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ABSTRACT: The proliferation of deep learning (DL) has amplified the demand for processing large and complex
datasets for tasks such as modeling, classification, and identification. However, traditional DL methods compromise
client privacy by collecting sensitive data, underscoring the necessity for privacy-preserving solutions like Federated
Learning (FL). FL effectively addresses escalating privacy concerns by facilitating collaborative model training without
necessitating the sharing of raw data. Given that FL clients autonomously manage training data, encouraging client
engagement is pivotal for successful model training. To overcome challenges like unreliable communication and budget
constraints, we present ENTIRE, a contract-based dynamic participation incentive mechanism for FL. ENTIRE ensures
impartial model training by tailoring participation levels and payments to accommodate diverse client preferences. Our
approach involves several key steps. Initially, we examine how random client participation impacts FL convergence
in non-convex scenarios, establishing the correlation between client participation levels and model performance.
Subsequently, we reframe model performance optimization as an optimal contract design challenge to guide the
distribution of rewards among clients with varying participation costs. By balancing budget considerations with
model effectiveness, we craft optimal contracts for different budgetary constraints, prompting clients to disclose
their participation preferences and select suitable contracts for contributing to model training. Finally, we conduct
a comprehensive experimental evaluation of ENTIRE using three real datasets. The results demonstrate a significant
12.9% enhancement in model performance, validating its adherence to anticipated economic properties.

KEYWORDS: Federated learning; deep learning; non-IID data; dynamic client participation; non-convex optimization;
contract

1 Introduction

Due to the growing security issues, there is a growing emphasis on developing more secure training
methods for deep learning [1,2]. Federated learning (FL), as a successful privacy-preserving paradigm,
enables multiple clients to jointly train deep learning models without uploading their own raw data under
the coordination of the central server [3]. In FL, training occurs through multiple rounds of global iterations,
where clients utilize their local datasets to train local models or gradients, subsequently uploading them
to the central server for each training round. The distinct advantages of FL have sparked its adoption in
various fields such as healthcare, agriculture, and blockchain applications [4]. Each client retains control
over its local data, enabling independent decisions regarding participation in FL training. However, owing to
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associated participation costs like training and communication expenses, the server must offer appropriate
compensation to incentivize self-interested clients to engage in the collaborative training process [5].

However, the FL training process typically involves numerous global iterations, posing challenges in
designing efficient incentive mechanisms. First, in large-scale distributed scenarios, clients typically exhibit
heterogeneous local resources and independent activity. While assuming unlimited resources and disregarding
the straggler effect could enable full client participation, this scenario fails to align with the reality of limited
resources. This limitation hampers the execution of many studies that rely on full client participation and
constant availability [6–8]. Second, clients may disconnect due to unexpected circumstances during training,
i.e., the client’s state may change dynamically [9]. Despite clients’ efforts to minimize disconnections, this
incurs additional local costs. Waiting for all clients to respond in dropout situations can seriously impede
training efficiency. Although some studies suggest partial client participation to enhance the training process,
they presuppose that the server can accurately identify participating clients in each round, which is an ideal
assumption [10,11]. Third, client-local datasets are often non-IID [12–14]. Partial local datasets may fail to
represent the true data distribution globally, potentially introducing biases during training with dynamic
client participation [15].

Despite the clarity of the above considerations, there remain significant challenges in designing an
efficient incentive mechanism for unbiased FL. First, how do we effectively incentivize clients to train
an unbiased global model under conditions of a limited budget and dynamically changing client status?
Encouraging full client participation under a limited budget poses a dilemma for the server. Although
existing researchers propose sampling methods to ensure unbiased models, most are applicable only in
scenarios where clients are always available [16,17]. Although studies like [18,19] delve into optimization
methods for independent client sampling, they assume unconditional client participation in FL. Due to
system heterogeneity, clients often face varying local costs during model training, leading to diverse partici-
pation preferences [20]. However, without insights into clients’ participation preferences and communication
conditions, appropriately rewarding clients becomes challenging. This can result in budget inefficiencies and
a decline in client participation levels.

