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ABSTRACT: Data clustering is an essential technique for analyzing complex datasets and continues to be a central
research topic in data analysis. Traditional clustering algorithms, such as K-means, are widely used due to their
simplicity and efficiency. This paper proposes a novel Spiral Mechanism-Optimized Phasmatodea Population Evolution
Algorithm (SPPE) to improve clustering performance. The SPPE algorithm introduces several enhancements to the
standard Phasmatodea Population Evolution (PPE) algorithm. Firstly, a Variable Neighborhood Search (VNS) factor
is incorporated to strengthen the local search capability and foster population diversity. Secondly, a position update
model, incorporating a spiral mechanism, is designed to improve the algorithm’s global exploration and convergence
speed. Finally, a dynamic balancing factor, guided by fitness values, adjusts the search process to balance exploration
and exploitation effectively. The performance of SPPE is first validated on CEC2013 benchmark functions, where
it demonstrates excellent convergence speed and superior optimization results compared to several state-of-the-art
metaheuristic algorithms. To further verify its practical applicability, SPPE is combined with the K-means algorithm
for data clustering and tested on seven datasets. Experimental results show that SPPE-K-means improves clustering
accuracy, reduces dependency on initialization, and outperforms other clustering approaches. This study highlights
SPPE’s robustness and efficiency in solving both optimization and clustering challenges, making it a promising tool for
complex data analysis tasks.
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1 Introduction
Clustering represents a method of unsupervised learning, and the original purpose of cluster analysis is

to put physical objects with similar characteristics in people’s lives together, grouping the samples in a dataset
in such a way that the similarity of the samples in the same group is maximized and the similarity of the
samples in different groups is minimized [1]. In the field of data analysis, clustering analysis, as one of the most
representative methods, has been studied in depth by researchers. Traditional clustering methods primarily
consist of partition-based, hierarchical [2], grid-based [3], and model-based algorithms [4], among others. In
addition, there are density-based clustering algorithms [5]. The division-based c lustering is currently among
the most commonly used clustering techniques, and its core idea is: for the dataset containing N samples,
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the clusters are defined in advance to be L in number, and then the whole dataset is divided into L clusters
by successively optimizing a certain objective as the division criterion until the end of the iteration.

Of these, the K-means algorithm is the most widely used partitioning method in practical applica-
tions [6,7]. Therefore, it is extensively applied in pattern recognition, data processing, model classification
and other fields. With the progress of technology and the increased demand for large-scale data processing,
the application of K-means algorithm also shows a trend of continuous expansion. Meanwhile, as clustering
algorithms are studied more extensively, providing new possibilities for more efficient and accurate process-
ing of various data types. Therefore, the K-means algorithm still holds an important position in today’s data
analysis field and is constantly evolving and developing, providing powerful tools and support for solving
practical problems [8].

However, K-means has some limitations when performing clustering optimization, such as its results
depend on the initial conditions, leading to locally optimal solutions. To address the challenge of local
optima, a lot of research has been done in clustering. Researchers have increasingly turned their attention to
harnessing the inherent principles of the natural world for computational purposes through the advancement
of meta-heuristic algorithms. In the context of life sciences, they began to explore the swarm intelligence
behavior exhibited by living organisms (e.g., chromosomes) and animal populations. This collective intelli-
gence phenomenon has garnered interest from numerous scholars globally [9,10]. Drawing inspiration from
the intelligence and behaviors found in nature, these algorithms offer innovative approaches to tackling
complex problems [11].

Typical metaheuristic algorithms include Genetic Algorithm (GA) [12,13], Coyote Optimization
Algorithm (COA) [14], Cuckoo Search (CS) [15], Differential Evolution (DE) [16,17], Harmony Search
(HS) [18], Biogeography-Based Optimization (BBO) [19], Particle Swarm Optimization (PSO) [20–22], Grey
Wolf Optimizer (GWO) [23,24], Whale Optimization Algorithm (WOA) [25,26], Butterfly Optimization
Algorithm (BOA) [27], Archimedes Optimization Algorithm (AOA) [28], Harris Hawks Optimization
(HHO) [29] and Ant Colony Optimization (ACO) [30,31]. These algorithms collectively fall under the
umbrella term Swarm Intelligence Optimization Algorithm (SIOA). SIOA has many advantages, including
easy to find potential solutions, simple parameter tuning, easy to implement, and more effective infor-
mation exchange between individuals. However, there is no single SIOA that is universally effective for
all optimization challenges, as each has its own strengths and weaknesses. Therefore, many researchers
have worked on proposing a large number of novel SIOAs and improving the existing algorithms [32].
These improvements include hybridization of algorithms, optimization of parameter tuning strategies, and
personalized algorithms designed for specific problems. The goal of these efforts is to continuously expand
the applicability of SIOA to better address different types of optimization challenges and to promote the
application and development of optimization algorithms in practice.

The Phasmatodea Population Evolution Algorithm (PPE) proposed by Song et al. [33] was inspired by
evolutionary features observed in Phasmatodea populations. Since the algorithm was proposed, researchers
have successfully applied it to a number of fields, demonstrating its competitiveness. For example, the PPE
has been utilized to optimize downlink power allocation in fifth-generation heterogeneous networks, and it
has also been applied to task scheduling optimization in cloud computing environments. These experimental
findings indicate that the PPE population evolution algorithm holds significant promise [34,35].

We integrate PPE with K-means for optimization.This fusion can effectively utilize advantages such as
the more powerful global search capability of PPE to boost the performance of K-means in global search.
However, PPE also suffers from the challenge of being prone to local optimal solutions. Therefore, in this
paper, we will further optimize PPE and apply it to the K-means clustering optimization problem. To address
these issues, in this study, a Phasmatodea population evolution algorithm with a spiral mechanism (SPPE) is
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designed, and SPPE also incorporates a balancing factor, which achieves good results in data clustering. The
primary contributions outlined in this paper include:

1. To bolster the local search capability and foster population diversity, we integrated the Variable
Neighborhood Search factor into our approach.

2. A position update model is introduced, featuring a novel position update formula and a spiral function
designed to enhance the exploration capabilities of PPE.

3. Based on the fitness value, a proposed balancing factor is added to the PPE through the information
guidance strategy although it can enhance the development efficiency of the PPE.

4. SPPE is evaluated against various algorithms on CEC2013, and the results demonstrate that SPPE
performs well on most functions.

5. In the data clustering application, SPPE is assessed alongside several clustering techniques, and the
experimental findings indicate that SPPE surpasses the other methods.

The subsequent sections of the paper are structured as follows: Section 2 presents related work,
while Section 3 provides an exposition on the traditional PPE algorithm. Section 4 outlines the SPPE
algorithm and CEC2013 experiments in detail. Section 5 conducts clustering experiments and compares
them with existing methods to evaluate the performance of the SPPE algorithm. Section 6 gives conclusions.

2 Related Work
K-means partitions the dataset into mutually exclusive clusters based on specific criteria, making the

data objects within the same cluster more similar. Assume k initial clustering centers in the sample set
Dx = dx1 , dx2, . . . , dxn , where n represents the number of samples. The cluster centers are represented as
c = c1 , c2, . . . , cn and d(Dx , c) denotes the distance between different data objects and the cluster centers,
calculated using the Euclidean distance.

d(Dx , c) =

�
����

d
∑
j=1
(dx j − ci)2 (1)

where d indicates the dimension of the data sample, dx denotes the data sample, dx j is the value in the j-th
dimension of dx.

The termination condition for K-means iteration is typically that the points in each cluster remain
unchanged. Additionally, the new cluster centroid is determined by averaging all the points within the
cluster, it can be judged according to the change of Sum of Square Errors (SSE), which is commonly used in
mathematics as shown in Eq. (2):

SEE = ∑ k
i=1∑ d x∈ci ∣dis(dx , ci)∣2 (2)

Given that the position of the data object point dx remains constant, if the cluster center ci also remains
unchanged, the SSE value will not vary, indicating that the iteration can be concluded.

