to eliminate
redundancy and effectively learn the channel and spatial features at different scales. Additionally, a general
one-stage detection network lightweight approach based on GSconv was introduced by incorporating the
concept of lightweight convolution modules. The versatility of this method was validated through experi-
ments conducted on both Cityscapes and VOC2012 datasets. The results obtained from experiments on the
Cityscapes dataset demonstrate that our proposed lightweight instance segmentation method significantly
improves segmentation speed without compromising accuracy. Furthermore, it enables image archiving
and location recording for various segmentation classes in autonomous driving applications, with potential
deployment on real-time edge devices. In future research, it will be essential to investigate acceleration tech-
niques for deploying lightweight algorithms on embedded platforms while considering practical application
scenarios to gather more effective data for enhancing the overall instance segmentation categories.
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