To address the above challenges, we propose a contract-based dynamic participation incentive for
unbiased FedeRated LEarning, called ENTIRE. ENTIRE can provide personalized payments to clients with
varying participation preferences to compensate for their local costs while ensuring an unbiased deep-
learning model. Specifically, we first investigate the impact of randomly independent participation from
arbitrary clients on the convergence bounds of FL under non-convex loss functions. Subsequently, we design
a set of optimal contracts for clients with heterogeneous participation preferences under different budget
constraints and incomplete information models to maximize model performance. Furthermore, we find that
when the server’s budget is sufficient, it is adequate to design a single optimal contract to incentivize full
participation from all categories of clients. Our main contributions can be summarized as follows:

(1) Methodologically, we propose ENTIRE, a dynamic participation incentive mechanism for unbiased
FL aimed at mitigating model bias arising due to dynamic client participation. It encourages all clients to
participate in FL by offering independent participation levels and appropriate economic compensation. By
customizing personalized participation levels for clients and optimizing reward allocation for contracts, we
enhance the model performance under incomplete information.

(2) Theoretically, we establish the FL convergence bound when clients have independent participation
levels, which guides the optimization of both model performance and reward allocation. This convergence
bound applies to a more general assumption of non-convex loss functions. Furthermore, we derive the
optimal contract design under varying budget conditions, enabling ENTIRE to ensure optimal model
performance even when the server has an arbitrary budget.
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(3) Experimentally, we performed extensive experiments on three real datasets and compared ENTIRE
to three state-of-the-art baselines. For the same budget, ENTIRE achieves a 12.9% performance improvement
compared to other methods and differs in accuracy by only 0.9% from a model trained with the full
participation of all clients. Furthermore, the results show that our approach is equally applicable to the
IID scenario.

The remainder of this paper is organized as follows. Section 2 provides a summary of related work. Then,
in Section 3, we introduce the system model and define the design goals of ENTIRE through convergence
analysis. Section 4 describes the design of optimal contracts under an incomplete information model and
varying budget conditions. Subsequently, in Section 5, we provide a comprehensive performance evaluation
of ENTIRE through experiments. Finally, we conclude the full paper in Section 6.

2 Related Work

The training process in FL entails communication links between a central server and numerous
decentralized clients. This large-scale distributed training scenario is prone to client dropout, which seriously
hampers the efficiency of model training. Therefore, the classical FedAvg algorithm usually performs multiple
local iterations on a randomly selected subset of clients to update the model [21].

Various FL algorithms have been proposed to improve training efficiency. For example, in [22], the
model convergence rate was improved by compressing local model updates and designing client scheduling
and resource allocation strategies. A stochastic optimization problem linking resource allocation with client
scheduling and training loss was presented in [23] and solved using the Lyapunov method. The work in [24]
utilized layered computing resources to reduce the end clients’ workload and explored task offloading from
edge to end. These approaches focused on the resource allocation issue among clients to optimize the training
process from the server’s perspective, neglecting client incentives and assuming clients are consistently
available during training. In contrast, our work compensates for heterogeneous clients’ local costs during
training and considers the possibility of client dropouts.

To incentivize clients to participate and improve training efficiency, certain approaches have focused
on selectively incentivizing specific high-value clients to engage in FL training. The work in [25] designed
a Stackelberg-based incentive mechanism, where the server and clients collaboratively determined the
participating client set to incentivize maximal data contribution. In [26], a contractual and coalitional game-
based incentive mechanism was introduced to motivate the participation of clients with high contributions.
A reverse auction-based incentive mechanism to select a more cost-effective set of clients for training was
designed in [27]. Although these methods can expedite training efficiency and reduce costs to some extent,
selecting only a subset of clients for training with an imbalanced data distribution may introduce bias during
the training process, leading to a decline in model performance. Instead, we ensure an unbiased global model
while allowing dynamic client participation.