To overcome the limitations of K-means, extensive research has been conducted on clustering tech-
niques. A DE method based on one-step K-mean clustering to cope with unconstrained global optimization
problems, called clustering-based DE, was proposed by Cai et al. [36]. By fully leveraging the population
information, one-step K-means clustering substantially enhances the performance of DE. Nayak et al. [37]
introduced FA-K-means, a firefly-inspired K-means algorithm. The approach leverages the firefly algorithm’s
global search ability to perform efficient cluster analysis. The Enhanced Shuffled Bat Algorithm (EShBAT),
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developed by Chaudhary et al. [38], is an improved variant of the Bat Algorithm. A key feature of EShBAT
is that it divides the bat population into independent groups called memeplexes, where each group evolves
independently using the Bat Algorithm, and it has achieved success in numerical optimization tasks. This
study introduces a hybrid algorithm called HESB that combines K-means, K-medoids and EShBAT. This
creates a diverse initial population for EShBAT, resulting in an effective clustering algorithm.

Huang [39] proposed a novel method for color image quantization that utilizes the Artificial Bee
Colony (ABC) algorithm to choose N colors from M available options for the initial palette, followed by an
accelerated K-means lgorithm. Additionally, a sampling process is introduced to reduce the computation
time. García et al. [40] proposed a method called K-means combined with the Cuckoo Search algorithm.
This method utilizes K-means for discretizing solutions and employs the CS algorithm for optimizing in
the continuous domain. Pal et al. [41] combined the Black Hole for data clustering with K-means to achieve
better results. The method utilizes some optimization outcomes from K-means to initialize a portion of the
population, while the remaining portion is initialized randomly.

3 Principle of PPE
The PPE algorithm originated from the observation and study of the survival characteristics of

Phasmatodea populations in natural environments and their population dynamics. In the PPE algorithm,
the Phasmatodea population is defined as having two key attributes: population growth rate and population
quantity. Its primary aim is to address the challenge of finding a globally optimal solution within a multidi-
mensional space, where the optimal position of the Phasmatodea population is regarded as a candidate for
the global optimum. The application of this algorithm benefits from a more profound understanding of the
ecological properties of biological populations.

The representation of a Phasmatodea population in n-dimensional space is given by the expres-
sion x = [x1 , x2, x3 . . . xn], where each dimension represents a natural characteristic of that population of
Phasmatodea. Generate Np populations using Eq. (3).

xi = Lb + (Ub − Lb) ∗ rand (3)

Two of the most significant attributes of Phasmatodea populations that best reflect their outcomes as
influenced by environmental and other factors are the growth rate a and the population quantity p. Firstly,
a takes values between 0 and 4, and secondly, p is determined using the following formula:

pi =
1

Np
(4)

where Np denotes the number of Phasmatodea populations. The evolutionary trend ev in PPE is mainly
guided by the first L historical optimal solutions, which are stored into Hx.

L = ⌊log(Np)⌋ + 1 (5)

The formula for adjusting the position of the Phasmatodea population is as follows:

xt+1 = xt + ev (6)
pt+1 = pt ∗ (1 − pt) ∗ at+1 (7)

If the population shows improvement after updating its position compared to before, the population’s
ev can be divided into three parts. First, the population will approach the nearest historical optimal solution,
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which reflects the self-determination property of the Phasmatodea population. Second, the population will
maintain a relatively stable trend through path-dependent effects. Finally, the population may adjust the
trend through mutation.

evt+1 = (1 − pt+1)(s(Hx , xt) − xt ∗ c − pt+1(evt +m) (8)
m = (Ub − Lb) ∗ 0.2 (9)

where s(Hx , xt) represents the closest solution to xt stored in Hx and m denotes the variation of the
population under certain natural conditions. The idea of simulated annealing is used after the population
has updated its position when the population condition becomes less favorable than before. In other words,
the suboptimal population will be accepted. The equation for updating the ev is as follows:

evt+1 = rand ∗ (s(Hx , xt) − xt) ∗ c − st ∗ B (10)
st = (Ub − Lb) ∗ 0.1 (11)

where B is an n-dimensional random vector generated from a standard normal distribution. In addition to
the effect that the optimal solution of a population may have on the change of its trend, the competition
between populations with each other may also have an effect on its position. When the distance between two
populations falls below a predetermined threshold G, they will engage in competition.

G =
(Ub − Lb) ∗ (Mgen + 1 − t)

Mgen
∗ 0.1 (12)

When the distance between xi and x j is below the G, the geographic locations of these two populations
collide, which in turn triggers competition between the populations. In this case, the population’s p and ev
values are:

pi = (1 − pi −
f (x j)
f (xi)

p j) ∗ ai ∗ pi + pi (13)

evt+1 = evt +
f (x j) − f (xi)

f (x j)
(x j − xi) (14)

The core mechanism of PPE is built upon this foundation. First, convergent evolution emphasizes
how environmental constraints guide populations toward locally optimal solutions, balancing local and
global search. Second, path dependence highlights the influence of historical decisions on evolutionary
trends, enabling efficient adaptation to changing environments while preserving successful past trajectories.
Third, population mutation helps escape local optima, enhancing adaptability in dynamic or multi-modal
landscapes. Fourth, the population size and competition model illustrates how resource limitations and
competition drive diversity and improve performance, particularly in multi-modal optimization. Together,
these mechanisms enable PPEA to balance exploration and exploitation dynamically, offering a robust
framework for solving complex, high-dimensional, and dynamic optimization problems.

4 Improved PPE Algorithm: SPPE

4.1 Variable Neighborhood Search
Hansen et al. [42] proposed the Variable Neighborhood Search (VNS) algorithm, which initially

defines a set of neighborhoods that are considered potential good solutions. The core concept of VNS is to
systematically modify the neighborhood structures of multiple solutions during the local search process.
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Under the condition of identical initial solutions, this process deepens and broadens the search space, thus
improving the effectiveness of the local search. VNS focuses on locking the superior solutions in the solution
space quickly by the fast transformation between different neighborhood structures.

By integrating the VNS strategy, SPPE systematically alters the neighborhood structures during the local
search process. This enables the algorithm to lock high-quality solutions quickly and enhances its ability to
perform deep searches in locally optimal regions. Such systematic modification of search patterns is a unique
addition that sets SPPE apart from traditional metaheuristic algorithms.

In the PPE algorithm, when a particle falls into a local optimal solution, in order to search for the particle
in a wider neighborhood, we need to extend the search for the direction of movement of the particle to find
a more superior direction. Incorporating the key features of VNS into the PPE results in a powerful PPE
algorithm. Another feature of the PPE algorithm with the introduction of VNS is to re-initialize the search
for the locally optimal neighborhood. The pseudocode of the VNS algorithm is shown in Algorithm 1.

Algorithm 1: Pseudo-code for VNS
Input: Termination conditions, parameter settings
Output: Optimal program

1: while k ≤ kmax do
2: Generate a random x′ from the k-th neighborhood structure Nk (x) of x.
3: The local optimum x′′ should be found by a local search method with x′ as the initial solution.
4: If this local optimum x′′ is superior to the current one, update x to x′′.
5: k = k + 1
6: end while

Nk(x) represents the k-th neighborhood structure of x. By exploring broader neighborhoods when
stuck in local optima, the algorithm intensifies the search when a better solution is found and diversifies
the search when local exploration is exhausted. This systematic adjustment ensures robustness, enabling the
algorithm to escape from local optima and discover globally superior solutions.

4.2 Spiral Mechanism
The second stage of PPE remains close to only the nearest optimal solution even when convergent

evolution is ineffective. In this approach, position updates rely solely on previous movement direction.
This will hinder the algorithm’s convergence speed, so we propose adopting a spiral search mechanism.
Unlike conventional search strategies that often rely on linear or random exploration, the spiral mechanism
introduces a dynamic and expansive search trajectory. This approach allows the algorithm to explore the
solution space more effectively, avoiding duplicate paths and improving global search capabilities. The spiral
mechanism also helps maintain population diversity, which is crucial for escaping local optima.

This mechanism offers a broader range of exploration opportunities for the Phasmatodea, enabling it to
better adjust its position through multiple search paths. Simultaneously, this mechanism fully utilizes the top
k best positions from the existing Phasmatodea population, thereby enhancing the capability to discover the
global solution throughout the optimization process. The spiral mechanism leverages a logarithmic spiral
model to ensure diverse exploration paths. The position update formula is:

D = abs(HxL − xt) (15)
z = exp(b ∗ u) ∗ cos(u ∗ 2 ∗ π) (16)
xt+1 = D ∗ z +HxL (17)
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where b is the spiral shape constant, which is set to a value of 1 and z represents the spiral exploration
factor. u denotes the path coefficient, which is a random number in [−1, 1]. The exponential term exp(b ∗ u)
allows the search radius to expand or contract dynamically, providing a fine balance between exploration and
exploitation. Meanwhile, the cosine term cos(u ∗ 2 ∗ π) ensures variability in the search direction, enabling
broader coverage of the solution space and improving the global search performance.

Individuals of Phasmatodea use a spiral advance strategy during search. Unlike straight lines, spiral
advancement uses a straight line as the central axis, which makes the individual move in a spiral when moving
towards the target individual. This strategy minimizes the possibility of generating duplicate individuals. The
integration of a spiral mechanism into the position updating process enhances the Phasmatodea’s ability to
explore unknown regions, effectively improving the algorithm’s global search performance.

4.3 Balancing Factor
We use the value of the fitness function to form a balancing factor, and this dynamic adjustment

strategy enhances the algorithm’s search effectiveness and efficiency across various search stages. This way,
the SPPE will become more flexible, which can improve the algorithm’s search efficiency. The balancing factor
dynamically adjusts the exploration and exploitation tendencies of the algorithm based on fitness values.
This mechanism ensures a more adaptive search process, allowing SPPE to maintain a fine balance between
global and local optimization. It improves convergence speed and enhances the algorithm’s robustness in
different stages of the search.

w = 1
exp( f i t(xi)

sum( f i t))
(18)

Ensures that individuals with better fitness have a stronger influence during population updates.
This mechanism reduces the premature convergence common in other algorithms by preventing excessive
exploitation of local optima. The updated population parameter:

pt+1 = w ∗ at+1 pt(1 − pt) (19)

The population quantity pt+1 incorporates this balancing factor to maintain diversity while focusing on
promising areas of the search space. This balance between exploration and exploitation enhances the con-
vergence rate while maintaining sufficient diversity to avoid stagnation in suboptimal regions. Introducing a
balance factor into the process of updating the population quantity helps to fully utilize effective information
within the population and enhancing its ability to escape local optimal solutions. Through this approach,
significant improvements in optimization speed and accuracy can be achieved. Algorithm 2 outlines the
pseudocode of the SPPE algorithm.

4.4 Complexity Analysis
The time complexity of the algorithm mainly depends on population initialization and iterative

optimization. The population initialization time complexity of the SPPE algorithm is O(p ∗ d), where p
is the population size, and d is the dimension of the solution space. In each iteration, the SPPE algorithm
includes four key steps: population position updating in the PPE algorithm, the spiral mechanism, VNS, and
balancing factor updates.
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Among them, the population position updating and spiral mechanism both involve position updates,
with a time complexity of O(p ∗ d); the balancing factor update only requires simple arithmetic operations,
resulting in a time complexity of O(1). The VNS involves checking multiple neighborhood structure.
Assuming the number of neighborhood structures is k, the overall complexity of VNS is O(k ∗ d). In SPPE,
the probability of triggering VNS in each iteration is 0.7, and three neighborhood structures are used (k = 3),
so the complexity of VNS is O(0.7 ∗ 3 ∗ d).

In summary, the total time complexity of each SPPE iteration is 3 ∗ O(p ∗ d) + O(0.7 ∗ 3 ∗ d) + O(1) =
O(p ∗ d). Considering the algorithm runs for I iterations, the total time complexity is O(p ∗ d ∗ I). This
complexity is equivalent to the standard PPE algorithm’s time complexity of 2 ∗ O(p ∗ d ∗ I) = O(p ∗ d ∗ I).

To further demonstrate the computational performance of SPPE, we analyzed its runtime under the
same experimental conditions and compared it with other algorithms. The runtime results (in seconds) are
as follows: SPPE: 490.20, PPE: 420.19, PSO: 130.38, HHO: 560.90, GWO: 140.67, AOA: 145.80, GA: 207.3,
BOA: 422.86. Although the runtime of SPPE is slightly higher than its predecessor PPE due to the additional
computational costs of the spiral mechanism and VNS, SPPE still demonstrates competitiveness compared to
other algorithms. For instance, SPPE outperforms HHO in terms of runtime while offering better robustness
and convergence. Although algorithms like PSO, GWO, and GA have shorter runtimes, SPPE’s enhanced
optimization capability proves that the moderate increase in computational cost is justified.

Similar to PPE, SPPE’s space complexity is determined by population storage (O(p ∗ d)) and historical
best positions (O(d)). Auxiliary components like the spiral mechanism, VNS, and balancing factor require
O(1) space. Thus, the total space complexity of SPPE is O(p ∗ d).

In conclusion, compared to PPE, SPPE achieves significant improvements in robustness and con-
vergence while maintaining a time complexity of O(p ∗ d ∗ I). Additionally, its computational cost is
comparable to other popular algorithms, making it an efficient solution for complex optimization problems.

Algorithm 2: Pseudo-code for the SPPE algorithm
Input: Number of iterations (M_It), number of dimensions (Dim), the size of a population (Np)
Output: The optimal solution produced by each iteration (best_ f it)

1: Calculating the fitness function (fit(x)), set gbest and Hx
2: for ite = 1 ∶ M_It do
3: Use evi generate new population (xnew)
4: for i = 1 ∶ Np do
5: if f (xnew) ≤ f (xol d) then
6: if rand < 0.7 then
7: x = xnew
8: else
9: VNS factor

10: end if
11: else
12: if rand < p then
13: x = xnew
14: else
15: use Eq. (17) to update x
16: end if
17: end if

(Continued)



Comput Mater Contin. 2025;83(1) 483

Algorithm 2 (continued)
18: if The distance between the two populations is less than G then
19: Update evi via Eq. (10)
20: end if
21: end for
22: end for

4.5 Experiments and Data Evaluation
In this section, Our experimental tests performed on a computer with an operating system of Windows

11 and software of MATLAB R2022a are tested using 28 benchmark functions from the CEC2013. Addition-
ally, a more intuitive comparison of the algorithms was conducted through curve analysis of the fitness values.
We compared the SPPE algorithm with the PPE algorithm, AOA algorithm, PSO algorithm, HHO algorithm,
GWO algorithm, GA algorithm, and BOA algorithm. The parameter configurations for these algorithms are
shown in Table 1.

Table 1: Parameter settings for the algorithms

Algorithm Initial setting of parameter values
SPPE Np = 20, a = 1.1
PPE Np = 20, a = 1.1
PSO Np = 20, c1 = 2, w = 0.9, c2 = 2

HHO Np = 20, E0 ∶ [−1, 1]
GWO Np = 20
AOA Np = 20, mu = 0.499, al pha = 5, mopmax = 1, mopmin = 0.2
GA Np = 20, crossoverrate = 0.8, mutationrate = 0.05

BOA Np = 20, powerex ponent = 0.1, modul armodal ity = 0.01, probabibil it yswitch = 0.8

To ensure fairness, each algorithm was subjected to 1000 function iterations with a total of 30 inde-
pendent function runs, and the solution space range was set to [−100, 100]. We evaluated the algorithms in
10, 30, and 50 dimensions, recording the mean and variance of their results. Additionally, we conducted the
Friedman test and obtained the Friedman rankings, which are displayed in Tables 2–4. In these tables, the
bold data values represent the best results in each function. Observing the tables reveals SPPE’s outstanding
performance across all dimensions, with its efficacy progressively enhancing as the dimensions expand. We
conducted a Wilcoxon rank-sum test at a significance level of 0.05 to compare the optimization results of
SPPE with those of other algorithms. In the table, a “+” indicates that the results of the SPPE algorithm
outperform those of its comparison algorithms, “=” signifies that the results are similar, and “−” indicates
that the SPPE algorithm’s results are inferior to those of its comparison algorithms. The results in the table
indicate that the SPPE algorithm has a significant advantage in seeking optimal solutions compared to other
algorithms, outperforming most of them. From the results presented in Tables 2–4, it can be observed that,
in most cases, there is a statistically significant difference between the SPPE algorithm and the competing
algorithms in the Wilcoxon signed-rank test. Furthermore, when such significant differences exist, the SPPE
algorithm demonstrates a clear statistical advantage over the competing algorithms. This further validates
the effectiveness of the SPPE’s improvement strategies and its superiority under various test conditions.
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Table 2: Results on CEC2013 when D = 50

SPPE PPE PSO HHO GWO AOA GA BOA
F1 Mean −1397.031 −1392.3803 185002.287 −1075.3865 14565.7407 73802.181 127178.025 78480.9247

Std 1.52231359 1.87025254 14335.2676 115.039877 6247.86825 6766.04324 22462.2745 5065.11436
F2 Mean 33470196 49359211.9 7684780888 101861481 197090738 2095202977 1371471948 3593281065

Std 9220931.05 10196846.2 2181278382 28629163.6 68864643.2 713088786 718416525 1097074247
F3 Mean 7.946E+09 1.6342E+10 8.1344E+21 4.4269E+10 7.7472E+10 4.5242E+13 4.8144E+13 1.9736E+21

Std 3832176835 4315434996 2.7822E+22 1.3705E+10 2.409E+10 4.768E+13 1.2023E+14 4.9218E+21
F4 Mean 59898.742 68442.3282 567184.855 83951.2612 181766.83 78886.4315 255260.778 104733.184

Std 14128.1983 11268.9706 864242.131 8293.48939 49152.9014 7957.4943 40951.0067 16746.6273
F5 Mean −977.1497 −868.84949 108129.293 −622.31207 3432.38209 22766.4833 41779.4327 26517.5611

Std 8.80260199 21.1638953 32477.7201 148.041728 2157.60991 8425.6295 21521.0768 6260.27532
F6 Mean −783.4757 −678.90512 39629.7048 −601.274 91.209867 7453.87871 11035.0221 11074.0168

Std 67.8895299 46.2122903 6246.01279 51.7166139 409.206544 1806.78546 4141.59723 1864.60777
F7 Mean −683.9244 −643.93638 19670171.1 −128.87343 −617.12795 3144.10469 4532.46577 70413.3942

Std 19.1850276 36.715322 26437518.5 642.762823 34.8732922 3814.38938 8872.14813 66720.376
F8 Mean −678.77778 −678.77073 −678.63018 −678.7882 −678.78087 −678.73145 −678.71358 −678.76157

Std 0.03801589 0.04703793 0.04571112 0.05639984 0.03528534 0.06117103 0.05522852 0.03961746
F9 Mean −544.1318 −537.23039 −516.14265 −528.25055 −538.96987 −526.95541 −516.26608 −525.04115

Std 6.02248468 4.7813727 2.06001674 2.81573269 4.94967593 3.32320995 2.73056693 2.31253669
F10 Mean −433.4597 −326.05723 29713.5107 17.9333812 1703.57388 10988.0495 13722.2196 13966.3598

Std 17.6855861 32.1762948 5806.13209 130.267091 443.585143 2078.08514 4498.0974 1588.61181
F11 Mean −171.7039 46.2665481 2593.27018 307.516825 135.192083 715.264733 1488.87339 770.733991

Std 54.0574552 61.2536097 368.697886 47.1457228 61.3413463 99.3690661 290.078229 55.0311892
F12 Mean 63.81003 323.199149 2472.57247 772.969022 368.812632 894.014667 1554.74072 970.666194

Std 65.05993 75.7097871 225.61595 121.549847 92.6144898 115.619415 393.477109 54.716409
F13 Mean 375.87743 584.072799 2342.87226 972.596659 513.657543 976.07423 1571.19411 1062.8686

Std 87.2377791 74.3250426 290.270391 111.179539 61.7859329 99.8449376 295.503653 61.4049712
F14 Mean 3777.4713 5355.63816 14866.8554 8539.07544 12545.3459 13667.4793 16099.9081 15088.8423

Std 585.630383 629.811333 366.089185 1345.19689 1882.98419 1319.35043 1190.07123 555.083235
F15 Mean 9147.5285 9376.14745 16942.829 12220.9457 14000.2747 14912.2175 15664.2267 15729.822

Std 1244.245 986.270376 521.128808 1043.27375 1370.18553 581.06236 1012.76301 402.113079
F16 Mean 203.12866 202.23749 206.186936 203.309516 204.204309 203.929069 204.937161 204.488055

Std 1.00426266 0.47438864 0.6012589 0.56215979 0.33499587 0.60699248 0.55669978 0.34779578
F17 Mean 580.65172 916.650199 6024.06614 1640.46786 1177.96135 1670.95101 4440.89869 1684.53256

Std 44.3342113 78.2407373 619.778393 85.4182794 137.660427 76.1355154 691.705435 58.8324778
F18 Mean 884.38638 1236.85237 6026.84717 1753.37179 1312.54709 1779.23097 4669.90236 1810.61017

Std 85.0075358 121.077595 574.819326 82.2321586 117.610611 53.5697894 654.71418 56.6835969
F19 Mean 520.71666 551.440053 40246615.2 597.576574 57253.5774 1233368.41 3235044.35 1504445.77

Std 4.83743393 12.4091781 18314484.6 16.9815502 57675.6733 501626.709 2762254.45 409047.805
F20 Mean 624.31527 624.487112 625 624.656622 624.431965 624.817117 625 624.991173

Std 0.80004538 0.28169586 1.558E-11 0.19461768 0.43476846 0.18434554 4.9393E-11 0.04613965
F21 Mean 1631.56879 1631.4833 12901.2712 2332.53986 4461.0082 5191.02774 10956.1369 5285.91961

Std 238.136896 204.006072 1250.68549 638.434051 235.951334 66.5265499 1569.66363 64.5351444
F22 Mean 6031.9214 9831.42722 17749.1567 12148.7788 15191.8692 15492.0153 18694.2786 17562.6118

Std 645.404482 1156.17559 397.647726 957.112956 1883.82831 628.415868 709.505769 413.192302
F23 Mean 12167.138 12928.6642 18468.2023 14846.6797 16080.8154 17239.3532 18096.3287 17727.8478

Std 1617.40332 1263.48795 432.502109 1135.7741 1234.60957 408.426477 622.207752 550.616801
F24 Mean 1359.1297 1405.31287 1945.07779 1481.79859 1383.41674 1713.36065 1771.69551 1930.46488

Std 17.0420667 19.2520903 187.275686 39.4155415 14.7712894 260.022375 138.292989 191.135115
F25 Mean 1542.91587 1614.75213 1661.48507 1610.19171 1532.01606 1527.6798 1797.99176 1614.10928

Std 19.0160363 28.0265683 2.73691037 45.1468577 11.612587 55.245384 56.8220741 21.6564751
F26 Mean 1614.53643 1589.4397 1948.01313 1630.65059 1618.30876 1685.53768 1745.46582 1676.26455

Std 85.9657819 101.057302 206.064726 125.646061 92.703452 68.4739306 75.8509378 69.8651564
F27 Mean 3130.7868 3482.971 5319.40901 3821.80651 3275.49318 4031.72168 4331.92741 4860.70669

Std 146.644759 145.015878 680.066496 196.0415 128.290402 230.941712 250.692381 547.320462
F28 Mean 2561.171 7913.5416 19227.2095 11175.057 6741.81241 11785.9689 15078.7364 11896.9674

Std 1523.48062 939.568388 2261.86343 742.913113 787.023501 777.147475 1475.40452 806.038848

(Continued)
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Table 2 (continued)

SPPE PPE PSO HHO GWO AOA GA BOA
+ / = / − 25/0/3 28/0/0 25/0/3 26/0/2 28/0/0 28/0/0 27/0/1

Friedman rank 1 2 8 4 3 5 7 6

Table 3: Results on CEC2013 when D = 30

SPPE PPE PSO HHO GWO AOA GA BOA
F1 Mean −1399.9231 −1399.6391 106144.547 −1360.5568 5425.18677 47238.7312 42111.39 55933.3301

Std 0.04358879 0.1340234 12685.0444 8.45560904 3459.96877 6111.04593 13032.9454 4828.35335
F2 Mean 18851148.7 19182860.6 3206702353 53340866.9 92842916.5 625662787 487997514 1528066935

Std 4326940.05 4363869.84 1161914233 24206009.8 43814084.4 260393616 300997838 733436346
F3 Mean 2644294369 5224945688 9.5429E+23 3.3583E+10 4.3147E+10 2.7492E+17 1.1984E+14 1.7891E+21

Std 2093693686 2319529109 5.1914E+24 1.7143E+10 2.5312E+10 6.0818E+17 6.2457E+14 3.4466E+21
F4 Mean 38713.9426 42664.4533 670355.516 52158.2556 108569.953 54217.3218 168641.551 64700.713

Std 10357.8909 9106.07608 1331622.26 3979.22965 23059.7746 5309.09511 35172.2841 3631.26338
F5 Mean −998.99385 −986.64799 94285.3268 −770.88257 1806.5044 25968.0108 17998.6613 39775.4203

Std 0.6493884 10.1991097 58038.8469 88.9645519 1440.59453 11468.3562 10154.608 13462.7215
F6 Mean −822.93244 −790.97756 27494.1092 −715.91887 −442.58198 7772.94401 3044.19079 15230.5877

