
echT PressScience

Doi:10.32604/cmc.2025.060228

ARTICLE

SESDP: A Sentiment Analysis-Driven Approach for Enhancing Software
Product Security by Identifying Defects through Social Media Reviews

Farah Mohammad1,2,*, Saad Al-Ahmadi3 and Jalal Al-Muhtadi1,3

1Center of Excellence in Information Assurance (CoEIA), King Saud University, Riyadh, 11543, Saudi Arabia
2Department of Computer Science, and Technology, Arab East Colleges, Riyadh, 11583, Saudi Arabia
3College of Computer & Information Sciences, King Saud University, Riyadh, 11543, Saudi Arabia
*Corresponding Author: Farah Mohammad. Email: fnazar@ieee.org
Received: 27 October 2024; Accepted: 05 February 2025; Published: 26 March 2025

ABSTRACT: Software defect prediction is a critical component in maintaining software quality, enabling early
identification and resolution of issues that could lead to system failures and significant financial losses. With the
increasing reliance on user-generated content, social media reviews have emerged as a valuable source of real-time
feedback, offering insights into potential software defects that traditional testing methods may overlook. However,
existing models face challenges like handling imbalanced data, high computational complexity, and insufficient inte-
gration of contextual information from these reviews. To overcome these limitations, this paper introduces the SESDP
(Sentiment Analysis-Based Early Software Defect Prediction) model. SESDP employs a Transformer-Based Multi-Task
Learning approach using Robustly Optimized Bidirectional Encoder Representations from Transformers Approach
(RoBERTa) to simultaneously perform sentiment analysis and defect prediction. By integrating text embedding
extraction, sentiment score computation, and feature fusion, the model effectively captures both the contextual nuances
and sentiment expressed in user reviews. Experimental results show that SESDP achieves superior performance with
an accuracy of 96.37%, precision of 94.7%, and recall of 95.4%, particularly excelling in handling imbalanced datasets
compared to baseline models. This approach offers a scalable and efficient solution for early software defect detection,
enhancing proactive software quality assurance.

KEYWORDS: Software defect; data balancing; feature extraction; RoBERTa; transformer

1 Introduction
In the rapidly evolving landscape of software development, ensuring the quality and reliability of

software products is paramount. As software systems become increasingly complex, the identification and
resolution of defects at an early stage are critical to maintaining user satisfaction [1]. A bug is traditionally
known as a software defect, an imperfection in something that is normally part of or integrated into a
software product [2]. A bug is a problem that causes the system or one of its components to produce an
unintended or incorrect result. Software defects can be caused by a variety of sources, such as incorrect code,
misunderstandings of requirements, or even defects within the design and architecture of the system [3].
These defects can appear as crashes, inaccuracies in data processing, security vulnerabilities, or even usability
issues; all of these deeply affect the functionality and/or user experience of software [4].

We can broadly classify software defects into different types. When the software does not perform
any function as expected per the requirements laid down, it is termed a functional defect. Anything from

Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2025.060228
https://www.techscience.com/doi/10.32604/cmc.2025.060228
mailto:fnazar@ieee.org


1328 Comput Mater Contin. 2025;83(1)

functionality not working correctly to the software refusing to execute any task that it is supposed to execute
falls in this category [5]. Performance defects: The performance defects are Achilles’ heel, where the software
performs the required functionality, but that takes more time than acceptable or uses more resources than
acceptable, resulting in problems like slow response or high memory consumption. Usability defects: Those
have to do with the user interface and user experience. Where perhaps the software works just fine but
is hard for users to work with or those users perceive it as unintuitive. Compatibility defects deal with
when different hardware, operating systems, or browsers result in the software performing in an unwanted
manner [6]. A security defect is one where, if manipulated, it would lead to a security breach presenting one
with unauthorized access or data loss. Logical defects occur when there is an error in the logic of the software
such that it produces the wrong output though the input put into the system is correct and seemingly all
parts work correctly.

Software defects must be identified as early as possible for many reasons. Early detection and fixing of the
defects mean lower cost and effort according to the software development life cycle [7]. According to a study,
the cost of rectification of a defect during the final stages of testing or production increases exponentially
compared to its detection at the initial stages of development. As shown, for instance, a defect found during
the requirement phase may require only clarification or a minor change, but the same defect found after the
software has entered into production will most likely require some complicated patch or even a full redesign,
impacting all dependent systems and causing some downtimes [8]. In general, early detection of defects also
increases software quality and reliability, improving users’ satisfaction. Less defective software reaches the
end users may perform better and improves the expectations of users. It also reduces the risk of adverse
publicity. Early detection of defects becomes not just conducive but extremely essential in safety-critical
industries such as healthcare, finance, and aerospace for avoiding catastrophic failures.

Conventional methods include static code analysis, dynamic testing, and historical data modeling,
which have been conventionally applied in the identification of potential problems in software develop-
ment [9]. For instance, static code analysis tools like SonarQube and FindBugs check the source code for
possible defects without executing it; hence, they help to detect issues early during development. These
generally generate a lot of false positives and cannot comprehend the runtime context of the software;
hence, they usually fail in defect detection. On the other hand, dynamic testing involves the execution of
software and the observation of general behavior. Issues apparent in runtime may be noticed, but several
tested scenarios and inputs are limited, leaving untested paths where defects might go undetected [10]. Data
modeling traditionally relies on back-data about defects to drive predictions of future issues, which may not
work as well for codebases that are new or have changed over time dramatically. The patterns in many ways
do not hold. Aggregately, these traditional methods can be labor-intensive in the number of effort and man-
hours required and may not fully capture the complex, evolutionarily changing nature of modern software
systems, thus limiting their capability to predict and prevent all possible defects.

However, with the advancement of social media, people review their experiences good and bad on online
review sites and discussions, and this can be considered a gold mine of unstructured [11]. This paper proposes
a new approach to software defect prediction based on the sentiment analysis of social media reviews.
This research proposes a model focusing on user sentiments expressed in reviews to predict early signs of
software defects, which can enable developers to address problems before they grow. The approach integrates
advanced natural language processing techniques through a Transformer-Based Multi-Task Learning model
using Robustly Optimized Bidirectional Encoder Representations from Transformers Approach (RoBERTa),
which will conduct sentiment analysis and defect prediction all at once. The model picks up subtle opinions
by users and associates negative feelings with probable software issues.