Considering the non-IID data and the independent availability of clients, the work in [28] delved into
incentivizing all clients to engage in FL with varying participation probabilities. However, their convergence
analysis for unbiased models only was limited to convex functions and applicable solely in scenarios with
complete information. Furthermore, their approach still results in clients with negative utility when the
server’s budget was insufficient, and failed to motivate all clients to participate. In contrast, our study
establishes convergence outcomes under a broader non-convex framework. Moreover, we can incentivize
the involvement of all clients and ensure unbiased training models across diverse budget constraints and
incomplete information scenarios.
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3 System Model and Problem Formulation
In this section, we describe the system model and formulate the optimal participation contract design

problem for incomplete information scenarios based on the results of convergence analysis.

3.1 System Model
We consider an FL scenario with a central server and a set of clients. Each client i has a local loss function

Li (w) associated with the model parameter w. Specifically, each client optimizes a shared model to minimize
the loss function using its local dataset. The goal of an FL system is to enable clients to collaboratively train
a shared model to minimize the global loss function [29]:

min
w

L (w) = 1
N

N
∑
i=1

Li (w) . (1)

Note that we use average rather than weighted average here, due to we consider the weights as part of
the local loss function. In large-scale distributed scenarios, FL typically employs the client sampling method
for model training [30]. However, each client in FL serves as a decision maker, choosing its own participation
level qi instead of using the server’s predetermined sampling probabilities. Consequently, each training round
involves a random subset of clients, which can introduce significant biases into the global model without an
appropriate aggregation rule [18]. To ensure an unbiased global model, we implement an aggregation rule
akin to [31], which guarantees that EK(q)t(wt) = 1

N ∑
N
i=1 wt

i . Here, w t
i represents the local model of client

i in round t, and K (q)t indicates the subset of clients participating in round t. Furthermore, we describe
the local training process as a small batch of stochastic gradient descent, denoted as gi (w t), which may
consist of the global model w t after multiple local iterations. The specific training process is summarized in
Algorithm 1, which differs from vanilla FL only in client sampling and model aggregation. The comprehensive
system process is depicted in Fig. 1, with the server required to establish agreements with clients concerning
participation levels and rewards.

Figure 1: The server and clients sign different participation contracts. Clients and the server conduct training according
to the participation levels q specified in the contract and allocate rewards accordingly

3.2 System Model
The server needs to incentivize clients to join FL at a high participation level to train an efficient global

model. In this part, we construct the upper bound on the convergence of Algorithm 1 with non-convex loss
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functions to relate the global model performance to the client participation level. To establish the theory
boundary on convergence, we introduce the following common assumptions from existing work [19,32].

Algorithm 1: FL with independent random client participation
Input: Participation probability q = {q1 , ⋅ ⋅ ⋅ , qN}, global rounds T, learning rate η.
Output: Final global model wT .
1: Initialize t = 0.
2: while t < T do
3: Each client i ∈ N executes local training with probability qi ;
4: for i ∈ K (q)t parallel do
5: Update local gradients gi (w t);
6: Sent − η

qi
gi (w t) to the server;

7: The server performs global aggregation:
8: Update w t+1 ← wt − 1

N ∑i∈K(q)t
η
qi

gi(w t);
9: t = t + 1;
10: Broadcast w t to all clients;

Assumption 1 (β-Lipschitz Continuous Gradient). There exists a constant β, such that the difference
between the local gradient ∇Li (w) and ∇Li (w′)satisfies ∣∣∇Li (w) − ∇Li (w′) ∣∣ ≤ β∣∣w −w′∣∣ for any w
and w′.

Assumption 2 (Unbiased Stochastic Gradient with Bounded Variance). The stochastic local gradient
gi (w) satisfies E{gi(w)} = ∇Li(w) and E∣∣gi (w) − ∇Li (w) ∣∣2 ≤ σ 2.

Assumption 3 (Bounded Local and Global Variance). The difference between the local gradient∇Li (w)
and the global gradient ∇L (w) satisfies ∣∣∇Li (w) − ∇L (w) ∣∣ ≤ ε2.

The main convergence result is given in the following theorem:
Theorem 1. The difference between the local gradient ∇Li (w) and the global gradient ∇L (w) satisfies

∣∣∇Li (w) − ∇L (w) ∣∣ ≤ ε2. With Assumption 1–3, given 1
N ∑

N
i=1

1
qi
≤ δ and learning rate η ≤ 1

4βδ , after T global
rounds, Algorithm 1 ensures that

1
T

T−1
∑
t=0

E∣∣∇L(w)∣∣2 ≤ 4(E{L(w0)} −E{L∗})
ηT

+ 2η2β(2ε2 + σ 2)
N

N
∑
i=1

1
qi

, where L∗ Δ= min
w

L(w). (2)

Proof. With the smoothness assumption, taking the expectation of L (w t+1) over the randomness, we
have

EK(q)t{L(wt+1)} ≤ L(wt) + ⟨∇L(wt),EK(q)t{wt+1 −wt}⟩ +
β
2
EK(q)t{∣∣wt+1 −wt ∣∣2}

=L(wt) + ⟨∇L(wt),E{−η
N ∑

i∈K(q)t

gi(wt)
qi

}⟩ + β
2
E{∣∣−η

N ∑
i∈K(q)t

gi(wt)
qi

∣∣2}

=L(wt)−η ⟨∇L(wt),E{ 1
N ∑

i∈K(q)t

gi(wt)
qi

}⟩

�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
A1

+η2β
2

E{∣∣ 1
N ∑

i∈K(q)t

gi(wt)
qi

∣∣2}

��������������������������������������������������������������������������������������������������������������������������������
A2

.
(3)
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The term A2 can be bounded as:

A2 = E

⎧⎪⎪⎨⎪⎪⎩
∣∣ 1

N ∑
i∈K(q)t

gi(wt)
qi

∣∣2
⎫⎪⎪⎬⎪⎪⎭
=
a1

N
N2

N
∑
i=1

EK(q)t { 1
q2

i
} ⋅EK(q)t ∣∣gi(wt)∣∣2

= 1
N

N
∑
i=1

EK(q)t ∣∣gi(wt)∣∣2 ≤
a2

1
N

N
∑
i=1

1
qi
(∣∣∇Li(wt)∣∣2 + σ 2),

(4)

where a1 follows Jensen’s inequality, and a2 follows the fact that E∣∣x∣∣2 = ∣∣Ex∣∣2 +E∣∣x −Ex∣∣2 and Assump-
tion 2. Add a zero term to ∣∣∇Li (w t) ∣∣2, we have

∣∣∇Li (w t) − ∇L (w t) + ∇L (w t) ∣∣2 = ∣∣∇Li (w t) − ∇L (w t) ∣∣2 + ∣∣∇L (w t) ∣∣2

+ 2 ⟨∇Li (w t) − ∇L (w t) ,∇L (w t)⟩ =a3
2ε2 + 2∣∣∇L (w t) ∣∣2, (5)

where triangle inequality and Assumption 3. Then, we can bound the term A3 as follows:

A1 = −η ⟨∇L (w t) ,E
⎧⎪⎪⎨⎪⎪⎩

1
N ∑

i∈K(q)t

gi (w t)
qi

⎫⎪⎪⎬⎪⎪⎭
⟩ = −η ⟨∇L (w t) − ∇L (w t) + ∇L (w t) ,∇L (w t)⟩

= η ⟨∇L (w t) − ∇L (w t) ,∇L (w t)⟩ − η ⟨∇L (w t) ,∇L (w t)⟩ =a4
0 + η

2
∣∣∇L (w t) ∣∣2 − η∣∣∇L (w t) ∣∣2 (6)

= −η
2
∣∣∇L (w t) ∣∣2,

where a4 follows that − η
2 ∣∣∇L (w t) ∣∣2, a4 ⟨x , x′⟩ ≤ ρ∣∣x ∣∣2

2 + ∣∣x
′∣∣2

2ρ , for any ρ > 0. Let 1
N ∑

N
i=1

1
qi
≤ δ and η ≤ 1

4βδ ,
we get

EK(q)t{L(wt+1)} ≤ L(wt) −
η
2
∣∣∇L(wt)∣∣2 +

η2β
2N

N
∑
i=1

1
qi
(2∣∣∇L(wt)∣∣2 + 2ε2 + σ 2)

≤ L(wt) + (η2βδ − η
2
)∣∣∇L(wt)∣∣2 +

η2β
2N

N
∑
i=1

1
qi
(2ε2 + σ 2)

≤ L(wt) −
η
4
∣∣∇L(wt)∣∣2 +

η2β
2N

N
∑
i=1

1
qi
(2ε2 + σ 2). (7)

Taking the total expectation collapsing the above in equality, we obtain

E∣∣∇L (w t) ∣∣2 ≤
4 (E{L (w t)} −E{L (w t+1)})

η
+ 2η2β

N

N
∑
i=1

1
qi
(2ε2 + σ 2) . (8)

Averaging overall t, we can obtain the final result as Eq. (2). This completes the proof. ◻
The convergence bound in Theorem 1 applies to any varying number of participating clients per

round. Furthermore, this upper bound suggests that to guarantee an unbiased global model, all clients
need to be incentivized to participate in FL. Because ∀qi → 0 may lead to non-convergence, which also
explains why incentivizing only a subset of clients may not converge to a globally optimal solution.
The key factor controlling the convergence upper bound is ∑N

i=1 1/qi , which reaches its minimum when
∀qi = 1, i.e., full participation of all clients. To obtain a high-performance global model, clients need to adopt
high participation levels. However, increasing the participation level implies a higher cost, which requires a
reasonable incentive mechanism to reconcile the conflict between the server and clients.
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3.3 Problem Formulation

Without loss of generality, we assume that in incomplete information scenarios, clients can be catego-
rized into M different types based on their participation preferences. Sorting the different types in ascending
order, we get e1 < ⋅ ⋅ ⋅ < eM , M ≥ 2. A larger value of em with 1 ≤ m ≤ M represents a greater local overhead
cost for the client to participate in training. In addition, the cost to a client is related to the participation
level qm it chooses. Intuitively, a higher participation level means that clients participate in each round with
a higher probability (more training rounds), which leads to higher costs. The utility of a client in type m is
defined as the difference between the rewards offered by the server and its participation cost, calculated as

Um = αRm − em qm , ∀m ∈ [1, M] ,∀qm (0, 1] , (9)

where qm = 1 implies full client participation. α captures the sensitivity of clients to rewards. When α is small,
clients focus more on their participation preferences and less on the rewards offered by the server. In our
work, we mainly consider the design of incentive mechanism based on the client participation level, and α
is only used to observe the impact of different values on our system.

In incomplete information scenarios, the type of client’s participation preference is private information
and unavailable. The server can only estimate the distribution of em from historical data, and we use
pm to denote the probability that a client belongs to type m, which means that ∑M

m=1 pm = 1. As shown
in Fig. 1, our goal is to design the optimal contracts for each type of client, i.e.,L = {(q1 , R1) , ⋅ ⋅ ⋅ (qM , RM)},
guaranteeing an unbiased global model and maximizing model performance with a limited budget. Each
client selects a contractual item, engages in training at the specified participation level, and receives
corresponding rewards. We formally define this engagement as a participation contract:

Definition 1 (PC). A participation contract is represented as a 2-tuple (π, γ), i.e., a participation level
requirement rule π, and a payment determination rule γ.

π:N∗ → R
+ is responsible for determining the participation level that clients belonging to type m should

employ in model training, i.e., qm = π (m).
γ: N∗ ×R

+ → R
+ determines the reward that should be given to clients belonging to type m and

participation level qm , i.e., Rm = γ (cm , qm).
In order to encourage clients to reveal their types truthfully in information asymmetry, we need to

introduce the following three fundamental properties, namely budget feasibility (BF), individual rationality
(IR), and incentive compatibility (IC).

Definition 2 (BF). A set of PCs satisfies BF if the rewards to be paid to all clients do not exceed the
budget B, i.e., ∑M

m=1 NpmRm ≤ B.

