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ABSTRACT: Graph convolutional network (GCN) as an essential tool in human action recognition tasks have achieved
excellent performance in previous studies. However, most current skeleton-based action recognition using GCN
methods use a shared topology, which cannot flexibly adapt to the diverse correlations between joints under different
motion features. The video-shooting angle or the occlusion of the body parts may bring about errors when extracting
the human pose coordinates with estimation algorithms. In this work, we propose a novel graph convolutional learning
framework, called PCCTR-GCN, which integrates pose correction and channel topology refinement for skeleton-based
human action recognition. Firstly, a pose correction module (PCM) is introduced, which corrects the pose coordinates
of the input network to reduce the error in pose feature extraction. Secondly, channel topology refinement graph
convolution (CTR-GC) is employed, which can dynamically learn the topology features and aggregate joint features in
different channel dimensions so as to enhance the performance of graph convolution networks in feature extraction.
Finally, considering that the joint stream and bone stream of skeleton data and their dynamic information are also
important for distinguishing different actions, we employ a multi-stream data fusion approach to improve the network’
s recognition performance. We evaluate the model using top-1 and top-5 classification accuracy. On the benchmark
datasets iMiGUE and Kinetics, the top-1 classification accuracy reaches 55.08% and 36.5%, respectively, while the top-5
classification accuracy reaches 89.98% and 59.2%, respectively. On the NTU RGB+D dataset, for the two benchmark
settings (X-Sub and X-View), the classification accuracy achieves 89.7% and 95.4%, respectively.
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1 Introduction
Recently, human action recognition has been widely investigated and it has been adopted in the domain

of computer vision, such as in the recognition of abnormal actions using graph convolutional networks, and
dynamic hand gesture recognition using 3D convolutional neural network (3D-CNN) and Long Short-Term
Memory (LSTM) networks. In particular, Due to its robustness in dynamic environments and complicated
backgrounds, skeleton-based action recognition has become more widely studied. In contrast to RGB-based
action recognition approaches, action recognition using skeletal data can better remove the interference of
background noise and focus on the changes in key points and skeleton structure of the human body, thus
improving recognition accuracy. In addition, skeleton-based feature extraction is more adaptable to changes
in lighting and viewing angle. Owing to the temporal characteristics of human actions, the skeleton-based
approach performs well in temporal modelling in action recognition and can effectively capture the dynamic
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changes of actions. Overall, using skeletons for action recognition provides significant efficiency, stability,
and flexibility advantages.

In earlier works, joint coordinate points were used to represent human feature vectors [1–3], but the
connections between body joints were ignored. As deep learning techniques continue to evolve, skeleton
data has been treated as a set of independent features, which are then processed into pseudo-images
[4–6], or coordinate vector sequences [7–9], and employed to forecast human behaviors through recurrent
neural networks (RNNs) or convolutional neural networks (CNNs). However, the inherent connections
between joints, which can reflect the topology of the human body, are not represented in these method.
Therefore, the connections between body joints should be considered in action recognition using skeletons.
In this field, spatial-temporal graph convolutional network (STGCN) [10] is the first graph-based neural
network approach, where graphs are used to represent the connections between joints in the human body
so as to automatically learn spatial and temporal relationships from the data. Due to the remarkable
performance of STGCN in action recognition using skeletons, several GCN-based approaches have also
been put forward [11,12] to enhance the model’s performance. However, these methods use a manually
defined graph topology in the network structure, making it challenging to capture the relationships between
irregularly connected human joints. To overcome this challenge, recent approaches [13–15] learn the human
skeleton’s topology by using adaptive graph convolution or other mechanisms. However, these methods use
one topology in all channels, which hampers the ability of GCN to extract features effectively. Since each
channel corresponds to a distinct type of motion characteristic, and the connections between joints under
different motion characteristics may be different, using one or the same topology may be not the best choice.

Furthermore, it is essential to extract key coordinate features of the human body from pictures or videos
in action recognition using skeletal data. As pose estimation algorithms continue to evolve, despite that these
algorithms have achieved an improved performance, wrong extraction of pose features may occur due to the
obscured view or body parts captured by the camera. For example, Human action recognition using encoder-
decoder network (HAREDNet) [16] was proposed to overcome the problem of random changes in human
variations, illumination, and backgrounds to improve model performance in uncontrolled environments.
In this study, we propose pose correction and channel topology graph convolutional network (PCCTR-
GCN) to address the above challenges. Compared with STGCN, the PCCTR-GCN which consists of a pose
correction module and channel topology graph convolution has achieved a better performance in action
recognition. First, we correct the human pose with spatial and temporal information as a way to reduce
the likelihood of incorrect estimation of pose features in 2D or 3D human poses. Second, we use channel
topology graph convolution to create graph convolutional network units that can dynamically learn the
topology and combine joint features from different channel dimensions, in order to enhance the flexibility
of GCN in feature extraction. To further improve the accuracy of action recognition, we use a multi-stream
fusion network based on raw joint coordinate information (joint streams), spatial coordinate difference
information of joint data (bone streams), and temporal dimensional differences in joint streams and bone
streams (joint motion streams and bone motion streams), respectively.

To assess the performance of PCCTR-GCN, we perform a series of experiments on three public datasets:
iMiGUE [17], Kinetics-Skeleton [18], and NTU-RGB 60 [7]. The experimental results show that our proposed
method outperforms other methods on all three datasets. The contribution of this study can be summarized
as follows: (1) We propose a new graph convolution learning framework, namely the PCCTR-GCN, which
combines pose correction with channel topology refinement graph convolution. In addition, it can correct
the pose through learning the temporal and spatial information and reduce potential errors during pose
feature extraction. Besides, it can dynamically learn the topology in different channel dimensions and
effectively aggregate joint features to enhance the network’s performance. (2) A multi-stream fusion network
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based on skeleton data is introduced, which includes joint streams, bones streams, joint motion streams
and bone motion streams, respectively. The performance of the model has been improved by fusing all
data streams. (3) Our approach outperforms other methods on three datasets, as demonstrated by the
comparative results.

The organization of the paper is outlined as follows: Section 2 reviews related work on GCN and
action recognition based on skeleton data using GCN, while Section 3 gives a detailed explanation of the
PCCTR-GCN. Section 4 discusses the experimental design, including ablation studies and experimental
results. Section 5 concludes with the research findings and briefly describes the future directions.

2 Related Work

2.1 Graph Convolutional Networks
It was graph neural networks (GNN) that constituted the first method for processing graph-structured

data. Recently, numerous variations of the technique have been proposed, with a significant amount of
emphasis on GCN method owing to the benefits it offers in dealing with graph-structured information.
Specifically, spatial and spectral approaches are the two main categories into which GCNs are typically
divided. The spatial methods [19–21] to convolutional filters applied directly to graph nodes and their
neighbours. Comparatively, in spatial methods, spectral methods [22–25], the spectral domain of the
graph signal is transformed to the spectral domain by means of a fourier transform and then perform
convolution operations. Furthermore, several strategies have been proposed for enhancing the performance
of GCNs. One method adds an attention mechanism that applies distinct weights to different nodes of
the neighbors [26]. A subgraph training method is proposed in the work [27] to train the model on large
scale graphs with less the memory and computational resource requirements of the model on the graph
convolution. Therefore, in this work we empolyed GCN to learn the representation of body gesture from
skeleton information estimated by estimation algorithms.

2.2 GCN-Based Skeleton Action Recognition
Human skeleton feature data can be readily obtained using depth sensors and pose estimation tech-

niques, and have strong robustness to complex backgrounds [28] from videos for action recognition using
skeletal data. GCN has been widely used [15,29,30], which can be divided into manually marked methods
and deep learning methods. ST-GCN [10] was the first to propose the use of spatial-temporal graphs to
represent joint sequence data and built a model using graph convolutional networks. Since previous graph
topologies are set manually in GCN-based methods, Two-stream adaptive graph convolutional network(2s-
AGCN) [13] developed an adaptive graph convolutional network framework that learns graph topologies
dynamically for various convolutional layers and skeleton data, offering advantages for action recognition
studies. To address the drawback of the large computational complexity of GCN-based methods, Shift-
GCN [31] developed a lightweight and efficient graph convolutional network that replaces traditional graph
convolutions with shift-graph operations and pointwise convolutions to obtain good results. Similarly, Pose
refinement graph convolutional network(PR-GCN) [32] achieved a good balance between accuracy and
network parameters through the operation of gradually fusing motion and spatial information. In GCN,
the vertex connectivity relations of the skeleton graph contain important information, many researchers are
interested in topology-based modeling methods, and such research work can be divided into two categories:
1) whether the topological information can be dynamically adjusted during inference, which can be divided
into static methods [10] and dynamic methods [15]; 2) whether the topology is shared in different channels
[32–34], it can be further divided into topology shared methods and topology unshared methods. Recently,
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transformer-based networks have show great potential on skeleton-based action recognition tasks. GCN-
Transformer Network [35] employed GCN in combination with a transformer as a means of obtaining action
representations that maintain the human skeleton’s natural topology. To extract adjacency matrices with
semantically meaningful edges, Hierarchically decomposed graph convolutional network (HD-GCN) [36]
employed a hierarchically decomposed GCN for action recognition using skeletal data. Interactional channel
excited GCN (ICE-GCN) [37] and large-kernel attention graph convolutional network (LKA-GCN) [38]
enhance the accuracy and robustness of action recognition by introducing the interaction channel excitation
(ICE) module and skeleton large kernel attention (SLKA) arithmetic. These advancements enable the models
to effectively capture interactions among various spatial-temporal patterns and improve the modeling of
long-term dependencies. Table 1 shows the topological structure characteristics of each method. From the
table, it can be seen that most of the methods use a shared topological structure, and none of the methods
simultaneously satisfy both the “Non-shared” and “Dynamic” properties.

Table 1: Topologies used by different methods

Topology Methods

Non-shared Dynamic
× × ST-GCN [10]
× √

AGCN [13], Dy-GCN [15]√ × DC-GC [34]

In skeleton-based action recognition methods, many approaches begin by utilizing pose estimation tools
to propose key point feature coordinates of a video character, followed by training them using corresponding
neural network methods. However, the extraction of joint coordinates may be prone to errors due to factors
such as the shooting angle of the video or occlusion of the character’s limb parts. Moreover, traditional
skeleton-based graph convolution methods for action recognition often rely on a single topology for the
channels, which limits the ability of graph convolution to extract meaningful features. Consequently, this
limitation can affect the recognition of the model’s performance. In order to address the above issues, this
paper built a new graph convolution learning framework, which combines pose correction with channel
topology refinement graph convolution.

3 Method
In this part, we introduce the design of the Pose Correction and Channel Topology Refinement Graph

Convolution Network (PCCTR-GCN), including the details of the pose correction module, channel topology
graph convolution, and skeleton data multi-stream fusion. The proposed PCCTR-GCN consists of three
components as shown in Fig. 1. Firstly, the input pose was estimated and corrected by the pose correction
module. Secondly, the channel topology refinement module was used to learn its topology and aggregate
joint features in different channel dimensions. Finally, we performed multi-stream data modality fusion,
using joint streams, bone streams, joint motion streams, and bone motion streams of body skeleton data,
respectively. Independent training was carried out for each stream, and the scores of the four streams were
combined to get the final scores. All aspects of the network framework are explained in detail in next section.
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Figure 1: Overview of the proposed PCCTR-GCN framework

3.1 Preliminaries
Graph convolutional networks model body skeleton data as a graph G = (V , E) with joints as vertices

and bones as the edges, where V = {v1 , . . . , vN} is the set of N vertices and E is the set of edges. The adjacency
matrix A ∈ {0, 1}N×N is employed to depict the skeleton graph, where its element ai j represents the strength
of the connection from vi to v j. The neighboring nodes of vi are denoted as N (vi) and ai j ≠ 0. X is the set
of features for vertex N, denoted by the matrix X ∈ RN×C , and the features of vi are denoted as xi ∈ RC . The
shared-topology graph convolution is aggregated by ai j to the neighboring vertices of vi and represented by
a feature transformation using weights W, which can be denoted as:

zi = ∑
v j∈N(vi)

ai jx jW (1)

where ai j can be represented in two ways: the parameters are defined manually or can be trained through
static methods, and generated by the model of the input samples through dynamic methods.

3.2 Pose Correction Module
Although action recognition using skeletal data is highly robust in complex backgrounds, there may be

errors in extracting human joint features using pose estimation algorithms, due to the video shooting angle
or occlusion of the characters’ body joints by objects, the accurate recognition of body joint coordinates
becomes challenging when using OpenPose for extracting key body points.

In this work, the offset (Δx , Δy) of each joint was estimated by the pose correction module and
added to the corresponding coordinate (x , y) to reduce the estimation errors. For two-dimensional skeleton
sequence, we obtained the coordinates (x , y) of each joint by using the human pose estimation algorithms.
As illustrated in Fig. 2, the offset was determined by combining convolution, graph convolution, and
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temporal convolution layers. Pose correction was achieved by using the graph convolution layer for spatial
relationships and the temporal convolution layer for time continuity. Finally, the offset (Δx , Δy) was added
to the two-dimensional coordinates of each joint. Similarly, for three-dimensional skeleton sequences, we
extracted the location coordinates of the body’s joints, then calculate the offset (Δx , Δy, Δz) of each joint
coordinate (x , y, z) using this module and added it to its corresponding coordinate of three-dimensional
skeleton sequence. Therefore, the corrected skeleton coordinates can be denoted as:

Xi = xi + Δxi (2)

where Xi is the corrected coordinate, xi is the original coordinate, and Δxi is the offset from the original
coordinate. The pose correction module corrects each skeleton coordinate data by estimating the offsets of
each joint and adding these offsets to the original skeleton coordinates. This process improves the accuracy
of the pose.

Figure 2: Illustration of the pose correction module. “Conv”, “GConvL”, “TConvL” denotes 1 × 1 convolution layers,
graph and temporal convolution layers, respectively

3.3 Channel Topology Refinement Module
To aggregate joint features efficiently, We introduced the channel topology refinement module [33]. As

shown in the Fig. 3, the dynamic topology refinement graph convolution is made up of three components: (1)
Feature transformation comprising the function T(⋅); (2) Channel topology modeling, including a function
M(⋅) for relational modeling and a function R(⋅) for refinement; (3) The features in each channel are
aggregated with the corresponding topology by the aggregation function A(⋅), and the final features are taken
as output. The process can be represented as:

Z = A(T (X) , R (M (X) , A)) (3)

where Z ∈ RN×C′ represents the output, X ∈ RN×C represents the input feature, and A ∈ RN×N represents a
shared topology.

In feature transformation process, a linear transformation operation was employed as a shared topolog-
ical graph convolution. The transformation of low-level features into high-level representations via T(⋅) can
be denoted as:

X̃ = T (X) = XW (4)

where W ∈ RC×C′ represents the weight matrix and X̃ ∈ RN×C′ represents the changed feature.
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Figure 3: The schematic process of the CTR-GC(Section 3.3)

In channel topology modeling, firstly, the channel correlation Q ∈ RN×N×C′ between vertices was
modeled using the function M(⋅). Assuming that a pair of vertices (vi , v j) is provided, then its corresponding
feature is (xi , x j), thus the correlation modeling function M(⋅) can be denoted as:

M (ψ (xi) , ϕ (x j)) = MLP (ψ (xi) ∥ ϕ (x j)) (5)

where MLP is multilayer perceptron, ∥ stands for concatenate operation. ψ and ϕ are the linear trans-
formation functions used for feature dimensionality reduction. Finally, the channel specificity correlation
Q ∈ RN×N×C′ was obtained through the linear transformation ξ to increase the channel dimension. It can be
denoted as:

Qi j = ξ (M (ψ (xi)), ϕ (x j))) (6)

where Qi j ∈ RC′ represents the channel-specific relationship between vi and v j. Ultimately, the channel
topology R ∈ RN×N×C′ was determined using the shared topology and the channel-specific correlation Q, it
can be denoted as:

R = R (Q, A) = A + α ⋅Q (7)

where α represents a scalar quantity that can be used to adjust refinement intensity.
In channel feature aggregation, the modified different channel topologies Rc ∈ RN×N of different

channels were matched with the corresponding high-level features X̃ (c ∈ {1, ..., C′}). The aggregated overall
feature Z is the output of the aggregation function A(⋅), it can be denoted as:

Z = A(X̃, R) = [R1x̃∶,1 ∥ R2x̃∶,2 ∥ ⋅ ⋅ ⋅ ∥ RC′ x̃∶,C′] (8)

3.4 Multi-Stream Data Fusion
In skeleton-based GCNs studies, 2D or 3D joint coordinates are usually used as input, However, in

addition to the raw joint information stream of the skeleton data, the bone information stream (spatial
coordinate difference information of joint data) and its corresponding joint motion information stream and
bone motion information stream (temporal dimensional differences in joint streams and bone streams) are
also important for action recognition. They can be represented by the following mathematic formulas: source
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joint coordinates defined in frame t can be represented as vi ,t ,S = (xi ,t ,S , yi ,t ,S , zi ,t ,S), and the target joint can
be represented as:

v j ,t ,T = (x j ,t ,T , y j ,t ,T , z j ,t ,T) (9)

The bones can be depicted as follows:

bi , j ,t = (x j ,t ,T − xi ,t ,S , y j ,t ,T − yi ,t ,S , z j ,t ,T − zi ,t ,S) (10)

And the bone stream data is generated by processing the raw joint stream. Motion information can
be calculated based on the same joint coordinates or differences in sequential bone frames. The set vi ,t =
(xi ,t , yi ,t , zi ,t) is the joint at frame t, vi ,t+1 = (xi ,t+1 , yi ,t+1 , zi ,t+1) is the same joint at frame t + 1, and the
motion information is represented as:

mi ,t ,t+1 = (xi ,t+1 − xi ,t , yi ,t+1 − yi ,t , zi ,t+1 − zi ,t) (11)

The network is trained individually by inputting these four data streams to the network. Finally, the
fusion of “2s” (joint and bone streams), and “4s” (all data streams) are independently compared to compute
the final score. The workings of the PCCTR-GCN framework are outlined in Algorithm 1.

Algorithm 1: The operation of PCCTR-GCN
Input: the body skeleton data
Output: Action category
1: Initialize the video data and pose estimation tool OpenPose
2: for each frame in video do
3: Extract raw body joint coordinates (x , y) using OpenPose
4: end for
5: for each joint in the extracted coordinates do
6: Estimate the offset (Δx , Δy) using PCM
7: Update the joint coordinates via Eq. (2)
8: end for
9: for each layer in CTR-GC do
10: Perform feature transformation using function T(⋅)
11: Model channel topology using relation modeling function M(⋅) and refinement function R(⋅)
12: Aggregate features using aggregation function A(⋅) to produce refined features Z
13: end for
14: Calculate bone streams via Eq. (10)
15: Calculate joint and bone motion information via Eq. (11)
16: Train the network model separately for each stream
17: Compare the fusion of all data streams to obtain the final action.

4 Experiments
To verify the effectiveness of the pose correction module, the channel topology refinement module,

and the multi-stream data fusion frameworks, we analyzed separately their performance in different
configurations through extensive experiments on iMiGUE. Then on, we compared the experimental results
of PCCTR-GCN on iMiGUE, Kinetics, and NTU RGB+D with that of other methods.
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4.1 Datasets

iMiGUE. iMiGUE [17] was jointly released by the University of Qulu and Tianjin University in 2021.
It comprises 359 videos collected from online video sharing platforms, and each video lasts 0.5 to 25.8 min,
thus amounting to 2,092 min in total. The dataset includes 18,499 action samples with 32 categories of actions
(32 illustrative actions), and the duration of these action video clips range from 0.18 to 80.82 s in duration.
They are categorized into five types of actions, including “Body-Hand”, “Head-Hand”, “Hand”, “Head”, and
“Body”, depending on which part of the body the movement takes place. Fig. 4 shows the action categories
and distribution. The links to the original videos are accessible, and then according to the dataset tag file, we
obtained the training and test data sets using the video clipping tool FFmpeg. There are two types of labels
in the dataset, including action and emotion, and we only use the action label.

Figure 4: The distribution of iMiGUE sample numbers (C32 is illustrative gestures, not shown in the figure)

Kinetics. Kinetics [18] is a classical human action dataset, which has a total of 400 action behavior
labels. The skeleton sequences are divided into a training set (240, 000 clips) and a test set (20, 000 clips). The
original dataset is in video form, but Yan et al. (2018) [10] extracted human joint data from the video dataset
via OpenPose [39], where each joint point has 2D coordinates (X,Y) and a prediction confidence score Z.
Each skeleton feature contains 18 body joint points. For clips where multiple people appear in the video, only
the two people with the highest confidence scores were selected.

NTU RGB+D. NTU RGB+D 60 [7] is a commonly used dataset for 3D action recognition. The data is
collected by the depth camera Microsoft Kinect v2, and there are a total of 56,880 video clips falling into 60
categories. This dataset is available in both video and skeleton sequence formats. Each skeleton data point
contains 25 three-dimensional joint coordinates. Two evaluation standards are adopted: 1). X-sub: Training
set consists of 40,320 video clips and the test set contains 16,560 video clips, both divided by different actors.
2). X-view: Training set includes 37,920 clips from Camera 2 and Camera 3, while the test set has 18,960 clips
from Camera 1, with the division based on the cameras used for recording.

Top-1 and top-5 are commonly used metrics for evaluating skeleton-based action recognition. We report
top-1 and top-5 on the test sets of the first two datasets, and the top-1 for the third dataset.
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4.2 Details of the Implementation
We first carried out experiments on iMiGUE and re-extracted the skeleton feature data according

to the Evaluation Protocols [17] using the OpenPose [39] tool. Fig. 5 shows the body joints in the three
datasets. Fifty epochs, weight decay 0.0001, 64 batch size, and an optimizer of SGD were set up in network
training. In the first 10 epochs, a learning rate of 0.01 was used, and then it was scaled down by 10 epochs in
{20, 30} , {30, 40} , and {40, 50}, respectively. In iMiGUE, we kept 150 frames as input to the network. All
experiments in this study were conducted under RTX 3090 GPU and PyTorch deep learning framework.

Figure 5: The body joint points of iMiGUE, Kinetics, and NTU RGB+D correspond to left, middle, and right,
respectively

4.3 Ablation Study
To confirm the performance of the PCCTR-GCN component, we performed experiments using the

iMiGUE dataset. Firstly, we split the data into training and test sets with a 7:3 ratio, and obtained the training
set (13,936 video clips) and test set (4563 video clips). Secondly, the keypoint coordinates of the human body
in the video were extracted using OpenPose, and the feature data’s x and y coordinates were normalized to
values between 0 and 1. Finally, the processed feature file was used to generate separate training and test set
files, along with their corresponding label files.

4.3.1 Pose Correction Module
To evaluate the role of the pose correction module (PCM) in model performance enhancement, we

analyzed the impact of this module on action recognition performance. Table 2 illustrates the experimental
results on iMiGUE. As we re-extracted skeleton features from the original video dataset using OpenPose,
we first performed experiments in the backbone network (STGCN) using joint streams. Then the Pose
Correction Module (PCM) was manually added to the network and the differences between the two were
compared. As seen from the experimental results, The top-1 and top-5 accuracies of backbone are 49.43%
and 86.50%, respectively. After adding PCM to backbone, its top-1 and top-5 accuracies are 51.23% and
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87.26%, which are 1.8% and 0.76% higher than that of backbone, respectively. Moreover, to further verify
the robustness of PCM, we carried out experiments on the bone-motion, joint-motion, and bone-motion
streams, respectively. The experimental results are shown in Table 3 (“w” is the shortened form of “with”, “wo”
is the shortened form of “without”), and we compared the performance of PCM on each stream in detail.
Experimental results show that adding PCM to the network improves the top-1 and top-5 accuracies for the
bone streams, joint motion(JM) streams, and bone motion(BM) streams are 50.22%, 86.72%; 49.01%, 85.07%;
and 46.47%, 84.02%, respectively. Among them, for the bone streams and joint motion streams, compared
to the case without PCM, the top-1 accuracy and top-5 accuracy increased by 3.03% and 0.57%, and by 1.77%
and 0.81%, respectively. For the bone motion stream, compared to the case without PCM, the top-1 accuracy
decreased by 0.88%, while the top-5 accuracy improved by 1.12%. Overall, the experimental results indicate
that, except for the slightly lower top-1 accuracy in the bone motion streams, the results for other data stream
are all better after adding PCM compared to the backbone network.

Table 2: Comparison results of accuracy (%) using backbone and pose correction module (PCM) on the iMiGUE

Methods Top-1 Top-5
Backbone 49.43 86.50

Backbone+pcm 51.23 87.26

Table 3: Comparison results of accuracy (%) using pose correction module (PCM) in multi-stream data mode

Methods w/pcm wo/pcm Top-1 Top-5
Bone

√
47.19 86.15

JM
√

47.24 84.26
BM

√
47.35 82.90

Bone
√

50.22 86.72
JM

√
49.01 85.07

BM
√

46.47 84.02

4.3.2 Channel Topology Refinement Module
To demonstrate that channel topology graph convolution combined with a pose correction module

can improve the performance for skeleton-based human action recognition, firstly, according to [33], we
constructed a block of graph convolution units using the CTR-GC. The entire network consists of 10 blocks
of graph convolution units, which have 64, 64, 64, 64, 64, 128, 128, 128, 256, 256 and 256 output channels,
respectively. Then a data batching layer was added to the network layer to normalize the input data. Next, the
global average pooling and so f tmax classifier was used to obtain the prediction results. Secondly, we tested
two configurations: in the first configuration, the network was reconstructed using CTR-GC and the impact
on joint streams, bone streams, joint-motion streams, and bone-motion streams was analyzed separately.
In the second setting, based on the first configuration combined with the PCM, the overall effectiveness on
different data streams was verified. Table 4 illustrates the experimental results, the top-1 and top-5 of the
four data streams are 52.24%, 87.92%; 50.42%, 87.35%; 46.45%, 83.47%; and 46.84%, 83.10%, respectively,
after combining PCM in the CTR-GC-based network. Compared to the use of CTR only, the individual
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data streams were higher by 1.21%, 0.37%; 2.06%, 0.17%; 0.51%, 0.39%; and 1.73%, 0.04%, respectively. The
above results show that the combination of PCM in the network using CTR-GC significantly improves the
prediction performance of the model.

Table 4: Comparison results of accuracy (%) using CTR and CTR+PCM in each data stream, respectively

Methods Only CTR CTR+PCM Top-1 Top-5
Joint(a)

√
51.03 87.55

Joint(b)
√

52.24 87.92
Bone(a)

√
48.36 87.18

Bone(b)
√

50.42 87.35
Joint-motion(a)

√
45.94 83.08

Joint-motion(b)
√

46.45 83.47
Bone-motion(a)

√
45.11 83.06

Bone-motion(b)
√

46.84 83.10

4.3.3 Fusion of Multiple Data Streams
To improve accuracy, we examined the impact of fusing multiple data streams on action recognition

performance, and Table 5 shows the comparative results between them. Here we have two settings: firstly,
the fusion of joint and bone streams, named “2S-PCCTR-GCN”, and secondly, the fusion of four streams,
named “4S-PCCTR-GCN”. Moreover, we employed joint streams and bone streams as input, named “1s-
PCCTR-GCN” and “Bs-PCCTR-GCN”, respectively, and compared them with the fusion approach. As the
experimental results suggest, PCCTR-GCN attains the highest level of performance when all data streams
are fused, with top-1 accuracy and top-5 accuracy higher than the other three methods by 2.84% and 1.43%,
4.66% and 2.00%, and 1.31% and 0.46%, respectively. These results indicate that fusing multiple data streams
can significantly improve the performance of our proposed method. In particular, the best performance is
obtained when using all data streams.

Table 5: Comparison of results with accuracy (%) using different input data streams

Methods Top-1 Top-5
1s PCCTR-GCN(ours) 52.24 87.92
Bs PCCTR-GCN(ours) 50.42 87.35
2s PCCTR-GCN(ours) 53.77 88.89
4s PCCTR-GCN(ours) 55.08 89.35

4.3.4 Model Complexity Analysis of PCCTR-GCN
In order to analyze the impact of the individual modules on the complexity of PCCTR-GCN, we calcu-

lated the number of parameters (params), required by the model for each round of the test using backbone,
PCM, and CTR-GC, respectively. The results of the experiment are presented in Table 6. Compared with the
model using only the backbone network, PCCTR-GCN improves the top-1 accuracy and top-5 accuracy by
2.31% and 1.42%, respectively, after adding the modules, although the number of params increases slightly.
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Table 6: The parameter quantity of each module

Methods PCM CTRGC Top-1 (%) Top-5 (%) Params (M)
backbone 49.43 86.50 3.09

PCCTR-GCN
√

51.23 87.26 3.38√
51.03 87.55 3.39√ √
52.24 87.92 3.67

4.4 Comparison With the Other Methods
To evaluate the effectiveness of PCCTR-GCN, we compared the performance of the mode with other

advanced methods. In this section, three datasets (iMiGUE, kinetic, and NTU RGB+D) were used. In
iMiGUE, we selected 12 methods for comparison, among which nine are methods based on skeletal data,
namely ST-GCN [10], Shift-GCN [31], S-VAE [40], GCN-NAS [41], 2S-GCN [13], MS-G3D [42], DG-
STGCN [43], StrongAug [44] and CTR-GCN [33]. The other three methods are based on RGB data form,
including R3D-101 [45], I3D [46], and C3D [47]. The advantages of PCCTR-GCN can be fully demonstrated
by comparing a series of various deep learning-based methods with PCCTR-GCN. The performance of these
methods was reported in [17]. Table 7 illustrates the experimental results. We can see that the 4s PCCTR-
GCN better than other algorithms in top-1 values. Although the recognition accuracy is slightly lower than
MS-G3D [42] in top-5 values, a competitive performance was still obtained.

Table 7: Results of comparisons with other methods on iMiGUE

Methods Top-1 (%) Top-5 (%)
C3D [47] 20.32 55.31

R3D-101 [45] 25.27 59.39
I3D [46] 34.96 63.69

S-VAE [40] 27.38 60.44
ST-GCN [10] 46.97 84.09
2S-GCN [13] 47.78 88.43

Shift-GCN [31] 51.51 88.18
GCN-NAS [41] 53.90 89.21
MS-G3D [42] 54.91 89.98

DG-STGCN [43] 49.56 85.09
StrongAug [44] 53.13 87.00
CTR-GCN [33] 53.02 86.19

1s PCCTR-GCN(ours) 52.24 87.92
2s PCCTR-GCN(ours) 53.77 88.89
4s PCCTR-GCN(ous) 55.08 89.35

For Kinetics, we compared five GCN-based methods and one self-attentive method [48]. We rounded
the results to one decimal place, and Table 8 shows the comparison results with other methods. Specifically,
PCCTR-GCN achieves the best model prediction when fusing joint stream and bone streams, with top-1 and
top-5 of 36.5% and 59.2%, respectively. The comparative results of our method with other methods in NTU
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RGB+D are shown in Table 9, among which we conducted experiments on X-Sub and X-View and reported
their accuracy on top-1 values, respectively. Specifically, our “4s PCCTR-GCN” obtains 89.7% and 95.4%,
respectively, which is the best among the selected algorithms, in addition to the same accuracy as the Two-
stream TL-GCN(2s TL-GCN) method in the X-View. Based on the data in Tables 8 and 9, the conclusion can
be drawn that the values of top-1 and top-5 for PCCTR-GCN are higher than those of previously reported
methods in both datasets. In general, the comparison results above demonstrate that the proposed PCCTR-
GCN performs well in human action recognition.

Table 8: Results of comparisons with other methods on Kinetics

Methods Top-1 (%) Top-5 (%)
ST-GCN [10] 30.7 52.8
PR-GCN [32] 33.7 55.8
AS-GCN [49] 34.8 56.5

SAN [48] 35.1 55.7
2s-GCN [13] 36.1 58.7

2s TL-GCN [50] 36.2 59.0
1s PCCTR-GCN(ours) 35.7 58.2
2s PCCTR-GCN(ours) 36.5 59.2
4s PCCTR-GCN(ous) 36.3 59.1

Table 9: Results of comparisons with other methods on NTU RGB+D 60

Methods X-Sub (%) X-View (%)
STA-LSTM [51] 73.4 81.2

TCN [4] 74.3 83.1
VA-LSTM [8] 79.2 87.7

Clips+CNN+MTLN [52] 79.6 84.8
EleAtt-GRU [53] 79.8 87.1

Synthesized CNN [54] 80.0 87.2
ST-GCN [10] 81.5 88.3
RA-GCN [55] 85.9 93.5
AS-GCN [49] 86.8 94.2
2s-AGCN [13] 88.5 95.1

SGN [14] 89.0 94.5
2s TL-GCN [50] 89.2 95.4
AGC-LSTM [11] 89.2 95.0

1s PCCTR-GCN(ours) 85.2 91.0
2s PCCTR-GCN(ours) 89.2 94.9
4s PCCTR-GCN(ours) 89.7 95.4
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5 Conclusion
Current many human skeleton action recognition using GCN methods are limited by the use of a

single topology, restricting the flexibility of feature extraction. Additionally, pose estimation algorithms may
introduce errors when extracting human joint features. To address these issues, we proposed a PCCTR-
GCN approach that combines pose correction and channel topology refinement for action recognition using
skeleton data. Firstly, a pose correction module was built, which corrects the body joint coordinates and
reduces the error of the pose estimation algorithm in feature extracting. Secondly, the graph convolution
network was constructed by channel topology graph convolution, which can dynamically learn the topology
of different types of motions in different channel dimensions and efficiently aggregate the corresponding
joint features. Finally, the bone, joint-motion, and bone-motion streams are extracted on the basis of joint
stream, respectively, and a multi-stream model fusion framework was employed. We trained each data feature
stream individually and obtained the scores of their fusion. We performed experiments using three datasets
to evaluate the effectiveness of the PCCTR-GCN. The results show that it outperforms other methods on
these datasets. Although PCCTR-GCN performed well in terms of recognition accuracy, the number of
parameters in the network model increased with the addition of PCM and CTR-GC modules. Therefore,
we will investigate lightweight components to reduce the model’s parameter complexity in future work.
Meanwhile, we will also consider introducing more visual information (e.g., heat maps, and dense maps),
expecting to improve the model’s predictive performance.
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