Comput Mater Contin. 2025;83(1) 1329

Of all these, the importance of this work is the fact that it would be able to exploit real-time and user-
generated content on social media platforms to improve software quality. Such early monitoring and analysis
of reviews on social media allow the developers to understand emerging defects that traditional testing has
not yet perceived. The paper is going to describe in detail the methodology with features extraction and the
prediction phase and prove the efficiency of the model by experiments on real-world data. The results reflect
that sentiment analysis can act as one of the best alternatives for early defect prediction that will help to build
a robust and user-friendly software product.

1.1 Research Contribution
The key research contributions of SESDP (Sentiment Analysis-Based Early Software Defect Prediction)

are:

• The SESDP model introduces an innovative feature extraction process that utilizes RoBERTa for
generating contextual embeddings, which are further enhanced by incorporating sentiment scores. This
combined approach creates a richer and more informative feature vector that captures both the nuanced
meanings of user reviews and their associated sentiment, leading to more accurate defect predictions.

• SESDP leverages Transformer-Based Multi-Task Learning to simultaneously perform sentiment analysis
and defect prediction. By sharing a RoBERTa backbone and employing task-specific heads, the model
effectively uses sentiment information to improve the accuracy of defect prediction, demonstrating the
interdependence between user sentiment and software quality.

• The experimental results demonstrate the superiority of the SESDP model over traditional methods.
Through rigorous testing on real-world datasets, SESDP consistently outperforms baseline models
in both sentiment analysis and defect prediction tasks, validating the effectiveness of the proposed
approach and its practical applicability in early defect detection using social media reviews.

The remainder of this paper is structured as follows: Section 2 provides a review of existing techniques
for defect prediction. Section 3 details the methodology of the proposed approach. Section 4 presents the
experimental results and evaluations, while Section 5 concludes with a discussion and recommendations for
future research directions.

2 Literature Review
Software defect prediction is an essential aspect of software quality assurance, aiming to identify

and address defects before they escalate into significant issues. Various approaches have been proposed
to enhance defect prediction accuracy and efficiency, each with its strengths and limitations. The SESDP
model builds on these existing works, addressing key challenges and proposing innovative solutions.
Wu et al. [12] proposed a novel software defect prediction approach, based on mutual information and
correlation coefficient weighted class association rule mining (MCWCAR), which have made significant
strides in improving defect prediction accuracy. They proposed a method that addresses the limitations
of traditional association rule mining algorithms, particularly in handling the unbalanced distribution
of defect data. The MCWCAR model employs a cost-sensitive strategy, integrating feature selection and
itemset screening to enhance the prediction of defect-prone software. Despite the effectiveness demonstrated
through experiments on 27 open-source datasets, the reliance on weighted frequent itemset mining still
leaves room for improvement in handling complex, high-dimensional data.

Ali et al. [13] presented a software defect prediction model using an intelligent ensemble of multiple
classifiers for improved prediction. The authors claim that the two-stage prediction with Random Forest,
Support Vector Machine, Naïve Bayes, and Artificial Neural Network enhances the accuracy of the model



1330 Comput Mater Contin. 2025;83(1)

over conventional approaches. Indeed, their evaluation performed on several datasets from the NASA MDP
has shown a high improvement in prediction performance. However, the challenge in integrating diverse
classifiers and overfitting issues remain the challenges that may affect the generalization of the model in
various contexts. And finally, in the class imbalance of the defect datasets, Chen et al. [14] proposed the
dual ensemble software defect prediction concept. They discussed how a diverse ensemble, combined with
neural networks, can come up with improved defect prediction models. The Dual Ensemble Software Defect
Prediction (DE-SDP) model provides an alternative approach to the class imbalance problem and improves
predictive accuracy based on a two-level ensemble method. The dual ensemble, on the other hand, has
increased further computational complexity, and the performance of this approach may increase or decrease
regarding further dataset features.

To address the challenge arising with high-dimensional features from the software defect datasets,
Tang et al. [15] have proposed an approach known as learnable three-line hybrid feature fusion (LTHFFA).
The authors justify the fact that LTHFFA combines multiple dimensionality-reduction techniques, which
significantly enhances optimal feature selection in reducing redundancy. Experimental results across sev-
enteen datasets confirm the superior performance of the LTHFFA method compared to other methods for
dimensionality reduction. However, this may lead to high dependence on complex feature fusion processes,
hence limiting the applicability in real scenarios where computational efficiency is of the essence. Some have
argued for the utilization of Deep Q-learning network (DQN) in the realm of software defect prediction
because of its potential to minimize false positives and hence improve the reliability of the prediction. Ismail
et al. [16] stressed the importance of the reduction of false positives to prevent waste of resources on non-
existent defects. The DQN model presents impressive gains in prediction accuracy through dynamic reward
policies compared to baseline classifiers. While effective, this approach may require extensive computing and
careful tuning of the reward policy to achieve high performance on different data sets. The literature review
of existing studies has been shown in Table 1.

Table 1: Literature review of existing defect prediction model

Ref. Methodology Dataset Two major limitations
[17] Bidirectional Long Short-Term

Memory (Bi-LSTM) network
combined with oversampling

techniques (SMOTE)

PROMISE repository
datasets

• Imbalanced data
problem despite
oversampling efforts.

• Potential overfitting
due to reliance on
synthetic data
generated
by SMOTE.

[18] Five-stage framework with
ensemble learning

NASA datasets • High computational
complexity in feature
selection and
ensemble
learning stages.

(Continued)



Comput Mater Contin. 2025;83(1) 1331

Table 1 (continued)

Ref. Methodology Dataset Two major limitations
[19] Negative Correlation Learning

(NCL)-based cost-sensitive
ensemble learning approach

(NCL_CSEL)

NASA dataset and
AEEEM dataset

• Overhead in
managing class
imbalance and
overlap
simultaneously may
complicate model
interpretation
and scalability.

[20] Effort-Aware Zeta (EA-Z) ranking
score calculation strategy

72 datasets • Limited applicability
outside of specific
ranking-based defect
prediction contexts.

[21] Deep Q-learning Network (DQN)
for feature extraction

NASA and PROMISE
repository

• High dimensionality
of data even after
feature extraction
can lead to computa-
tional inefficiency.

[22] Improved Multi-Disciplinary
Autoencoder Classification
(IMDAC) model combining

Information Maximizing
Generative Adversarial Network
(InfoGAN), Mean Squared Error
Autoencoder (MSEA), Denoising

Autoencoder (DAE), and
Convolutional Neural Network

(CNN)

15 software projects • Dependence on
multiple deep
learning techniques
increases model
complexity and
training time.

Therefore, a critical review of the available software defect prediction methods reveals some serious
limitations linked to overcoming imbalanced data by the Bi-LSTM network, high computational complexity
Ensemble learning frameworks, the applicability of methods such as cost-sensitive learning based on NCL,
and ranking strategies with EA-Z, given that careful tuning and context dependencies are required. Most of
the deep learning methods usually suffer from the main disadvantages of high-dimensional data and model
complexity that reduce the practicality and efficiency of the approach. Search-based SDEP model, on the
other hand, overcame these limitations, while a Transformer-based Multitask Learning with RoBERTa was
able to conduct the tasks of sentiment analysis and defect prediction simultaneously. This approach helps in
not only improving accuracy over imbalanced datasets but also generalizability and efficiency that make for
a strong, scalable early software defect detection solution, outperforming traditional methods.



1332 Comput Mater Contin. 2025;83(1)

3 Methodology
This section elaborates in detail on the basic methodology of the SESDP model represented in Fig. 1.

The whole process starts with data collection, followed by an intensive preprocessing step that involves text
cleaning, tokenization, and label encoding of the text data. Later comes feature extraction, where RoBERTa
is used for text embedding and computation and fusing of sentiment scores for a better feature set. Then the
final sentiment analysis and defect forecasting are done using Transformer-Based Multi-Task Learning. Each
of the steps has been described in detail in the following subsections.

Figure 1: Proposed SESDP model



Comput Mater Contin. 2025;83(1) 1333

3.1 Data Collection
Three different datasets, represented in Fig. 2, are used for the evaluation of SESDP. The very first data

set abbreviated as Software Bug Dataset I (SB-DSI) obtained from Socialist-DataSet-Issues. This dataset is
the result of issues and pull request data collected from more than 30,000 repositories that cover over 1.5
million issues and pull requests. This dataset represents a wide range of activities happening in software
projects, like bug reports, feature requests, and development discussions. Each issue has key fields such
as title, description, labels, and state (open/closed), which provide rich context, averaging 50 comments
per issue in how developers coordinate on the resolution of software defects. This dataset is particularly
valuable for an analysis of the dynamics of issue-tracking and resolution processes in open-source software
projects. The Bugzilla dataset of Mozilla contains over 1 million detailed bug reports, along with comments
and attached metadata. A number of bug management attributes have been tracked in the dataset or bug
repository, which includes bug ID, summary, product, component, severity, and resolution, among many
others. On average, every bug report has 3 comments attached. Critical bugs take just about 30 days to resolve,
while low-priority bugs take up to 90 days. This dataset is important in understanding the lifecycle of software
defects and the effectiveness of resolution strategies in large software projects.

Figure 2: Dataset statistic

The Software Bug Dataset III (SB-DSIII) JIRA Issue Tracking Data involves over 8000 issue reports of
various natures from different software development projects, ranging from bug forms and feature requests to
improvement suggestions. Each issue is documented with an issue ID, project key, issue type, status, priority,
description, and resolution. The dataset contains more than 10,000 issues, with an average resolution time of
15 days for critical bugs and as high as 60 days for non-critical ones. It is a dataset that will provide Program
valuable insights into defect management processes within software development teams and help study and
improve software quality assurance practices.

This research applied class weighting to the loss function during training to handle the class imbalance
present in the datasets. This technique assigns higher weights to the minority classes, ensuring that the model
gives appropriate attention to underrepresented instances. By incorporating class weighting, the SESDP



1334 Comput Mater Contin. 2025;83(1)

model mitigates the risk of bias toward the majority class, resulting in more accurate predictions, particularly
in defect forecasting where defects are less frequent.

3.2 Preprocessing
Algorithm 1 illustrates some of the preprocessing steps involved in preparing textual data to make them

ready for analysis and model training. Major steps involve cleaning the text, tokenization, and encoding
labels. It begins with the removal of noise from the raw text data during the cleaning of the text. This includes
eliminating special characters (e.g., @, #, &), URLs, and other non-alphanumeric content that does not
contribute to the meaning of the text [23]. Additionally, stop words—common words like “and,” “the,” and
“is” are removed because they generally do not carry significant information for the model. The cleaned text
can be represented mathematically as:

Cl eanedText = RemoveNoise (T) − (SpecialChars +URLs + StopWords)

where T represents the original text data, and RemoveNoise is the function applied to eliminate irrele-
vant content.

Algorithm 1: Preprocessing phase: text cleaning, tokenization, and label encoding
1 Input: Raw Text Data T , Sentiment Labels Ls , Defect Labels Ld
2 Output: Processed Tokens, Encoded Labels Es , Ed
3 for each text sample ti in T do
4 ti RemoveNoise (ti) {Remove special characters, URLs, stop words}
5 tokensi ←Tokenize (ti) {Tokenize the cleaned text}
6 if Ls[i] is not encoded then
7 Es[i] LabelEncode (Es[i]) {Encode sentiment label}
8 end if
9 If Ld[i] is not encoded then
10 Ed[i] ←LabelEncode (Ld[i]){Encode defect label}
11 end if
12 end for
13 return Processed Tokens, Encoded Labels Es , Ed

The next step, after cleaning, will involve tokenization. Tokenization-in respect to the model’s require-
ments means breaking down the cleaned text into words, subwords, or even characters [24]. This is an
important step in preprocessing the text into a type of input that the transformer will understand, where
every token will be processed separately. The tokenization process can be mathematically expressed as:

Tokens = Tokenize(Cl eanedText) (1)

where Tokenize is the function that segments the text into a sequence of tokens. Finally, label encoding is
applied to convert categorical labels into numerical form, making them compatible with machine learning
algorithms. In this context, sentiment labels (e.g., Positive, Negative, Neutral) and defect labels (e.g., Defect,
No Defect) are encoded into numerical values. For example, a binary defect label could be encoded as 111 for
“Defect” and 000 for “No Defect.” The label encoding can be represented as:

EncodedLabel s = LabelEncode(Sentiment Label s, De f ect Label s) (2)



Comput Mater Contin. 2025;83(1) 1335

where LabelEncode maps the categorical labels to their corresponding numerical values. This phase
transforms raw text data into a structured format suitable for model training. By systematically cleaning the
text, tokenizing it into meaningful units, and encoding categorical labels into numerical values, this process
ensures that the data is in an optimal state for further analysis and prediction tasks.

For long text inputs, truncation is performed to limit the sequence length to the maximum token
limit supported by the transformer model while retaining critical information, typically focusing on the
beginning or most relevant parts of the text. Alternatively, segmentation is applied, dividing lengthy texts
into smaller, manageable chunks to preserve contextual information, with overlapping windows where
necessary to maintain coherence between segments. To address class imbalances, oversampling techniques
like SMOTE (Synthetic Minority Oversampling Technique) or undersampling of the majority class are
employed, depending on the dataset’s characteristics. Additionally, weight loss functions are utilized during
model training to mitigate the impact of skewed class distributions, ensuring that minority class predictions
are not overshadowed by the majority class. These strategies collectively enhance the quality and fairness of
the training dataset, contributing to more accurate and reliable model predictions.

3.3 Feature Extraction
Feature extraction is one of the crucial phases in which raw text data is transformed into meaningful

representations that the SESDP model would use for prediction. The process utilizes RoBERTa—a robustly
optimized BERT pre-training approach for capturing both the contextual and sentiment-based features from
text. RoBERTa is an optimized approach of BERT that seeks pre-training and fine-tuning approaches more
effectively [25]. It removes Next Sentence Prediction from BERT, while it depends on dynamic masking
in training and much larger mini-batch sizes and learning rates. This makes RoBERTa more effective at
capturing the nuances of language in various contexts. The first step in the feature extraction process is to
generate text embeddings using RoBERTa. These embeddings are dense vectors that represent the contextual
meaning of the text, capturing subtle nuances and relationships between words [26]. Given an input text
sequence T = [t1 , t2, . . . , tn], where ti represents the tokens of the text, RoBERTa generates a sequence of
embeddings ET = [e1 , e2, . . . , en] for each token. The embedding for the entire text sequence is often obtained
by using the embedding of the special classification token e[CLS], which can be represented as:

e[CLS] = RoBERTa(T) (3)

Here, e[CLS] is a fixed-size vector that encapsulates the contextual meaning of the entire text sequence T.
Once the text embeddings are obtained, the next step is to compute sentiment scores. A fine-tuned RoBERTa
model, specifically trained for sentiment analysis, is used to extract sentiment information from the text. The
sentiment score S for the text sequence T is calculated as:

S = σ (Ws ⋅ e[CLS] + bs) (4)

where Ws and bs are the weights and bias parameters learned during fine-tuning for sentiment classification.
σ is the softmax function, which converts the logits into a probability distribution over sentiment classes
(e.g., Positive, Negative, Neutral).

The final step in the feature extraction process is to combine the text embeddings and sentiment scores
into a single, comprehensive feature vector for each review. This fusion step ensures that both the contextual
meaning and the sentiment information are considered by the model during prediction. The combined
feature vector F is obtained by concatenating the text embedding e[CLS] and the sentiment score S:

F = Concat(e[CLS] , S) (5)



1336 Comput Mater Contin. 2025;83(1)

where F is the final feature vector representing the review. Concat denotes the concatenation operation.
This fused feature vector F is then used as input to the final prediction model, where it serves as a rich
representation that captures both the content and sentiment of the review, enabling more accurate defect
prediction. Table 2 shows the output of the proposed feature extraction process of SESDP.

Table 2: RoBERTA based feature extraction

Review Tokenized text Classification
([CLS])

embedding

Sentiment scores Final feature
vector

“The app crashes
every time I open

it.”

[“The”, “app”,
“crashes”, “every”,
“time”, “I”, “open”,

“it”, “.”]

[0.12, 0.34, −0.56,
..., 0.87]

[0.05,0.92,0.03]
[Negative]

[0.12, 0.34, −0.56,
..., 0.87, 0.05, 0.92,

0.03]

“Great
functionality, but it

freezes
occasionally.”

[“Great”,
“functionality”, “,”,

“but”, “it”, “freezes”,
“occasionally”, “.”]

[−0.45, 0.22, 0.76,
..., −0.34]

[0.70,0.20,0.10]
[Positive]

[−0.45, 0.22, 0.76,
..., −0.34, 0.70,

0.20, 0.10]

“Poor performance
after the latest

update.”

[“Poor”,
“performance”,

“after”, “the”,
“latest”, “update”,

“.”]

[0.09, −0.31, 0.68,
..., 0.12]

[0.10,0.80,0.10]
[Negative]

[0.09, −0.31, 0.68,
..., 0.12, 0.10, 0.80,

0.10]

3.4 Sentiment Analysis and Defect Prediction
The final phase of the SESDP model has been presented in Algorithm 2, which allows the simultaneous

optimization of multiple analysis-related tasks such as sentiment analysis and defect prediction. By sharing a
common transformer backbone (RoBERTa), the model can leverage the contextual knowledge gained from
one task to enhance the performance of the other [27]. This is particularly useful when the tasks are related, as
is the case with sentiment and defect prediction, where sentiment information can provide valuable context
for identifying software defects. The shared backbone processes the input text sequence T and generates
contextual embeddings. The [CLS] token embedding e[CLS] is the primary output, summarizing the entire
text sequence:

e[CLS] = RoBERTa(T) (6)

where, T = [t1 , t2, . . . , tn] is the tokenized text sequence and e[CLS] is the output embedding corresponding
to the [CLS]. The RoBERTa model itself is composed of multiple layers of transformers, each with its own
self-attention and feed-forward networks. The embedding e[CLS] is obtained after passing the input sequence
through all these layers:

e[CLS] = Trans f ormerLayers(T) (7)

where Trans f ormerLayers represents the sequence of transformer layers in RoBERTa. In the task-specific
head, the sentiment analysis head applies a fully connected layer to the [CLS] embedding to produce logits



Comput Mater Contin. 2025;83(1) 1337

for sentiment classification. The logits zs are then converted into probabilities S using the softmax function:

zs =Ws ⋅ e[CLS] + bs (8)

S = σ (zs) =
exp(zi

s)
∑k

j=1(zi
s)

(9)

where Ws is the weight matrix for the sentiment analysis head, bs is the bias term, zs is the logits vector
for sentiment classes. S = [s1 , s2, . . . , sk] represents the probabilities for each sentiment class, where k is the
number of sentiment classes and σ is the softmax function.

Algorithm 2: Final sentiment analysis and defect prediction using transformer-based multi-task learning
1 Input: Tokenized Text Data T = {t1 , t2, . . . , tn}
2 Output: Sentiment Predictions S, Defect Predictions D
3 for each tokenized text sequence Ti in T do
4 e[CLS]ROBERTa (Ti) {Extract [CLS] embedding using shared trans-former backbone}
5 Zs←Ws .e[CLS] + bs {Compute sentiment logits}
6 Si←σ(zs). {Compute sentiment probabilities using softmax}
7 Zd←Wd .e[CLS] + bd{Compute defect logits}
8 Di ← σ(zd) {Compute defect probabilities using softmax or sigmoid}
9 if Si and Di are valid predictions then
10 Store Si ; in S {Store sentiment prediction}
11 Store Di in D {Store defect prediction}
12 end if
13 end for
14 return S , D {Return the final sentiment and defect predictions}

Similarly, the defect prediction head uses the [CLS] embedding to generate logits for defect prediction.
These logits zd are converted into probabilities D using a softmax or sigmoid function, depending on the
nature of the classification task:

zd =Wd ⋅ e[CLS] + bd (10)

S = σ (zs) =
exp(zi

s)
∑k

j=1(z
j
s)

(11)

The overall loss L in multi-task learning is a weighted sum of the individual losses for sentiment analysis
Lsentiment and defect prediction Ld e f ec t . The loss for each task is typically computed using cross-entropy:

Lsentiment = −∑
k
i=1 yi

s log(Si) (12)

Ld e f ec t = −∑
k
i=1 yi

d log(Di) (13)

where yi
s and yi

d are the ground truth labels for sentiment and defect prediction, respectively. Si and Di are
the predicted probabilities for each class in sentiment and defect prediction. The combined multi-task loss
is then:

L = α ⋅ Lsentiment + β ⋅ Ld e f ec t (14)



1338 Comput Mater Contin. 2025;83(1)

where α and β are hyperparameters that control the contribution of each task to the overall loss. During
inference, given an input text sequence Test-Time Training (TTT), the model produces both sentiment clas-
sification and defect prediction simultaneously. The shared RoBERTa backbone ensures that the contextual
information extracted from the text is leveraged in both tasks, enhancing the accuracy of the predictions.

3.5 Model Deployment
In the deployment phase of the SESDP model, the focus is on transitioning the trained model

from the development environment to a production environment, where it can be utilized to make
real-time predictions on new data. The process begins with exporting the trained model into a for-
mat suitable for deployment in the ONNX (Open Neural Network Exchange) format. The developed
PyTorch, the ONNX format, offers a similar capability, allowing the model to be exported with
“torch.onnx .ex port(model , SESDP_input, “model .onnx′′), where the ONNX file can be deployed in
various environments.

Once the model is exported, the next step involves developing an API (Application Program-
ming Interface) to serve the model, enabling real-time predictions on new social media reviews. A
common approach is to use Flask, a lightweight web framework in Python, to build the API. The
API acts as an intermediary, receiving input data, such as new text data, processing it, and return-
ing predictions. For instance, the API might use a Flask application where the model is loaded using
t f .keras.models.load_model(′path/to/saved_model ′). When a Power-On Self Test (POST) request with
new text data is received, the text is preprocessed, fed into the model, and the predictions are returned in
JSON format. The API’s prediction pipeline typically involves several steps: receiving input, preprocessing
the text (such as tokenization and embedding), running the preprocessed input through the model to
generate predictions, and returning these predictions to the client. This setup allows for real-time analysis
and prediction of sentiment and potential defects in software based on user reviews.

The final step in the deployment process is to integrate the API into a larger system that monitors
software quality. This system could include components like a data collection module that scrapes social
media platforms for new reviews, an API endpoint that processes these reviews, and a monitoring dashboard
that displays real-time analytics on software quality. Additionally, the system might feature an alert system
that automatically notifies developers when a high likelihood of defects is predicted, allowing for early
intervention. Mathematically, this process can be described as follows: for a new social media review Tnew ,
the system first preprocesses the review to generate a contextual embedding enew

[CLS] using RoBERTa. The
sentiment score Snew and defect prediction Dnew are then computed using the task-specific heads of the
model:

Snew = σ(Ws ⋅ enew
[CLS] + bs) (15)

Dnew = σ(Wd ⋅ enew
[CLS] + bd) (16)

where Ws and Wd are the weights, bs and bd are the biases, and σ is the sigmoid function. If the defect
likelihood Dnew exceeds a certain threshold τ, the system flags the review as a potential defect, signaling the
need for developer attention.

Fl age = {1, i f Dnew > τ
0, otherwise (17)

This deployment process ensures that the SESDP model is not only ready for real-time application
but also seamlessly integrated into a broader software quality monitoring framework. By automating the



Comput Mater Contin. 2025;83(1) 1339

prediction and alerting processes, organizations can effectively monitor and mitigate software defects as they
arise, enhancing the overall user experience and software reliability.

4 Experimental Results and Evaluation
This section provides an overview of the experiments conducted and their results. It covers the dataset

employed, the performance metrics used, and the baseline approaches considered and offers a detailed
presentation of the outcomes.

4.1 Results
The performance of the proposed models, SB-DSSI, SB-DSSII, and SB-DSSIII, was evaluated using three

key metrics: accuracy, precision, and recall as shown in Fig. 3. The results show that SB-DSSII outperforms
the other models across all metrics, achieving the highest accuracy at 97.34%, precision at 95.98%, and
recall at 96.56%. These results indicate that SB-DSSII is the most reliable model, with superior classification
abilities. SB-DSSIII also performs well, with an accuracy of 96.12%, precision of 95.01%, and recall of 95.67%,
making it a strong alternative. Meanwhile, SB-DSSI, while slightly lower, still exhibits solid performance with
an accuracy of 95.66%, precision of 93.12%, and recall of 94.97%. Overall, these results highlight that SB-
DSSII addresses the challenges of defect prediction more effectively, particularly by improving precision and
recall, which suggests it is better at reducing false positives and false negatives. SB-DSSIII, although not the
top performer, provides competitive results and offers a balanced trade-off across all metrics. These findings
validate the effectiveness of the proposed models in utilizing sentiment-based analysis for software defect
prediction, with SB-DSSII emerging as the most optimal solution.

Figure 3: Experimental results on SB-DSSI, SB-DSSII and SB-DSSIII

In another experiment, confusion matrices were employed to evaluate the effectiveness of the proposed
approach in distinguishing between predicated and not non-predicated instances, as illustrated in Fig. 4. The
model demonstrated a notable average accuracy of 96.12% across all datasets, indicating a high true positive
rate while maintaining a low false positive rate across various classification thresholds.

The Receiver Operating Characteristic (ROC) curves of Fig. 5 also validate the effectiveness of the
proposed SESDP model. For SB-DSSI, the ROC curve shows an area under the curve (AUC) of 0.88, with



1340 Comput Mater Contin. 2025;83(1)

macro-average and micro-average ROC values close to 0.92, indicating strong model performance. In SB-
DSSII and SB-DSSIII, the AUC values improve to 0.94 and 0.92, respectively, reflecting the model’s consistent
ability to discriminate between classes. The ROC curves confirm that the proposed model not only achieves
high accuracy but also maintains a reliable balance between sensitivity and specificity, making it highly
suitable for practical applications in software defect prediction.

Figure 4: Confusion matrix of SB-DSSI, SB-DSSII and SB-DSSIII



Comput Mater Contin. 2025;83(1) 1341

Figure 5: ROC curve of SB-DSSI, SB-DSSII and SB-DSSIII

The proposed Sentiment Analysis-Based Early Software Defect Prediction (SESDP) model is also com-
pared with the baseline models as shown in Fig. 6. The SESDP model, which integrates a Transformer-Based
Multi-Task Learning approach using RoBERTa for defect prediction and sentiment analysis, outperforms
the baselines across all key metrics. The comparative performance results indicate that the proposed SESDP
model achieves superior accuracy, precision, and recall. Specifically, the SESDP model attains an accuracy
of 96.37%, a precision of 94.7%, and a recall of 95.4%, which represent substantial improvements over the
baseline models. Zhang et al.’s model, for instance, achieves an accuracy of 89.23%, precision of 87.28%, and



1342 Comput Mater Contin. 2025;83(1)

recall of 89.21%. Similarly, Draz et al.’s model shows only marginal gains with an accuracy of 90.15% and
lower recall at 87.2%. Even Balasubramaniam et al.’s optimized CNN model, which improves on traditional
models with an accuracy of 93.49%, is outperformed by the SESDP model.

Figure 6: Comparison with baseline approaches in terms of Accuracy, Precision, and Recall [28,29,30]

The higher precision and recall of the proposed SESDP model indicate that it is more effective in
identifying true positives and reducing false positives and false negatives. This suggests that the integration
of sentiment analysis, which captures contextual information from user reviews, provides a significant
advantage over traditional approaches that rely solely on statistical or machine learning techniques. In
contrast to the baseline models, the SESDP model’s ability to process and analyze sentiment scores alongside
defect prediction ensures that the nuances of user-generated content are leveraged to enhance prediction
accuracy. This results in more reliable defect predictions, even in cases where data is imbalanced or complex,
challenges that often undermine the performance of baseline models.

The log loss comparison of the proposed SESDP model with the baseline models (Zheng et al. [28],
Draz et al. [29], Balasubramaniam et al. [30]) across three datasets—SB-DSSI, SB-DSSII, and SB-DSSIII—
demonstrates the superior performance of the SESDP model as shown in Table 3. In the SB-DSSI dataset, the
SESDP model achieved the lowest log loss at 0.325, outperforming Zhang et al. (0.340), Draz et al. (0.530), and
Balasubramaniam et al. (0.380). This result indicates that SESDP is more accurate and makes less uncertain
predictions compared to the baselines. Similarly, in the SB-DSSII dataset, SESDP recorded a log loss of 0.335,
once again surpassing Zhang et al. (0.350), Draz et al. (0.540), and Balasubramaniam et al. (0.405). The trend
continues in the SB-DSSIII dataset, where the SESDP model achieved a log loss of 0.330, while Zhang et al.,
Draz et al., and Balasubramaniam et al. recorded 0.355, 0.515, and 0.398, respectively.

This comparative analysis highlights the effectiveness of SESDP in providing more accurate and reliable
predictions with reduced uncertainty. The higher log loss values of Draz et al.’s model across all datasets
suggest that it struggles with confident predictions, while Zhang et al.’s model, although better than He et al.’s,
still lags behind SESDP. Balasubramaniam et al.’s model shows reasonable performance but is consistently
outperformed by SESDP, particularly in the SB-DSSII dataset, where SESDP achieves a significantly lower
log loss.



Comput Mater Contin. 2025;83(1) 1343

Table 3: Log loss comparison of proposed model with baselines

Dataset Zheng et al. [28] Draz et al. [29] Balasubramaniam et al. [30] SESDP (Proposed model)
SB-DSSI 0.340 0.530 0.380 0.325
SB-DSSII 0.350 0.540 0.405 0.335
SB-DSSIII 0.355 0.515 0.398 0.330

An important aspect of validating the SESDP model’s effectiveness is understanding the contribution
of its various components. To achieve this, an ablation study was conducted by progressively removing or
modifying core elements of the model architecture. The goal of this analysis was to evaluate the significance
of each component by examining its impact on the overall model performance. By disabling specific features
and comparing the results with the fully integrated SESDP model, we can determine which components
are essential for maximizing accuracy, precision, and recall in defect prediction tasks. Each of these
configurations was evaluated using standard performance metrics: accuracy, precision, and recall. The results
are presented in Table 4.

Table 4: Ablation study

Configurations Accuracy (%) Precision (%) Recall (%)
Full SESDP model 96.37 94.7 95.4

With BERT 94.85 93.2 92.8
Without softmax 91.68 90.4 89.6

Without text embeddings 89.54 88.2 87.3

The ablation study reveals that the text embedding extraction using RoBERTa is the most important
component of the SESDP model, as its removal results in the largest performance drop, reducing accuracy to
89.54%. This underscores the importance of capturing contextual information from user reviews for accurate
software defect prediction. The softmax function also plays a significant role, with its exclusion leading
to a notable decrease in accuracy to 91.68%, showing its importance in generating reliable classification
probabilities. Additionally, the comparison between RoBERTa and BERT demonstrates that while BERT
is effective, RoBERTa provides superior performance, likely due to its enhanced handling of language
features and fine-tuning. Overall, the study highlights that each component contributes to the model’s overall
accuracy, and the full integration of all elements delivers the best results.

5 Conclusion and Future Work
The SESDP model presents significant advancement in the field of software defect prediction by

leveraging sentiment analysis of social media reviews. Through the integration of Transformer-Based Multi-
Task Learning with RoBERTa, SESDP effectively addresses the limitations of existing models, such as
handling imbalanced datasets and capturing the contextual nuances of user feedback. The experimental
results demonstrate that SESDP outperforms traditional methods in terms of accuracy, precision, and
recall, validating its effectiveness in early defect detection. By utilizing real-time user-generated content,
SESDP provides a proactive approach to maintaining software quality, ultimately reducing the cost and
time associated with identifying and fixing defects. Future research directions for SESDP could involve
exploring the integration of additional data sources, such as bug-tracking systems and developer comments,



1344 Comput Mater Contin. 2025;83(1)

to further enhance the model’s predictive capabilities. Additionally, investigating the application of SESDP in
different domains and software types could provide insights into its generalizability and adaptability. Further
refinement of the model’s architecture, particularly in optimizing the balance between sentiment analysis and
defect prediction tasks, could also lead to even greater improvements in prediction accuracy and efficiency.
Finally, implementing advanced techniques for real-time data processing and incorporating user feedback
loops could make SESDP more responsive and dynamic in rapidly changing software environments.

Acknowledgement: This research was supported by a grant from the Center of Excellence in Information Assurance
(CoEIA), King Saud University (KSU).

Funding Statement: This research work is funded by a grant from the Center of Excellence in Information Assurance
(CoEIA), King Saud University (KSU).

Author Contributions: The authors confirm their contribution to the paper as follows: study conception and design:
Farah Mohammad; data collection: Saad Al-Ahmadi; analysis and interpretation of results: Jalal Al-Muhtadi. All authors
reviewed the results and approved the final version of the manuscript.

Availability of Data and Materials: All data generated or analyzed during this study are included in this published
article.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

References
1. Qiao L, Li X, Umer Q, Guo P. Deep learning based software defect prediction. Neurocomputing.

2020;385(2):100–10. doi:10.1016/j.neucom.2019.11.067.
2. Muhammad ZZ, Sapiah S, Asmak INH. Application of deep learning in software defect prediction: systematic

literature review and meta-analysis. Inf Softw Technol. 2023;158:107175. doi:10.1016/j.infsof.2023.107175.
3. Feng S, Keung J, Yu X, Xiao Y, Bennin KE, Kabir MA, et al. COSTE: complexity-based OverSampling TEchnique to

alleviate the class imbalance problem in software defect prediction. Inf Softw Technol. 2021;129(1):106432. doi:10.
1016/j.infsof.2020.106432.

4. Feng S, Keung J, Yu X, Xiao Y, Zhang M. Investigation on the stability of SMOTE-based oversampling techniques
in software defect prediction. Inf Softw Technol. 2021;139(06):106662. doi:10.1016/j.infsof.2021.106662.

5. Gong L, Zhang H, Zhang J, Wei M, Huang Z. A comprehensive investigation of the impact of class overlap on
software defect prediction. IEEE Trans Softw Eng. 2023;49(4):2440–58. doi:10.1109/TSE.2022.3220740.

6. Jin C. Cross-project software defect prediction based on domain adaptation learning and optimization. Expert Syst
Appl. 2021;171(1):114637. doi:10.1016/j.eswa.2021.114637.

7. Zhao Y, Damevski K, Chen H. A systematic survey of just-in-time software defect prediction. ACM Comput Surv.
2023;55(10):1–35. doi:10.1145/3567550.

8. Sharma T, Jatain A, Bhaskar S, Pabreja K. Ensemble machine learning paradigms in software defect prediction.
Procedia Comput Sci. 2023;218(5):199–209. doi:10.1016/j.procs.2023.01.002.

9. Giray G, Bennin KE, Köksal Ö, Babur Ö, Tekinerdogan B. On the use of deep learning in software defect prediction.
J Syst Softw. 2023;195(11):111537. doi:10.1016/j.jss.2022.111537.

10. Khalid A, Badshah G, Ayub N, Shiraz M, Ghouse M. Software defect prediction analysis using machine learning
techniques. Sustainability. 2023;15(6):5517. doi:10.3390/su15065517.

11. Rizwan Rashid Rana M, Ur Rehman S, Nawaz A, Ali T, Imran A, Alzahrani A, et al. Aspect-based sentiment analysis
for social multimedia: a hybrid computational framework. Comput Syst Sci Eng. 2023;46(2):2415–28. doi:10.32604/
csse.2023.035149.

https://doi.org/10.1016/j.neucom.2019.11.067
https://doi.org/10.1016/j.infsof.2023.107175
https://doi.org/10.1016/j.infsof.2020.106432
https://doi.org/10.1016/j.infsof.2020.106432
https://doi.org/10.1016/j.infsof.2021.106662
https://doi.org/10.1109/TSE.2022.3220740
https://doi.org/10.1016/j.eswa.2021.114637
https://doi.org/10.1145/3567550
https://doi.org/10.1016/j.procs.2023.01.002
https://doi.org/10.1016/j.jss.2022.111537
https://doi.org/10.3390/su15065517
https://doi.org/10.32604/csse.2023.035149
https://doi.org/10.32604/csse.2023.035149


Comput Mater Contin. 2025;83(1) 1345

12. Wu W, Wang S, Liu B, Shao Y, Xie W. A novel software defect prediction approach via weighted classification based
on association rule mining. Eng Appl Artif Intell. 2024;129(2):107622. doi:10.1016/j.engappai.2023.107622.

13. Ali M, Mazhar T, Arif Y, Al-Otaibi S, Ghadi YY, Shahzad T, et al. Software defect prediction using an intelligent
ensemble-based model. IEEE Access. 2024;12(2):20376–95. doi:10.1109/ACCESS.2024.3358201.

14. Chen J, Xu J, Cai S, Wang X, Chen H, Li Z. Software defect prediction approach based on a diversity ensemble
combined with neural network. IEEE Trans Reliab. 2024;73(3):1487–501. doi:10.1109/TR.2024.3356515.

15. Tang Y, Dai Q, Du Y, Chen L, Niu X. A software defect prediction method based on learnable three-line hybrid
feature fusion. Expert Syst Appl. 2024;239(A):122409. doi:10.1016/j.eswa.2023.122409.

16. Ismail AM, Hamid SHA, Sani AA, Daud NNM. Toward reduction in false positives just-in-time software defect
prediction using deep reinforcement learning. IEEE Access. 2024;12:47568–80. doi:10.1109/ACCESS.2024.3382991.

17. Khleel NAA, Nehéz K. Software defect prediction using a bidirectional LSTM network combined with oversam-
pling techniques. Clust Comput. 2024;27(3):3615–38. doi:10.1007/s10586-023-04170-z.

18. Ali M, Mazhar T, Al-Rasheed A, Shahzad T, Yasin Ghadi Y, Khan MA. Enhancing software defect prediction: a
framework with improved feature selection and ensemble machine learning. PeerJ Comput Sci. 2024;10(17):e1860.
doi:10.7717/peerj-cs.1860.

19. Li L, Su R, Zhao X. Neighbor cleaning learning based cost-sensitive ensemble learning approach for software defect
prediction. Concurr Comput. 2024;36(12):e8017. doi:10.1002/cpe.8017.

20. Guo Y, Shepperd M, Li N. Improving classifier-based effort-aware software defect prediction by reducing rank-
ing errors. In: Proceedings of the 28th International Conference on Evaluation and Assessment in Software
Engineering; 2024; Salerno, Italy: ACM. p. 160–9. doi:10.1145/3661167.3661195.

21. Zhang Q, Zhang J, Feng T, Xue J, Zhu X, Zhu N, et al. Software defect prediction using deep Q-learning network-
based feature extraction. IET Softw. 2024;2024(1):3946655. doi:10.1049/2024/3946655.

22. Zhu K, Zhang N, Jiang C, Zhu D. IMDAC: a robust intelligent software defect prediction model via multi-objective
optimization and end-to-end hybrid deep learning networks. Softw Pract Exp. 2024;54(2):308–33. doi:10.1002/spe.
3274.

23. Alsaedi T, Rizwan Rashid Rana M, Nawaz A, Raza A, Alahmadi A. Sentiment mining in e-commerce. Int J Electr
Comput Eng Syst. 2024;15(8):641–50. doi:10.32985/ijeces.15.8.2.

24. Choo S, Kim W. A study on the evaluation of tokenizer performance in natural language processing. Appl Artif
Intell. 2023;37(1):2175112. doi:10.1080/08839514.2023.2175112.

25. Rana MRR, Nawaz A, Ali T, Alattas AS, AbdElminaam DS. Sentiment analysis of product reviews using
transformer enhanced 1D-CNN and BiLSTM. Cybern Inf Technol. 2024;24(3):112–31. doi:10.2478/cait-2024-0028.

26. Galal O, Abdel-Gawad AH, Farouk M. Rethinking of BERT sentence embedding for text classification. Neural
Comput Appl. 2024;36(32):20245–58. doi:10.1007/s00521-024-10212-3.

27. Wolff B, Seidlmayer E, Förstner KU. Enriched BERT embeddings for scholarly publication classification. In:
International Workshop on Natural Scientific Language Processing and Research Knowledge Graphs; 2014; Cham:
Springer Nature Switzerland. p. 234–43.

28. Zheng L, He Z, He S. An integrated probabilistic graphic model and FMEA approach to identify product defects
from social media data. Expert Syst Appl. 2021;178(6):115030. doi:10.1016/j.eswa.2021.115030.

29. Draz MM, Emam O, Azzam SM. Software cost estimation predication using a convolutional neural network and
particle swarm optimization algorithm. Sci Rep. 2024;14(1):13129. doi:10.1038/s41598-024-63025-8.

30. Balasubramaniam DS, Gollagi DSG. Software defect prediction via optimal trained convolutional neural network.
Adv Eng Softw. 2022;169(5):103138. doi:10.1016/j.advengsoft.2022.103138.

https://doi.org/10.1016/j.engappai.2023.107622
https://doi.org/10.1109/ACCESS.2024.3358201
https://doi.org/10.1109/TR.2024.3356515
https://doi.org/10.1016/j.eswa.2023.122409
https://doi.org/10.1109/ACCESS.2024.3382991
https://doi.org/10.1007/s10586-023-04170-z
https://doi.org/10.7717/peerj-cs.1860
https://doi.org/10.1002/cpe.8017
https://doi.org/10.1145/3661167.3661195
https://doi.org/10.1049/2024/3946655
https://doi.org/10.1002/spe.3274
https://doi.org/10.1002/spe.3274
https://doi.org/10.32985/ijeces.15.8.2
https://doi.org/10.1080/08839514.2023.2175112
https://doi.org/10.2478/cait-2024-0028
https://doi.org/10.1007/s00521-024-10212-3
https://doi.org/10.1016/j.eswa.2021.115030
https://doi.org/10.1038/s41598-024-63025-8
https://doi.org/10.1016/j.advengsoft.2022.103138

	SESDP: A Sentiment Analysis-Driven Approach for Enhancing Software Product Security by Identifying Defects through Social Media Reviews
	1 Introduction
	2 Literature Review
	3 Methodology
	4 Experimental Results and Evaluation
	5 Conclusion and Future Work
	References