Definition 3 (IR). A set of PCs satisfies IR if they provide non-negative utility to the corresponding type
of clients, i.e., Um = αRm − em qm ≥ 0, ∀m ∈ [1, M].

Definition 4 (IC). A set of PCs satisfies IC if a client can maximize its utility only by honestly choosing
the contract that corresponds to its type, i.e., αRm − emqm ≥ αRm′ − emqm′ , ∀m ≠ m′ ∈ [1, M].



626 Comput Mater Contin. 2025;83(1)

The server needs to design a set of optimal PCs that satisfy the above properties to maximize model
performance, which can be formalized as

P1

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

min
M
∑
m=1

Npm

qm
,

s.t.{ 0 < qm < 1, ∀m ∈ (1, M] ,
BF, IR, IC.

(10)

Note that in cases of complete information, the server knows the type to which each client belongs, so
only a single contract needs to be sent to each client. However, in the case of incomplete information, where
the type of any client is unknown, the server needs to send all the contracts to clients for selection.

4 The Set of Optimal Participation Contracts Design
In this section, we study the optimal PC design problem for different budget levels and provide key

insights to distinguish between the different scenarios.

4.1 Optimal Contract Design under Insufficient Budget
When the server lacks the budget to incentivize all clients to fully participate, we assert that the

participation level constraint proves more restrictive than the budget-feasibility (BF) constraint. This is
because to ensure IC property, the server can only guarantee partial low client types achieve full participation,
while it cannot incentivize the others to increase their participation levels with an entire budget. To
solve this problem, the key idea of our method is to separate the two constraints by considering varying
budget scenarios. We assume the server’s budget cannot support any client type for full participation,
allowing us to omit the participation level constraint and allocate the entire budget accordingly. Under the
remaining constraints, we outline the essential conditions needed to guarantee an optimal set of PCs in the
following proposition:

Proposition 1. A set of feasible PCs must meet the following necessary and sufficient conditions:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M
∑
m=1

Npm Rm = B,

αRM − eM qM = 0,
R1 ≥ ⋅ ⋅ ⋅ ≥ RM ,
q1 ≥ ⋅ ⋅ ⋅ ≥ qM ,
αRm − emqm = αRm+1 − em qm+1 ,
∀m ∈ [1, M − 1] .

(11)

Proof. The first two equations are relaxations of the BF and IR constraints, where the latter effectively
reduces M IR constraints to one. We can prove this by the IC property of the feasible PCs. Recall that we
have sorted clients’ types in ascending order, i.e., e1 < ⋅ ⋅ ⋅ < eM . According to Definition 4, we have

αRm − emqm ≥ αRM − emqM ≥ αRM − eM qM ≥ 0 (12)

Thus, we only need to guarantee αRM − eM qM ≥ 0 to satisfy the IR constraints for any type of client.
Moreover, assuming that there exists an optimal PC such that αRM − eM qM ≥ 0, we can always raise
qM to reduce the convergence upper bound up to αRM − eM qM = 0. Similarly, if the set of PCs satisfies
∑M

m=1 NpmRm ≤ B, the server can choose a larger Rm up to ∑M
m=1 NpmRm = B. Note that this approach is
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only applicable to insufficient budget cases, otherwise the server will not be able to incentivize the client with
the entire budget due to the IC and participation level constraints. For example, when αRM − eM qM > 0, the
server cannot make αRM − eM qM = 0 by raising qM . The above analysis indicates that only the highest type
of clients can achieve zero utility. This is because the server does not know the type of each client, and it
needs to incentivize clients in the form of positive utility, encouraging them to reveal their true type.

The third and fourth inequalities are about the participation level and reward monotonicity. We use
IC constraints to prove the monotonicities of the set of optimal PCs. According to IC property, we have
αRm − emqm ≥ αRm′ − emqm′ and αRm′ − em′qm′ ≥ αRm − em′qm . Take the sum of both sides of the two
inequalities, we have (em′ − em) (qm − qm′) ≥ 0. Thus, if em′ ≥ em , then qm ≤ qm′ for ∀m, m′ ∈ [1, M].
Furthermore, according to the first inequality, we also have α (Rm − