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ABSTRACT: Real-time semantic segmentation tasks place stringent demands on network inference speed, often
requiring a reduction in network depth to decrease computational load. However, shallow networks tend to exhibit
degradation in feature extraction completeness and inference accuracy. Therefore, balancing high performance with
real-time requirements has become a critical issue in the study of real-time semantic segmentation. To address these
challenges, this paper proposes a lightweight bilateral dual-residual network. By introducing a novel residual structure
combined with feature extraction and fusion modules, the proposed network significantly enhances representational
capacity while reducing computational costs. Specifically, an improved compound residual structure is designed to
optimize the efficiency of information propagation and feature extraction. Furthermore, the proposed feature extraction
and fusion module enables the network to better capture multi-scale information in images, improving the ability to
detect both detailed and global semantic features. Experimental results on the publicly available Cityscapes dataset
demonstrate that the proposed lightweight dual-branch network achieves outstanding performance while maintaining
low computational complexity. In particular, the network achieved a mean Intersection over Union (mIoU) of 78.4%
on the Cityscapes validation set, surpassing many existing semantic segmentation models. Additionally, in terms of
inference speed, the network reached 74.5 frames per second when tested on an NVIDIA GeForce RTX 3090 GPU,
significantly improving real-time performance.
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1 Introduction
The semantic segmentation task aims to assign a class label to each pixel in an image. High-performance

semantic segmentation requires not only a large receptive field but also high-resolution spatial information.
A large receptive field helps to obtain highly extracted semantic information, while high-resolution informa-
tion helps to distinguish the edge details of objects. Many methods with high computational complexity have
been proposed [1–3]. Although such networks can achieve higher segmentation accuracy, their large number
of parameters and high computational complexity greatly limit their application in real-time scenarios such
as video surveillance and autonomous driving. Real-time tasks require rapid execution of extensive image
computations, and complex network architectures often struggle to meet this demand. To improve inference
speed, many researchers have designed lightweight networks and decoders [4–6], leading to increasing
attention on real-time segmentation algorithms.

In general, the key to improving the speed of semantic segmentation lies in reducing the computational
complexity of the model. This can typically be achieved by lowering the resolution of input images, reducing
the number of network channels, or employing techniques such as depthwise separable convolutions. Most
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real-time semantic segmentation methods utilize these strategies to optimize computational efficiency.
For instance, the design of efficient backbone networks like ResNet18 [7] and lightweight encoders such
as Lednet [8] has significantly enhanced the inference speed of semantic segmentation. However, these
optimizations often result in a decrease in model accuracy. Therefore, a crucial challenge remains in achieving
accurate segmentation while reducing channel numbers, image resolution, and computational time.

In this paper, we enhanced the original residual blocks and connections of ResNet by incorporating
auxiliary residual links, creating a dual-residual module, which was then applied to a dual-branch semantic
segmentation network. To better utilize the semantic and spatial information extracted by the dual branches,
we designed a feature interaction module between the branches and a feature fusion module at the end
of the two branches. Using these modules, we constructed a complete real-time semantic segmentation
network. We validated the performance of our network on three widely recognized benchmark datasets:
Cityscapes, COCO-Stuff, and CamVid. Experimental results demonstrate that our model achieves a great
balance between performance and inference speed, as shown in Fig. 1. The red points in the figure represent
the experimental results of our network, while the red dashed line denotes the boundary between real-time
and non-real-time models.

Figure 1: Performance comparison of some real-time semantic segmentation models on the Cityscapes dataset

The main contributions of this paper are as follows:
1 We proposed a novel residual structure, formulated a dual-residual link sampling module, and incorpo-

rated it into the network architecture. Empirical validation substantiated the efficacy of the novel residual
module in enhancing the performance of the segmentation network, facilitating improved preservation
of feature information.

2 We developed feature interaction modules within the network propagation process and feature fusion
modules at the ends of each branch specifically tailored for the dual-branch network. These modules
facilitate the fusion of features extracted from detail and semantic branches, thereby enhancing the
network’s capacity to preserve detailed features while acquiring semantic information.

3 Employing the newly introduced residual modules in conjunction with feature fusion modules, we con-
structed a comprehensive real-time semantic segmentation network, yielding promising experimental
outcomes on the dataset, as illustrated in Fig. 1. Specifically, attaining a mean Intersection over Union
(mIoU) of 78.41% and a framerate of 74.5 FPS on the Cityscape dataset, we achieved a commendable
equilibrium between performance and inference speed.



Comput Mater Contin. 2025;83(1) 499

2 Related Work
In recent years, image semantic segmentation has made considerable progress and has found extensive

applications across a range of industries. This section provides an overview of the related literature on
semantic segmentation, with a particular emphasis on high-performance segmentation models and methods
designed for real-time semantic segmentation.