Std 21.6463724 30.3148666 7389.90373 44.7419747 225.021717 2433.46687 2712.57476 2582.84049
F7 Mean −706.95212 −670.24458 158067798 52534.6154 −631.28169 769252.762 10581.7676 6654785.81

Std 27.4245767 26.7265997 321816864 161745.36 39.9171103 2385412.11 25150.2659 10227890.2
F8 Mean −678.93522 −678.94375 −678.74731 −678.9903 −678.93659 −678.89571 −678.87775 −678.92483

Std 0.03985151 0.04535341 0.07606742 0.05854216 0.05075957 0.07145631 0.06197968 0.04177734
F9 Mean −570.62564 −567.62071 −554.39387 −560.20661 −565.69042 −559.76487 −553.30121 −558.08407

Std 2.93597517 2.94023572 1.55244671 2.91978022 5.26951222 1.81242385 1.76860594 1.4634282
F10 Mean −487.91465 −482.60962 15137.4292 −331.21397 664.180982 6306.92782 5232.98964 9937.3204

Std 4.1378444 7.51481174 3795.17027 80.1249441 348.752358 1194.87634 2482.19782 1073.3585
F11 Mean −301.79945 −162.1433 1340.14442 38.1245532 −95.289031 353.700147 243.776741 493.99544

Std 18.9269736 41.7627922 384.576069 69.9044285 42.2617693 91.942204 241.301041 76.6889971
F12 Mean −140.76935 66.0885277 1427.36368 355.601558 32.1912768 407.670511 450.380647 551.653212

Std 44.9401219 65.3941402 296.562194 104.83889 61.181121 109.231719 210.358207 94.6888988
F13 Mean 51.8584486 212.405961 1458.23435 515.051765 142.526449 486.646139 567.936076 659.266532

Std 61.4526264 58.2394442 263.152504 99.2285326 49.6558851 74.1269711 165.128688 74.8064214
F14 Mean 1714.13076 2249.28697 9227.63019 4100.31796 6999.27851 7145.69503 7940.9627 8269.91908

Std 541.097164 466.105778 400.441588 662.804298 1204.55891 400.402047 805.945241 346.194669
F15 Mean 4328.25573 4546.17527 9404.71619 5535.38853 7452.11246 8007.72505 8312.98067 8215.70369

Std 820.505572 553.073706 364.704884 697.496053 1039.69831 341.893335 614.264292 371.782324
F16 Mean 202.110149 201.331159 204.908314 202.571682 203.283987 203.238081 204.040661 203.301986

Std 0.83168363 0.4353729 0.8585207 0.46704164 0.38920196 0.41539335 0.48893782 0.42546125
F17 Mean 426.955646 516.946326 3324.70135 1104.95845 724.720633 1114.23937 1971.61295 1173.12143

Std 24.1340927 43.7839829 385.611349 92.801311 88.2484518 104.677109 458.290051 60.8081622
F18 Mean 614.767107 755.030829 3301.07182 1236.67646 843.60875 1225.59116 2041.69776 1253.95878

Std 48.7104414 60.2380404 369.887583 87.1482253 71.6549352 104.38952 351.439781 52.9599057
F19 Mean 507.542776 517.264248 17969440.6 547.147404 13470.212 655437.739 337173.838 774042.33

Std 1.85284648 5.16327954 9429165.14 9.3427267 20155.5887 273399.69 701485.661 271936.94
F20 Mean 614.85548 614.879175 615 614.969467 614.991348 614.910671 615 615

Std 0.35368431 0.22777215 0.00323264 0.10614674 0.02114589 0.17503164 5.5865E-
10

9.8426E-
10

F21 Mean 1051.84224 1050.41183 7106.16898 1136.58973 2426.16548 3126.0113 4821.56614 3258.57671
Std 73.1619711 75.6882402 907.241367 58.5187011 317.643 78.4127361 955.846409 79.8859659

F22 Mean 3058.46514 4257.13154 10801.6197 6900.16146 8351.01189 9370.46363 10003.7943 9836.61216
Std 568.50808 723.941672 452.534624 858.014308 1246.37965 441.456095 742.33992 282.61895

F23 Mean 5866.23393 6980.20592 11138.6294 8066.30376 9036.98849 9619.65452 9867.78566 9804.03233
Std 942.782076 872.856642 456.092274 857.658076 1054.93878 513.426375 807.122595 345.741991

F24 Mean 1277.99979 1297.15594 1746.84392 1365.90846 1292.66426 1404.53838 1493.93297 1479.88698
Std 15.4384825 14.5898342 199.085101 66.1671419 9.13490859 58.3076135 123.164945 95.7528126

F25 Mean 1410.01033 1457.61372 1493.69632 1459.86125 1416.84254 1417.91691 1566.22095 1475.12301
Std 14.8799132 20.9713269 8.65564105 22.2285661 8.53614633 19.8138092 35.3490149 24.4406925

(Continued)
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Table 3 (continued)

SPPE PPE PSO HHO GWO AOA GA BOA
F26 Mean 1502.95786 1517.34589 1693.50666 1581.12264 1524.14731 1552.56268 1628.69313 1569.40235

Std 85.3594315 90.3042796 109.947248 72.0892356 76.5700995 66.4644816 104.587485 73.7942564
F27 Mean 2341.09455 2525.93975 3388.10431 2741.84945 2448.81361 2822.63572 2922.18775 3205.25199

Std 92.310362 95.92028 248.721887 95.4005448 86.4270953 142.451467 83.474519 242.2879
F28 Mean 2086.62036 5147.12838 11667.3386 6617.24961 4285.56267 6583.83092 8756.94067 7435.62314

Std 850.032482 910.132122 1676.25728 702.208675 671.426669 467.024219 1372.08981 563.206872
+ / = / − 24/0/4 28/0/0 27/0/1 26/0/2 27/0/1 27/0/1 27/0/1

Friedman rank 1 2 8 4 3 5 6 7

Table 4: Results on CEC2013 when D = 10

SPPE PPE PSO HHO GWO AOA GA BOA
F1 Mean −1400 −1400 16424.772 −1399.527 −1065.479 4282.5059 −678.3268 8585.8291

Std 2.269E-05 0.0002776 6280.2412 0.1892219 528.07565 1821.6114 209.49352 2851.4525
F2 Mean 570123.35 581059.98 177077297 4767514.8 7574418.4 8373027.6 31540251 32979713

Std 444688.99 326670.61 128330624 2057881.5 3758814 2716702.1 21446365 21774051
F3 Mean 198862889 294867946 1.13E+14 1.165E+09 2.348E+09 4.972E+09 1.195E+10 1.519E+14

Std 474208651 327109190 4.423E+14 2.986E+09 2.268E+09 3.364E+09 7.77E+09 8.121E+14
F4 Mean 4610.3533 3319.4097 582587.5 12160.828 33200.4 8398.1139 45603.14 15245.087

Std 2584.808 2214.8809 1053961.9 2150.7334 12621.115 3014.1627 20606.29 2865.8461
F5 Mean −998.7058 −999.9938 8551.3996 −998.2598 −796.757 1666.8088 −338.9682 5358.6123

Std 7.0727536 0.0034221 4347.545 2.9162481 215.35838 1916.7523 663.07184 3241.7697
F6 Mean −886.7198 −863.1054 938.54304 −852.0109 −843.8212 −621.4268 −414.5304 −38.93042

Std 24.089371 32.610924 866.06956 35.835428 35.984056 129.33724 106.01236 296.83482
F7 Mean −769.7513 −756.0424 3722.2288 −639.3495 −742.3379 −710.3642 −468.5904 6637.0784

Std 19.694547 26.349078 10974.266 109.58718 25.987011 21.898113 236.13317 12040.281
F8 Mean −679.5125 −679.5517 −679.1831 −679.5916 −679.5468 −679.5249 −679.4893 −679.5503

Std 0.0860187 0.0981662 0.160564 0.0951949 0.0250958 0.0989505 0.0677557 0.1051814
F9 Mean −594.6924 −593.6155 −587.0309 −591.352 −593.0222 −591.2128 −587.8901 −591.2671

Std 1.5596603 1.5071589 1.0380978 1.4842474 1.667648 1.2604298 1.0845926 0.7937569
F10 Mean −499.204 −498.5972 1668.3104 −495.0345 −432.1961 −11.47359 −153.8978 761.12257

Std 0.6594964 0.9846833 882.60445 4.1058259 63.921026 194.66076 70.282888 366.41758
F11 Mean −396.3653 −395.0034 −105.6964 −342.9767 −359.8746 −316.3936 −157.7912 −253.6183

Std 2.1229356 3.0791158 80.011381 25.040599 15.670916 24.542001 56.124692 23.596046
F12 Mean −275.6537 −254.0874 −23.03635 −188.7999 −254.5355 −205.9597 −104.2751 −172.8273

Std 13.522706 24.741517 74.925996 33.258927 15.598271 26.666662 40.036958 24.432186
F13 Mean −165.0595 −150.2625 87.054396 −76.83841 −145.4304 −109.2314 −59.36277 −61.84365

Std 12.618306 15.155859 76.879171 33.474822 16.222556 23.997882 23.324328 26.595076
F14 Mean 194.75875 281.63346 2403.2428 788.92441 1165.5675 1295.5057 601.78193 1741.2031

Std 179.24065 138.8978 215.9695 238.92372 497.33864 197.27225 307.86926 174.70883
F15 Mean 946.32516 1005.3311 2542.1246 1078.3739 1489.5285 1428.4334 1536.5351 1815.8467

Std 290.85958 236.45737 313.14825 329.85469 429.36489 213.90082 324.63645 246.8766
F16 Mean 200.7893 200.47465 203.18249 200.96704 201.59308 201.13698 201.67583 201.528

Std 0.3988056 0.2359898 0.630261 0.2710986 0.2684241 0.3314584 0.3863822 0.336939
F17 Mean 316.1828 316.01023 786.05318 398.34045 357.56808 390.62909 412.00752 423.56367

Std 2.8926237 2.7407037 117.78932 25.242059 12.41579 26.723466 36.398796 20.538157
F18 Mean 434.01739 438.05797 903.14941 523.04955 462.72497 492.23559 524.7113 532.57158

Std 15.519585 11.939926 117.11392 33.123398 13.203751 21.153622 39.144237 14.873761
F19 Mean 500.69816 501.14748 419392.51 507.51581 554.8706 7398.6055 511.34044 17577.993

Std 0.2511203 0.6710526 552868.93 2.3078968 268.84627 7929.8113 4.6144139 12229.22
F20 Mean 603.38003 603.55616 604.89749 604.12577 603.79699 604.05429 604.94755 604.77493

Std 0.461087 0.6268992 0.1689292 0.405238 0.3965978 0.3157149 0.1202624 0.2603904
F21 Mean 1090.189 1100.1939 2059.6276 1090.7241 1117.5904 1213.5205 1260.728 1332.2941

Std 54.798871 4.751E-05 388.76581 38.209262 25.01492 42.530861 89.10182 63.177437
F22 Mean 1139.9552 1343.117 3529.4318 2071.8344 2454.7889 2657.7495 2565.0545 2975.9783

Std 205.49582 263.86667 210.99042 373.39409 608.31481 194.66072 493.26752 202.22631
F23 Mean 2079.9068 2380.2709 3701.2218 2637.9849 2620.7698 2878.3788 3002.1244 3150.724

(Continued)
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Table 4 (continued)

SPPE PPE PSO HHO GWO AOA GA BOA
Std 415.75503 330.93998 214.50147 322.04511 454.56966 260.77083 389.44411 184.08688

F24 Mean 1214.2757 1223.9446 1281.1252 1228.9307 1221.3674 1230.157 1245.7107 1204.4938
Std 18.908776 27.202298 46.370267 5.0190718 5.1630693 5.347367 11.08615 24.664811

F25 Mean 1313.236 1320.2569 1351.1963 1330.5068 1319.991 1326.4939 1343.62 1317.7469
Std 6.5427338 6.9356803 6.3674059 5.8544835 4.277398 3.8728487 4.692356 22.452396

F26 Mean 1373.2004 1398.7698 1604.4618 1494.2224 1382.6981 1423.2073 1483.8992 1406.6081
Std 73.273468 72.4976 120.76685 61.548318 28.767885 27.823754 58.786645 28.395067

F27 Mean 1699.7103 1712.4717 2564.4012 1974.6895 1837.0272 1907.9407 2044.4832 2030.5317
Std 67.687327 61.615282 269.91913 134.53454 77.422618 70.323808 83.907654 83.89589

F28 Mean 1929.5398 2046.0716 3321.7786 2296.4772 1969.5118 2285.7285 2478.8937 2371.5291
Std 166.15661 230.19883 262.0526 189.52659 211.89573 65.933934 184.58304 143.20777

+ / = / − 20/0/8 28/0/0 27/0/1 27/0/1 27/0/1 27/0/1 26/0/2
Friedman rank 1 2 8 4 3 5 7 6

Finally, we illustrate the convergence curves of the SPPE and other algorithms in Figs. 1 and 2 for a
dimensionality of 50. It is clear that the SPPE algorithm demonstrates superior convergence in F1, F6, F10,
F12, F21, F27, and F28 compared to the other algorithms, as it reaches the optimal value more rapidly. The
substantial advantage exhibited by the SPPE algorithm over the others underscores its superior capability
in exploring and evading local optima. In functions F9, F15, F22, and F23, while SPPE may not initially
surpass PPE and GWO, its curve continues to decline while PPE converges. This suggests that SPPE
retains significant potential in the later stages of algorithmic exploration. In summary, SPPE’s capability to
avoid local optima and effectively find the global optimum has seen significant enhancement following the
implemented improvements.

Figure 1: (Continued)
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Figure 1: Partial convergence curves of CEC2013 unimodal functions and basic multimodal functions

Figure 2: Partial convergence curves of CEC2013 basic multimodal functions and composition functions
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4.6 Ablation Study
In order to verify the effectiveness and impact of the improved strategy proposed in this paper on the

performance improvement of PPE algorithm, we conducted the following experiments: SPPE represents
the PPE algorithm that combines multiple strategies, while SPPE1, SPPE2, and SPPE3 represent the PPE
algorithm that uses spiral mechanism, VNS, and balancing factor to optimize a single strategy, respectively.
Through these ablation experiments, we aim to evaluate the specific effects of each improvement strategy on
the performance of PPE algorithms. The results are shown in Table 5. From the comprehensive evaluation
of mean and standard deviation, the three single-strategy optimized PPE algorithms perform significantly
better than the original PPE algorithm in 25 out of 28 functions, which indicates that the proposed
improvement strategies effectively enhance the performance of the algorithms.

Table 5: Experimental results of SPPE with single-strategy improvement algorithm

PPE PPE1 PPE2 PPE3 SPPE
F1 Mean −1392.3803 −1396.462 −1303.5212 −1389.7405 −1397.0307

Std 1.87025254 0.23013516 29.4120828 3.5413881 1.52231359
F2 Mean 49359211.9 33704868 51551544.1 47810856.6 33470195.8

Std 10196846.2 9463142.1 17660454.9 13751161.8 9220931.05
F3 Mean 1.6342E+10 1.031E+10 2.9533E+10 1.5673E+10 7946038298

Std 4315434996 6720820089 1.3205E+10 6610536731 3832176835
F4 Mean 68442.3282 66254.694 88152.2155 75541.9807 59898.7422

Std 11268.9706 16420.5557 17278.2507 9228.55691 14128.1983
F5 Mean −868.84949 −961.0164 −886.25335 −875.61977 −977.14966

Std 21.1638953 12.9062241 16.7144081 21.8468404 8.80260199
F6 Mean −678.90512 −775.2217 −670.23805 −661.41531 −783.47575

Std 46.2122903 38.4117615 46.4295207 52.6839515 67.8895299
F7 Mean −643.9364 −627.00925 −630.63246 −615.39991 −683.92441

Std 36.715322 19.2723848 42.9903827 53.4524997 19.1850276
F8 Mean −678.77073 −678.77274 −678.77174 −678.7728 −678.77778

Std 0.04703793 0.04433078 0.03344835 0.04203007 0.03801589
F9 Mean −537.2304 −523.61471 −537.15063 −536.76342 −544.13175

Std 4.7813727 4.26804068 5.37376746 4.12144016 6.02248468
F10 Mean −326.05723 −302.50696 −374.606 −328.32742 −433.4597

Std 32.1762948 20.863925 55.5346043 48.6980097 17.6855861
F11 Mean 46.2665481 −20.95406 38.4231372 79.9396773 −171.70395

Std 61.2536097 75.8146426 61.0600545 64.8352922 54.0574552
F12 Mean 323.199149 72.112184 580.51846 356.939505 63.8100303

Std 75.7097871 73.6053483 151.905962 79.1251987 65.05993
F13 Mean 584.072799 393.52317 731.231849 612.864022 375.877432

Std 74.3250426 66.0210656 149.247723 122.160121 87.2377791
F14 Mean 5355.63816 4418.70549 3782.682 5635.34419 3777.47131

Std 629.811333 848.035828 724.225729 783.526432 585.630383
F15 Mean 9376.14745 9211.6369 10258.2517 9308.05434 9147.52853

Std 986.270376 1010.25287 1128.36272 877.503801 1244.245
F16 Mean 202.237491 204.910709 202.461706 202.0707 203.12866

Std 0.47438864 0.99595074 0.58988355 0.83854705 1.00426266
F17 Mean 916.650199 643.302491 624.29592 954.386442 580.651717

(Continued)
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Table 5 (continued)

PPE PPE1 PPE2 PPE3 SPPE
Std 78.2407373 47.697251 11.1636177 88.0247353 44.3342113

F18 Mean 1236.85237 993.898848 991.38011 1264.64669 884.386379
Std 121.077595 91.7983123 95.870048 111.05549 85.0075358

F19 Mean 551.440053 524.039135 522.02506 550.310798 520.716659
Std 12.4091781 6.54767867 0.67873647 8.35304328 4.83743393

F20 Mean 624.487112 624.441664 623.6761 624.662364 624.315267
Std 0.28169586 0.44744773 0.18838842 0.30372005 0.80004538

F21 Mean 1631.48333 1627.6339 1780.23537 1635.78445 1631.56879
Std 204.006072 275.307293 225.15921 266.010779 238.136896

F22 Mean 9831.42722 7470.4985 9472.81515 9620.53571 6031.92143
Std 1156.17559 1358.8164 1184.64244 1258.37074 645.404482

F23 Mean 12928.6642 11692.156 13792.1896 12827.6906 12167.1377
Std 1263.48795 1255.61092 1183.24549 1336.47987 1617.40332

F24 F24 1405.31287 1364.0946 1409.91489 1406.97327 1359.12975
Std 19.2520903 21.6455686 25.6354095 23.6300985 17.0420667

F25 Mean 1614.75213 1554.0337 1660.48712 1643.61499 1542.91587
Std 28.0265683 21.9751805 49.743744 36.1297213 19.0160363

F26 Mean 1589.4397 1602.73696 1600.04149 1625.81634 1614.53643
Std 101.057302 92.3364841 120.720005 91.0900627 85.9657819

F27 Mean 3482.971 3151.16755 3577.04168 3141.7961 3130.78682
Std 145.015878 118.969756 197.293298 170.077039 146.644759

F28 Mean 7913.5416 2777.4587 6967.5306 7890.6452 2561.17104
Std 939.568388 1125.40079 2721.22281 663.937736 1523.48062

Note: In the table, bold entries indicate the optimal values.

On unimodal functions and composition functions, SPPE1 reaches the optimal solution among the
4 algorithms, which is superior to other single-strategy optimization PPE algorithms and similar to the
data obtained by the SPPE algorithm. This indicates that the spiral mechanism optimization strategy has
significant effect in improving the performance of the algorithm on single peaked functions, especially in
enhancing the algorithm’s ability to find the optimal solution.

On basic multimodal functions, SPPE2 and SPPE3 perform comparably on functions F7 F10, but on
other functions, the notation of SPPE2 outperforms most of the other PPE algorithms optimized by a single
strategy. Therefore, this verifies that the VNS optimization strategy is significantly effective in improving the
algorithm’s global exploration and local exploitation.

The experimental data of SPPE3 on functions F8, F16, F27 outperforms other improved algorithms.
Although SPPE3 has no obvious shortcomings in improving the algorithm’s optimization searching ability
or local exploitation ability compared to SPPE1 and SPPE3, it helps to balance the algorithm’s performance
in a comprehensive way.

In the above experimental data, the SPPE algorithm is less than or equal to other improved algorithms
except in 4 functions. It shows that the fusion of multiple strategies makes the PPE optimization algorithm
combine the advantages of each improvement strategy to improve the performance of the algorithm, and rely
on the effect of different strategies to neutralize the shortcomings of each improvement strategy, avoiding
the influence of the shortcomings of the improvement strategy on the algorithm.
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5 SPPE Applied to Data Clustering

5.1 SPPE-K-Means
To address the dependency of K-means on the initial cluster centers, we propose an improved K-means

algorithm that leverages the rapid convergence of the SPPE algorithm and its capability to efficiently find
the global optimal solution. The SPPE algorithm optimizes the position of Phasmatodea through iterative
updates, and using the final optimal solution as the clustering center, instead of the clustering center obtained
by the traditional algorithm after random initialization which has uncertain factors. To validate the clustering
performance of SPPE in this paper, classic datasets from the UCI repository including Wine, Iris, Zoo, Glass,
Pima, Ionosphere, and Vehicle were selected for experimentation. The dataset’s comprehensive information
is provided in Table 6.

Table 6: Information on the experimental dataset

Dataset Number of samples Number of attributes Number of categories
Ionosphere 351 34 2

Glass 214 9 6
Iris 178 13 3
Zoo 101 16 7

Wine 150 4 3
Pima 768 8 2

Vehicle 846 18 4

5.2 Analysis of Clustering Experiment Results
In this simulation experiment, GA, PSO, GWO, PPE, HHO, AOA, BOA and SPPE are introduced for

comparison, and the algorithms are iterated for 100 times and run independently for 10 times, and the
experimental findings are presented in Tables 7–9.

Table 7: WCSS metric values for different algorithms on each dataset

GA PSO GWO PPE HHO AOA BOA SPPE
Wine Mean 1074747167 1023126880 29295409.3 90605057.5 46524302.7 29539220.8 56269960.6 18907733

Std 264200697 147967878 6738203.93 59760327.4 30059233.2 13689041.7 18072689.5 1063610.24
Iris Mean 1078.35308 1076.72054 296.19085 266.367679 326.919305 517.879426 579.042695 156.43405

Std 179.875371 231.285195 107.884534 269.55373 245.362891 147.831228 164.269975 38.359326
Zoo Mean 13145.0101 12863.9816 1195.95357 3790.57588 582.11333 677.85017 925.549847 723.981388

Std 1652.93858 1420.38352 292.031783 4258.46032 85.0683406 140.216101 63.9148596 78.0274691
Glass Mean 938434.472 759303.324 9944.19096 197751.585 2361.9365 157690.659 139874.997 2266.138

Std 211369.424 210048.694 3954.18822 377240.585 823.79519 96116.8174 99586.5277 376.150996
Pima Mean 399.292039 418.208256 157.085871 133.767382 208.451289 214.321593 224.334146 133.13366

Std 91.2762013 69.1434394 10.2629981 7.11376689 24.5434324 26.7289556 22.5241903 44.7431245
Ionosphere Mean 5637.65527 5689.37483 3576.58439 2760.14604 3395.20926 3662.17161 3753.32245 2591.3896

Std 396.702148 241.760686 3355.76735 71.147509 33.3540917 80.7763106 107.42683 216.652481
Vehicle Mean 5340.18999 5047.03627 2809.8837 1632.15444 2741.74071 3147.54261 3205.19453 1496.9494

Std 601.056512 554.450656 350.19696 351.790043 161.962347 144.963233 262.413113 154.230178

Note: In the table, bold entries indicate the optimal values.

In this paper, we utilize Within-Cluster Sum of Squares (WCSS), Silhouette Coefficient (Sc) and the
Davies-Bouldin Index (DBI). Sc is used to evaluate the goodness of clustering effect, DBI index is used as a
metric to evaluate the performance of clustering algorithms, and WCSS is a widely used method of evaluating
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the effectiveness of clustering.

WCSS = ∑k
i=1∑x∈Ui ∣x − ci ∣2 (20)

where Ui represents the set of all samples in the i-th cluster. The smaller the WCSS, the better the clustering
performance of the algorithm. Sc combines the tightness within a cluster and its separation from other
clusters. The value of Silhouette Coefficient ranges from −1 to 1, the closer to 1, the better the clustering result.

Sc(i) = b(i) − a(i)
max(a(i), b(i)) (21)

The average distance value of a sample to other points in the same cluster is a(i) and b(i) is the average
distance value of a sample to samples in different clusters closest to it. The DBI index assesses the closeness
between clusters and the proximity of sample points within clusters once the clustering process is finished.

DB = 1
k∑

k
i=1 max

Si + S j

d(i , j) (22)

Si =
√

1
ni
∑ni

a=1 ∥x
(i)
a − ci∥

2
(23)

where k denotes the number of clusters, Si signifies the average distance from all samples in the i-th cluster
to its center, ni indicates the number of samples in the i-th cluster, and d(i , j) is the distance between the
centroids of the i-th and the j-th clusters. The DBI index represents the ratio of the tightness within clusters
to the separation between clusters. A higher level of tightness within clusters, coupled with greater separation
between them, indicates a more effective clustering outcome.

Table 7 displays the WCSS indicator values of the algorithms on each dataset. On the Zoo dataset,
the results of SPPE are not as good as those of the HHO algorithm. However, in datasets such as Iris and
Wine where data separation is not distinct, the WCSS results of SPPE-K-means clustering algorithm are
improved. Meanwhile, on complex datasets like Pima and Glass, the clustering performance of SPPE-K-
means is notably superior to other algorithms. This supports the effectiveness of the enhanced algorithm
presented. Table 8 displays the DBI metric values for the algorithm across the datasets. On each dataset,
the results of SPPE consistently yield the minimum value, indicating that incorporating the SPPE algorithm
into K-means improves its clustering effectiveness. This result verifies that the SPPE-K-means algorithm
has a good clustering effect on these seven datasets, effectively reduces the dependence of K-means on
the initial clustering centers, and shows that K-means combined with the SPPE algorithm can improve its
clustering effect. The Sc results, as shown in Table 9, indicate that the SPPE algorithm outperforms other
algorithms on most datasets, except for the Pima dataset. This demonstrates that the intra-cluster samples
are tightly distributed, and the clustering performance is significant, providing a strong basis for evaluating
the clustering effectiveness. In summary, the SPPE algorithm can be effectively used in the field of clustering
analysis and has strong applicability.

Table 8: DBI metric values for different algorithms on each dataset

GA PSO GWO PPE HHO AOA BOA SPPE
Wine Mean 6.388506 5.907917 1.733354 2.8504704 2.7284255 0.894031 2.110252 0.6356308

Std 0.529427 0.402513 0.205393 0.2629728 0.9585203 0.457415 0.400036 0.0926289
Iris Mean 1.6368825 1.575565 0.856628 0.775189 0.83433 1.044958 1.211281 0.635631

Std 0.3554493 0.280914 0.06401 0.153117 0.084156 0.113488 0.161626 0.092629
Zoo Mean 11.58504 11.82228 5.17913 8.324481 2.198299 4.216268 7.733347 0.333515

(Continued)
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Table 8 (continued)

GA PSO GWO PPE HHO AOA BOA SPPE
Std 0.985365 0.965011 1.20708 1.64106 0.725014 4.243484 3.049385 0.541015

Glass Mean 3.650136 3.723107 1.9927 2.67871 2.33893 0.53537 3.201357 0.47783
Std 0.212855 0.240576 0.083606 0.27222 0.17016 0.04577 0.165428 0.43041

Pima Mean 1.238404 1.261189 0.889104 0.850765 0.928978 0.962727 1.072583 0.684489
Std 0.103682 0.086077 0.030425 0.174447 0.058496 0.054619 0.045898 0.094428

Ionosphere Mean 1.663545 1.668663 1.237264 1.295554 1.234572 1.61163 1.411567 1.025201
Std 0.115572 0.086534 0.024973 0.109426 0.067426 0.099324 0.061377 0.050053

Vehicle Mean 1.698139 1.642265 1.316946 1.291805 1.359096 1.546008 1.440858 1.11879
Std 0.095696 0.108278 0.037065 0.102189 0.10184 0.094903 0.074888 0.222149

Note: In the table, bold entries indicate the optimal values.

Table 9: Sc metric values for different algorithms on each dataset

GA PSO GWO PPE HHO AOA BOA SPPE
Wine Mean 0.3247723 0.3472307 0.5176163 0.4528987 0.4796872 0.4629137 0.3142687 0.6865432

Std 0.1695174 0.2572736 0.0992017 0.2651527 0.1540728 0.3364921 0.0263721 0.289012
Iris Mean 0.4768328 0.5173519 0.6698765 0.6709377 0.5376892 0.6982731 0.5569483 0.7590121

Std 0.2946822 0.351275 0.0448405 0.109661 0.1693762 0.3556292 0.0672984 0.0452918
Zoo Mean 0.2174824 0.3768295 0.4241561 0.4749019 0.5293847 0.5984726 0.3276037 0.6378901

Std 0.5847248 0.2984732 0.0512099 0.0804871 0.3748293 0.2423565 0.1628471 0.1780123
Glass Mean 0.3748279 0.3929385 0.4094093 0.3799591 0.5842938 0.5290847 0.4664703 0.7679102

Std 0.3638295 0.1947228 0.1420999 0.1662631 0.2984729 0.3748209 0.2980293 0.1372345
Pima Mean 0.3784074 0.2984029 0.2263243 0.2890801 0.5934255 0.6329385 0.3638295 0.5413451

Std 0.2984249 0.1638295 0.0216127 0.0386702 0.1947289 0.1794729 0.3584743 0.2379567
Ionosphere Mean 0.4729385 0.3782669 0.511336 0.5146962 0.5794043 0.5944253 0.4290475 0.7525608

Std 0.1298047 0.0945024 0.0080495 0.0230494 0.2298476 0.2636295 0.1794428 0.1270461
Vehicle Mean 0.3942043 0.3382947 0.3446542 0.4442173 0.5729385 0.5925639 0.4374829 0.6131979

Std 0.5847629 0.2924463 0.0561124 0.0884927 0.3684729 0.2984729 0.6382947 0.0248901

Note: In the table, bold entries indicate the optimal values.

6 Conclusion and Future Work
The SPPE-based K-means algorithm proposed in this paper, which obtains optimized cluster centers,

addresses the issue of K-means’ significant dependency on the initial cluster centers. Firstly, VNS is intro-
duced to quickly lock the high quality solutions. Secondly, by integrating the proposed spiral factor updating
formula, individual search space is expanded, enhancing global search capability, thereby improving search
efficiency and convergence speed. Finally, the balancing factor fully utilizes the effective information from the
Phasmatodea population, making the SPPE algorithm more flexible, enhancing its exploration capabilities,
and establishing a more balanced SPPE algorithm for exploration and exploitation.

Subsequently, we carried out extensive experiments on the SPPE algorithm with the CEC2013 bench-
mark functions. The experimental findings indicate that the SPPE algorithm offers notable benefits regarding
performance and greatly enhances convergence. In addition, we also conducted clustering experiments based
on the UCI dataset. The experimental findings indicate that K-means clustering, when based on the SPPE
algorithm, demonstrates enhanced optimization capability and offers greater clustering stability.

Future research can focus on optimizing SPPE’s performance by developing adaptive parameter adjust-
ment methods to dynamically optimize key parameters (e.g., spiral mechanism, balancing factor) based on
problem characteristics, enhancing adaptability. Additionally, as SPPE’s computational complexity grows
with population size and problem dimensionality, future studies will explore parallelization strategies, such
as GPU acceleration or distributed frameworks, to improve scalability and efficiency for large-scale problems.
These efforts will further enhance SPPE’s robustness, efficiency, and practical application value.
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While this study demonstrates the effectiveness of SPPE in data clustering, future research will explore
its application to more complex tasks. SPPE can be applied to image segmentation, dividing images into
meaningful regions based on features like pixel intensity or texture, and is well-suited for non-convex, high-
dimensional search spaces. It could also analyze high-dimensional biological data, such as gene expression or
protein interaction networks, to uncover meaningful patterns. These applications will further validate SPPE’s
utility across diverse and complex domains, enhancing its relevance in both theory and practice.
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42. Hansen P, Mladenović N, Brimberg J, Pérez JAM. Variable neighborhood search. Cham: Springer; 2019.

https://doi.org/10.3390/sym12081222
https://doi.org/10.3390/math8040555

	Phasmatodea Population Evolution Algorithm Based on Spiral Mechanism and Its Application to Data Clustering
	1 Introduction
	2 Related Work
	3 Principle of PPE
	4 Improved PPE Algorithm: SPPE
	5 SPPE Applied to Data Clustering
	6 Conclusion and Future Work
	References