2.1 High-Performance Semantic Segmentation
From the early stages, semantic segmentation has been tackled using graphical algorithms such as

filtering, super-resolution [9], and edge detection [10]. The introduction of networks like VGG [11], and
ResNet [7] laid the foundation for the development of neural network-based semantic segmentation
methods. UNet [12] avoids the tedious process of manually designing features. Its encoder-decoder structure
and skip connections enable the network to simultaneously utilize low-level and high-level features to achieve
accurate image segmentation. Fully convolutional networks(FCN) [13] improved segmentation accuracy by
merging features through shortcut connections, leading to the widespread application of a new generation
of segmentation algorithm networks in semantic segmentation tasks.

The network structure of SegNet [14] is similar to that of UNet. It records the pooling position during
downsampling and directly performs deconvolution during depooling, better preserving the boundary
feature information. With the introduction of dilated convolution, the DeepLab [15–17] series introduced
dilated convolutions with different dilation rates in the network, which effectively solved the problem of
gradual loss of position information due to pooling and downsampling of the network, thereby improving
the segmentation accuracy of the network. In subsequent research, Segmenter [18] constructed an encoder-
decoder architecture based on transformer and set a class mask, which performed better than the traditional
linear structure. SegFormer [19] avoids complex decoders and proposes an lightweight multilayer perceptron
decoder. By aggregating information from different levels and combining local attention with global
attention, it generates powerful feature representations and reaches a new state-of-the-art level in large-scale
model training.

2.2 Real-Time Semantic Segmentation
As the application scenarios for semantic segmentation become increasingly diverse, the real-time

requirements for various segmentation networks are growing, especially in fields like autonomous driv-
ing [20,21] and robotics [22], which demand fast interaction and response times. Real-time inference
networks can be categorized into two main types: single encoder-decoder backbone networks and dual-
branch segmentation networks.

The encoder-decoder architecture network mainly has a backbone branch for inference. The network
performs fast downsampling during encoding to compress features and extract semantic information,
while upsampling is employed during decoding to restore features. Lightweight networks can be utilized
as encoders to improve segmentation speed and reduce computational complexity. With the introduction
of depth-wise convolution and separable convolution, the design of lightweight network architectures has
experienced rapid development. MobileNet [23] replaces standard convolution with depth-wise separable
convolution, MobileNetV2 [24] mitigates the strong regularization issue of depth-wise separable convolution
by employing inverted residual blocks. ShuffleNet [25], based on MobileNet [23] and Xception [26], achieves
information fusion through channel shuffling, ensuring that the input to the subsequent group convolution
comes from different groups, thus facilitating information flow across different groups. Channel shuffling can
significantly reduce computational complexity while maintaining a certain level of accuracy. ShuffleSeg [27]
adopts ShuffleNet [25] as its backbone, resulting in faster execution speed and lower computational cost. In
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Peng’s work [28], they give up the downsampling in the final stage to achieve faster inference speed, which
makes the receptive field of the model insufficient to cover large target objects. Although the encoder-decoder
structure reduces computational workload, the downsampling process during feature extraction may lead
to the loss of some detailed features, which cannot be easily recovered through simple upsampling, thereby
adversely affecting the accuracy of semantic segmentation. Hence, the dual-branch architecture is proposed
to mitigate this issue.

The dual-branch network architecture typically employs two branches with distinct resolutions to cap-
ture a variety of feature information. One branch focuses on extracting semantic details by applying multiple
down-sampling operations, while the other maintains high-resolution feature maps to retain rich spatial
information. In the BiSeNet [29] framework, a bilateral segmentation network is proposed, which integrates
a spatial path to preserve original spatial details and a context path to rapidly acquire a broad receptive
field, yielding superior segmentation performance. BiSeNetV2 [30] enhances this approach by incorporating
global average pooling to optimize contextual embeddings. Similarly, Fan et al. [31] introduced a Short-
Term Dense Connection module, which improves the extraction of deep features by expanding the receptive
field and incorporating multi-scale information. The BiAttnNet architecture [32] uses a distinctive bilateral
attention mechanism, concentrating all attention modules in the detail branch to facilitate precise semantic
selection. Fast-SCNN [33] leverages a learning-based down-sampling module, processing low-level features
across multiple resolution branches to share computational load and boost runtime efficiency. DDRNet [34]
enhances real-time segmentation by employing bilateral connections that facilitate information exchange
between the context and detail branches. More recently, Xu et al. [35] proposed the use of a Proportional-
Integral-Derivative (PID) controller in multi-branch networks, achieving improved accuracy, although at
the cost of increased inference resource consumption.

In the semantic segmentation task, it is necessary to preserve the spatial information of the image while
continuously extracting high-level semantic features. In order to achieve this, many papers need to insert
many new modules, which will consume a lot of computing resources while achieving the goal. The use of
residual structure in the network can better preserve feature information. Building upon this foundation,
we propose a novel residual mechanism and develop a dual-branch model that strikes a balance between
performance and inference speed.

3 Method
Our network architecture consists of semantic and detail branches, employing a newly designed dual-

residual structure and facilitating information exchange between the dual branches via feature fusion
modules. Subsequently, we will provide a detailed exposition of the network structure.

3.1 Overall Architecture for Semantic Segmentation Network
The overall structure of the Bilateral Dual-Residual Linkage Network designed in this paper is shown

in Fig. 2. We adopt a dual-branch structure to achieve a balance between performance and inference speed
while reducing the number of parameters. To achieve this goal, improvements are made on a completely
separated dual-branch structure network. First, the original input image is quickly downsampled to 1/8 of
the original image resolution, and then separate detail branches and semantic branches are created to process
specific images. The detail branch is the high-resolution branch. After receiving an image with 1/8 of the
original resolution, the feature map is no longer downsampled in the detail branch. The feature image always
maintains 1/8 of the original image resolution. Convolution and other operations are performed on this
feature map to further extract detailed features. After obtaining the feature map with a resolution of 1/8 of
the original image, the semantic branch will continue to perform downsampling operations on the feature
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map to further extract the semantic feature map. At different resolution stages of the semantic branch, feature
fusion operations are performed with the detail branch, that is, when downsampling to 1/16 and 1/32 of the
original image resolution, feature fusion is performed between the detail branch and the semantic branch,
using the semantic branch information improves the detail branch feature map and superimposes the detail
branch information into the semantic branch. Finally, the final feature fusion is performed at the ends of the
two network branches to obtain the prediction results.

Figure 2: An overview of the architecture of dual-residual linkage network

The loss function in the network uses a binary cross-entropy loss function. The loss function used by
the network mainly consists of two parts. The main loss function comes from the final prediction result after
the fusion of the two branch features at the end of the network. This result is compared with the Ground
truth, and the cross-entropy error is calculated to obtain the main loss function, which is represented by
l0. In addition, there is an additional auxiliary loss function in the network. After the original image is
quickly down-sampled to 1/8 of the original resolution, and before entering the semantic branch and detail
branch respectively, this feature map is used to compare with the ground truth, and the cross-entropy error
is calculated as the auxiliary loss function, represented by l1. The final loss function is as (1):

Loss = l0 + l1 (1)

3.2 Dual-Residual Modules
The use of residual blocks and residual links in ResNet [7] improves the network’s ability to retain

original features and makes the network’s learning smoother and more stable. During the training process,
the problems of gradient disappearance and gradient explosion can be avoided and the network convergence
process can be accelerated. However, the network requires a large amount of computing resources for training
and inference, especially when the network is deep, this problem is particularly obvious. For example,
networks using ResNet101 as backbone require a large amount of computing resources during calculation,
and it is difficult to obtain inference results quickly. In real-time semantic segmentation tasks, in order to
ensure the speed of network inference, the depth and complexity of the network need to be limited. In order
to improve the accuracy of network inference as much as possible within the limited network depth and
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preserve as much original feature information as possible during fast downsampling processes, this paper
designs dual-residual modules as shown in Fig. 3.

Figure 3: Illustration of three dual-residual structures, called Dual-residual basic block (a), Dual-residual bottleneck
block (b), Dual-residual Down-sampling block (c) and Schematic of the network formed by the connection of dual-
residual blocks (d)

In Fig. 3, (a) represents the basic dual-residual module, (b) represents the dual-bottleneck residual
module, and (c) represents the dual-residual downsampling module. The input and output of each module
can be expressed as shown in (2):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ya = C1(x) + C3(C3(x) + C1(resi−1)))

resi a = C3(x) + C1(resi−1)

yb = C1(x) + C1(C3(C1(x) + C1(resi−1)))

yc = C3(x) + C3(C3(x)
+ C3(C3(resi−1) + Avg(resi−1)))

resc = C3(x) + C3(C3(resi−1) + Avg(resi−1))

(2)

In the expression, x represents the main input of the module, resi−1 represents the auxiliary residual
input of each module, y represents the main output of the module, resi represents the auxiliary residual
output of the module, and this output is used as the auxiliary residual input of the subsequent module. C1 is
a 1 × 1 convolution, C3 is a 3 × 3 convolution, and Avg represents the Average-pooling operation. The Batch
Normalization (BN) and Rectified Linear Unit (ReLU) operations used in the structure are not written in
the expression. The specific positions of BN and ReLU can be viewed in the schematic diagram. The dual-
residual structure designed in this paper introduces an auxiliary residual link between the upper and lower
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convolutional block in the original residual module. This link captures and transmits information from the
previous module and adds it to the output of the first convolutional block in the residual module. When
these modules are interconnected to form a network, any two convolutional block can be regarded as having
residual connections (as shown in Fig. 3d), rather than being linked by relatively independent modules as
in traditional residual module. This network structure effectively preserves important information that may
be overlooked during network inference, and when we build a network with fewer layers, it speeds up the
extraction process of image feature information. This plays a significant role in achieving a balance between
network performance and real-time efficiency.

3.3 Dual Branch Feature Fusion Module
Accurately identifying object edges during the segmentation process is crucial for achieving high

segmentation accuracy, as edges often contain important semantic information that distinguishes objects
from the background. In our approach, we employed a dual-branch network structure to capture both
fine-grained details and global semantic context. Specifically, the high-resolution detail feature map and
the low-resolution semantic feature map are obtained at the ends of the detail branch and context branch,
respectively. However, directly combining the outputs of these two branches might fail to fully exploit the
complementary information between the two feature maps, potentially overlooking the diversity between
low-level details and high-level semantics. This can lead to suboptimal performance, especially in terms of
accurately capturing object boundaries and fine structures.

To address this limitation, we propose a dual-branch feature fusion module (DBFFM) that integrates
features from both branches in a more effective manner. The key insight behind our design is that the detail
branch, which preserves more granular spatial information, should serve as the foundation for feature fusion.
This allows us to better retain fine details in the final segmentation output. Simultaneously, we incorporate
semantic information from the context branch, which captures global and high-level context, into the feature
map of the detail branch. This fusion process enables the network to combine the strengths of both low-
resolution semantic features and high-resolution detail features, leading to a more accurate segmentation of
object edges.

The theoretical foundation of this design is based on the observation that multi-scale feature fusion
and weight-based fusion techniques consistently yield promising results in enhancing object boundary
recognition and preserving local details [36,37]. By using the detailed information from the high-resolution
feature map as the base, and then enriching it with the semantic context from the low-resolution feature map,
our approach ensures that both the spatial accuracy and semantic coherence are preserved. This strategy
effectively enhances the network’s ability to capture fine boundaries while maintaining a comprehensive
understanding of the overall scene. The output of the feature fusion process is formally represented as shown
in Eq. (3) and depicted in Fig. 4. This approach provides a more robust framework for handling the diverse
and complex nature of object boundaries in real-time semantic segmentation tasks.

Out = C3(C1(C3(v⃗d) ⋅ Sig(C3(v⃗c)) +Avg(C3(v⃗d)) ⋅ Sig(C1(C3(v⃗c)))) (3)

In the expression, v⃗d represents the output feature map of the detail branch, v⃗c represents the output
feature map of the context branch, C3 is a 3 × 3 convolution, C1 is a 1 × 1 convolution, Avg represents the
Average-pooling operation, Sig represents the Sigmoid function. To address the issue of mismatched feature
map resolutions between detailed and semantic information, we introduced an upsampling process for the
semantic feature map, achieved via bilinear interpolation. This module facilitates the fusion of features at
different scales, maximizing the utilization of output features from both branches. Compared with simply
adding the feature maps, this module has certain advantages in network performance.
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Figure 4: Illustration of dual branch feature fusion module

3.4 Feature Extraction and Fusion Module
In our network design, the context branch captures high-level semantic information, while the detail

branch focuses on fine object boundaries. Initially, these branches operated independently, with information
exchanged only at the final fusion stage [29]. However, research shows that timely interaction between
the branches can refine the feature maps and improve overall performance [34]. To enhance this synergy,
we introduce the Feature Extraction and Fusion Module (FEFM), which allows for dynamic information
exchange between the branches (Fig. 5).

Figure 5: Illustration of feature extraction and fusion module

The FEFM works by integrating the semantic features from the context branch into the detail branch,
enriching its feature maps. At the same time, it feeds back the object contour information from the detail
branch into the context branch to compensate for any information lost during downsampling. This process
helps both branches benefit from each other’s strengths, improving the accuracy of edge detection and
semantic understanding.

The theoretical basis behind this design is to ensure effective feature refinement by enabling information
flow between high-level semantic features and low-level spatial details. This interaction ensures that both
fine details and semantic context are preserved, leading to better segmentation results.

Additionally, we enhance the fusion process using an attention mechanism. By element-wise multiply-
ing the feature maps of both branches and applying the sigmoid function, we can approximate the probability
that each pixel belongs to a specific object. This attention mechanism refines the feature maps, improving
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their accuracy. The corrected detail map is then obtained by adjusting the detail branch output based on the
refined context branch features.

In summary, the FEFM improves the interaction between branches, enabling better feature refinement
and attention to relevant details, which leads to more accurate semantic segmentation.

3.5 Lightweight Pyramid Pooling Module
In PSPNet [36], the introduction of the Pyramid Pooling Module (PPM) aims to better capture features

at different scales. By employing multiple scale pooling layers to process feature maps, PPM addresses the
issue of information loss that may occur with traditional fixed-size pooling operations. This module effec-
tively captures features at various scales, thereby enhancing feature representation stability. By integrating
features from different scales, the model gains a more accurate understanding of the overall structure and
semantics of the input data. The proposal of the Deep Aggregation Pyramid Pooling Module (DAPPM) [34]
further enhances the capability of extracting contextual features, leading to superior performance. To
maintain real-time performance while utilizing the pyramid module, we have modified PPM by reducing the
number of connections and channels, thereby reducing computational burden. Additionally, we parallelized
the summation operation of intermediate feature maps to improve computational speed, as illustrated
in Fig. 6.

Figure 6: Illustration of lightweight pyramid pooling module

4 Experiment
In this section, we will demonstrate the training details of the model and validate the performance of

each module described in the paper. The performance evaluation of individual modules of the model will
be conducted on the Cityscapes dataset. Additionally, the model will undergo performance testing on the
Cityscapes, COCO-Stuff, and CamVid datasets.

4.1 Datasets
The Cityscapes dataset [38] is a renowned dataset in the field of semantic segmentation, focusing on

urban street scenes. It comprises 2975 pixel-level annotated images for training, 500 images for validation,
and 1525 images for testing, encompassing a total of 19 semantic classes. The original image resolution
is 2048 × 1024, which allows for better evaluation of network performance due to its higher resolution.
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However, employing such high resolutions for real-time semantic segmentation tasks poses a significant
challenge in terms of segmentation speed.

The COCO-Stuff dataset [39] offers a collection of complex images comprising 10,000 samples, each
densely annotated across 182 categories, encompassing 91 object classes and 91 stuff classes. It is worth noting
that there exist 11 classes devoid of any segment annotations. To ensure equitable comparisons, we adhere
to the segmentation protocol outlined in [32], which entails a split of 9000 samples for training and 1000
samples for testing purposes.

The CamVid dataset [40] consists of 701 road scene images, each with a resolution of 960 × 720 pixels
and densely annotated. It is divided into three subsets: 367 images for training, 101 images for validation, and
233 images for testing. The dataset includes 32 distinct classes, with 11 of these classes chosen for the training
and testing phases.

4.2 Parameter Details
During training, we employed a strategy of training from scratch, utilizing the stochastic gradient

descent algorithm (SGD) with a momentum of 0.9 to train our model. Due to certain differences between the
data sets, the weight decay coefficient of the training process set for the three data sets is also different. For
the Cityscapes and CamVid datasets, a weight decay coefficient of 0.0005 was set, while for the COCO-Stuff
dataset, it was set to 0.0001. Weight decay regularization was applied only to the parameters of convolutional
layers. The initial learning rate was set to 0.005, employing a “poly” learning strategy, where the real-time
learning rate was computed iteratively as the initial rate multiplied by (1 − Iter

Max Iter )
n , with n set to 0.9. The

number of iterations for the Cityscapes, CamVid, and COCO-Stuff datasets was set to 300, 200, and 360 K,
respectively. During training, data augmentation techniques such as random horizontal flipping, random
scaling, and random cropping were applied to images in the datasets. Additionally, the resolutions of images
in the datasets were adjusted to the required resolutions: 1024 × 1024 for Cityscapes, 960 × 720 for CamVid,
and 640 × 640 for COCO-Stuff. The specific parameter settings can be seen in Table 1.

Table 1: Detailed parameters used for training

Dataset Cityscapes COCO-Stuff CamVid
Batch size 16 8 16

Learning rate 0.005 0.005 0.005
Iteration number 300 K 200 K 360 K

Resolution 1024 × 1024 640 × 640 960 × 720
Optimizer SGD (stochastic gradient descent), momentum: 0.9

Weight decay 0.0005 0.0001 0.0001
Platform information Ubuntu20.04, pytorch 1.11.0, CUDA 11.3

CPU and GPU Intel(R) Core(TM) i5-13600KF, Nvidia GeForce RTX 4060Ti
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The accuracy of the network is evaluated using the Mean Intersection over Union (mIoU), which is
computed according to the following Eq. (4).

mIOU = 1
k

k
∑
i=0

TP
FN + FP + TP

(4)

The training was conducted on a system equipped with an NVIDIA GeForce GTX 4060Ti GPU,
utilizing the PyTorch 1.11 framework with CUDA 11.3 and cuDNN 8.0 environments. Network inference rate
calculations were performed on a system featuring an NVIDIA GeForce GTX 3090 GPU.

4.3 Ablation Study
This section presents ablation experiments conducted on the Cityscapes dataset, where models are

trained and evaluated to assess the efficacy of various modules within the network architecture.

4.3.1 Efficiency of Two-Branch Networks
The impact of dual-branch networks on improving the performance of semantic segmentation networks

was evaluated by comparing the training results of individual detail branches, individual context branches,
and the training results of using dual-branch networks. During the training process, the process of down-
sampling an image to 1/8 of its original resolution was kept unchanged. In single-branch training, only
the corresponding network branch was retained, and the Dual Branch Feature Fusion Module and Feature
Extraction and Fusion Module were removed. When training the dual-branch network, the feature fusion
modules were also removed to eliminate its impact on performance. Additionally, the pyramid pooling
module was not used in the three training processes. The results of mean intersection over union for
network inference on the Cityscapes dataset are shown in Table 2. When inferring with individually trained
detail and context branches, the mIOU values were only 61% and 64%, such training results are not ideal.
However, when both context and detail branches were employed simultaneously, the mIoU exceeded 70%,
demonstrating a significant improvement compared to single-branch approaches.

Table 2: Performance validation of the dual-branch network on the Cityscapes dataset

Detail Context mIOU (%)
✓ – 61.3
– ✓ 64.3
✓ ✓ 71.0

4.3.2 Efficiency of Dual-Residual Linkage, DBFFM and FEFM
The effectiveness of the Dual-Residual Linkage (DRL) structure, Dual Branch Feature Fusion Module

(DBFFM), and Feature Extraction and Fusion Module (FEFM) is validated in this section, as presented
in Table 3. In the table, “DRL” denotes dual-residual linkage. Contrasting the proposed dual-residual linkage
with the original basic residual blocks and bottleneck residual blocks, the utilization of dual-residual linkage
enhances the precision of semantic segmentation predictions, resulting in an approximately 1% increase in
mean intersection over union.
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Table 3: Performance validation of Dual-Residual Linkage, DBFFM and FEFM on the Cityscapes dataset. DRL refers
to Dual-Residual Linkage, None means there is no connection between detail branch and context branch, and Add
means simply adding elements together

DRL Modification Fusion mIOU (%)

None Add FEFM Add DBFFM
– ✓ – – ✓ – 68.92
– – ✓ – ✓ – 76.50
✓ – ✓ – ✓ – 78.35
✓ – – ✓ ✓ – 77.98
✓ ✓ – – – ✓ 74.84
✓ – ✓ – – ✓ 78.34
✓ – – ✓ – ✓ 78.41

The table employs the term “Modification” to denote the manner of feature interaction at different
resolution stages during the forward propagation of the dual-branch network. “Fusion” indicates the fusion
approach employed for integrating the detail feature maps and semantic feature maps at the end of the dual
branches. “None” signifies the absence of information exchange between the two branches, while “Add”
denotes direct addition as the method of feature interaction between them. When performing addition
operations, if there exist discrepancies in resolution or channel numbers between the feature maps, a
convolutional layer is utilized to adjust the channel numbers, bilinear interpolation is applied for image
upsampling, and convolution with a stride of 2 is employed for downsampling.

Contrasting scenarios where no information exchange occurs between the detail and context branches,
the introduction of Add operations or the utilization of the network modules proposed in this paper
both result in improved network performance, indicating that various forms of information interaction
between context branch and detail branch can enhance network accuracy. Specifically, incorporating feature
interaction between the two branches leads to an approximate 3% increase in mean intersection over union.
Moreover, compared to cases where lateral information exchange and feature fusion at the branch ends both
utilize Add operations, the simultaneous use of Feature Extraction and Fusion Module (FEFM) and Dual
Branch Feature Fusion Module (DBFFM) exhibits certain advantages in enhancing network performance.

4.3.3 Efficiency of Pyramid Pooling Module
The pyramid pooling module (PPM) addresses information loss from traditional pooling by capturing

contextual features at multiple scales. However, standard PPMs can add significant computational overhead,
which may affect real-time performance. To overcome this, we introduced a lightweight pyramid pooling
module (LPPM) that simplifies the structure while retaining the benefits of multi-scale context aggregation.
As shown in Table 4, our LPPM results in a noticeable improvement in performance, with the mean
intersection over union (mIoU) increasing by approximately 2%, while the computational delay only
increased by around 10 ms. This demonstrates that the lightweight pyramid pooling module effectively
enhances the network’s performance, improving segmentation accuracy without compromising its real-time
inference speed.
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Table 4: Functional verification of the feature pyramid module

PPM Params GFLOPs FPS mIoU (%)

None LPPM
✓ – 24.17 M 59.04 77.66 76.22
– ✓ 28.86 M 59.55 74.77 78.41

4.4 Comparison
Cityscapes. On the Cityscapes dataset, we conducted a comparison of inference accuracy and inference

speed across various models, including both real-time semantic segmentation networks and non-real-time
semantic segmentation networks. The results of this comparison are presented in Table 5. Additionally, Fig. 7
provides visualized segmentation results of our model on the Cityscapes dataset.

Table 5: The performance comparison of various models on the Cityscapes dataset. “_” indicates that the corresponding
result is not reported by the respective method

Model Resolution Params GFLOPs GPU FPS mIoU (%)
PSPNet [36] 1024 × 2048 65.7 M 1065.4 GTX 1080Ti 1 79.2

DeepLabV3 [17] 1024 × 2048 – – GTX 1080Ti 1 79.6
DF2-Seg1 [41] 1536 × 768 – – GTX 1080Ti 67.2 75.9
DF2-seg2 [41] 1536 × 768 – – GTX 1080Ti 56.3 76.9

BiSeNet(Res18) [29] 1536 × 768 49 M 55.3 GTX 1080Ti 65.5 74.8
BiSeNetV2 [30] 1024 × 512 – 118.5 GTX 1080Ti 47.3 75.8

SFNet [42] 1024 × 2048 12.87 M 247 GTX 1080Ti 18 78.9
MTAENet [28] 1024 × 2048 1.82 M 5.37 GTX 1080Ti – 71.03

RegSeg [43] 1024 × 2048 3.34 M 39.1 T4 37 78.3
CABiNet [44] 1024 × 2048 2.6 M 12.0 GTX 2080Ti 76.5 76.6

STDC1-Seg75 [31] 1536 × 768 – – RTX 3090 74.8 74.5
HyperSeg-M [45] 1024 × 512 10.1 M 8.4 RTX 3090 59.1 76.2
HyperSeg-S [45] 1536 × 768 10.2 M 17.0 RTX 3090 45.7 78.2

DDRNet-23-S [34] 1024 × 2048 5.7 M 36.3 RTX 3090 108.1 77.8
PIDNet [35] 1024 × 2048 36.9 M 275.8 RTX 3090 31.1 80.9

BCRNet (ours) 1024 × 2048 28.86 M 59.55 RTX 3090 74.5 78.4

In comparison with several state-of-the-art models on the Cityscapes dataset, the proposed BCRNet
demonstrates an excellent balance between performance and efficiency. Although PIDNet and DeepLabV3
achieve slightly higher mean Intersection over Union (mIoU) scores of 80.9% and 79.6%, respectively, BCR-
Net still performs competitively with an mIoU of 78.4%. More notably, BCRNet significantly outperforms
these models in terms of inference speed, achieving 74.5 FPS with only 28.86 M parameters and 59.55
GFLOPs. In contrast, PIDNet, with 36.9M parameters, operates at 31.1 FPS, while PSPNet, known for its high
accuracy, has over twice the number of parameters (65.7 M) and a much higher computational cost (1065.4
GFLOPs), resulting in a mere 1 FPS. The results on the RTX 3090 further validate the efficiency of BCRNet
on GPU, showing the optimal balance between computational load and real-time processing capabilities,
making it particularly suitable for applications requiring both precision and speed.
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Figure 7: The feature visualization results of various models on the Cityscapes dataset. From left to right, each column
displays the following: the original input image, the ground truth label, the segmentation result of BiSeNet, the
segmentation result of BiSeNetV2, and the segmentation result of our model

The visualization results in 7 reveal that, in a high-resolution dataset with a rich set of semantic
categories, our network achieves higher accuracy in segmenting large objects that occupy substantial
portions of the image. Compared to other dual-branch semantic segmentation networks, the proposed
model demonstrates superior performance in segmenting object boundaries and small targets, showing a
clear performance advantage. Experimental results indicate that the improvements to the residual structure
and the incorporation of inter-branch feature fusion in the dual-branch network positively contribute to
enhancing the model’s performance. performance.

COCO-Stuff. In Table 6, we present the performance of our network validated on the COCO-Stuff
dataset. During the inference stage, dataset images are padded to 640 × 640 without employing pre-
training or multi-scale training methods, which presents a unique challenge to our experiments. Despite
these constraints, our network achieves 29.86% mIoU at 116.9 FPS, as shown in Table 5. This performance
is competitive, especially when compared to other models like BiSeNetV2 (87.9 FPS, 25.2% mIoU) and
BiSeNetV2-L (42.5 FPS, 28.7% mIoU).

Table 6: Comparison with state-of-the-art on COCO-Stuff

Model Backbone FPS mIoU (%)
FCN [13] VGG16 5.9 22.7

DeepLab [15] VGG16 8.1 26.9
PSPNet [36] ResNet50 6.6 32.6
ICNet [46] PSPNet50 35.7 29.1

BiSeNetV2 [30] – 87.9 25.2

(Continued)
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Table 6 (continued)

Model Backbone FPS mIoU (%)
BiSeNetV2-L [30] – 42.5 28.7

BCRNet (ours) – 116.9 29.86

CamVid. The CamVid dataset, which consists of high-resolution video frames for semantic segmenta-
tion with fewer categories (11 categories), is tested under conditions that simulate practical real-time usage.
As shown in Table 6, our network achieves 60.38% mIoU at 118.78 FPS (Table 7). This result demonstrates
a significant improvement in FPS over models like TD2-PSP50 (12 FPS, 76% mIoU), but with some room
for improvement in handling lower-resolution images due to multiple downsampling processes applied in
the network.

Table 7: Comparison with state-of-the-art on CamVid

Model Backbone FPS mIoU (%)
TD2-PSP50 [47] PSPNet50 12 76

DenseDecoder [48] ResNeXt101 – 70.9
VideoGCRF [49] ResNet101 – 75.2

MSFNet [50] – 91.0 75.4
Enet [51] – 61.2 51.3

SwiftNet [52] ResNet18 – 72.58
RELAXNet [53] – 79 71.2
BCRNet(ours) – 118.78 60.38

4.5 Discussion
Based on the results from our comparison experiments, we observe that our real-time semantic

segmentation network performs exceptionally well on high-resolution image datasets, such as Cityscapes and
CamVid, achieving a high mean Intersection over Union (mIoU) and maintaining real-time inference speed.
This demonstrates the effectiveness of our dual-residual structure and inter-branch feature fusion module
in preserving critical features, which contributes to both high accuracy and fast processing. However, when
evaluated on datasets with lower original image resolutions, such as COCO-Stuff, although the lightweight
network is still able to achieve fast inference speeds, there is a noticeable drop in mIoU performance. We
attribute this decline to the loss of significant feature information during the initial downsampling process,
where the images are reduced to one-eighth of their original resolution before entering the dual-branch
network. This feature loss, particularly evident in low-resolution images, has a more pronounced negative
impact on segmentation accuracy compared to higher-resolution images. Consequently, the ability of the
network to effectively capture fine-grained details in low-resolution images is compromised, which limits its
overall performance on such datasets.

These findings suggest that while our network performs robustly on high-resolution datasets with
simpler label categories, it still faces challenges when handling datasets with many categories and lower
resolution. To address this issue, we plan to optimize the downsampling process in future work, aiming to
reduce the loss of critical feature map information. One potential improvement could involve incorporating
advanced techniques such as adaptive downsampling or learnable downsampling filters that dynamically



512 Comput Mater Contin. 2025;83(1)

adjust the resolution reduction based on the complexity of the input image. Additionally, exploring the
use of multi-scale feature aggregation could allow the network to better capture information from different
levels of detail, which may mitigate the effects of downsampling and help retain important semantic features.
By improving these aspects, we anticipate enhancing the network’s performance on low-resolution images,
thereby improving the overall balance between inference speed and segmentation accuracy, particularly for
datasets with a larger number of categories and lower image resolutions.

This approach would not only improve segmentation accuracy on challenging datasets like COCO-Stuff
but also enhance the generalizability of our network across a broader range of real-world scenarios, where
images with varying resolutions and complexities are commonly encountered.

5 Conclusion
In this paper, we introduce a lightweight, real-time semantic segmentation network based on a

dual-branch architecture, which integrates novel dual-residual connections and feature fusion modules.
This network strikes an optimal balance between segmentation accuracy and inference speed, making it
particularly well-suited for real-time, high-precision semantic segmentation tasks, such as those in road
scene analysis. By maintaining superior inference accuracy while ensuring rapid processing times, the
network demonstrates its effectiveness through ablation experiments, thereby validating the performance
of the proposed dual-residual module. As a foundational component, this module can be widely adopted
in the design of other networks to enhance their capacity to preserve critical feature information during
downsampling operations.
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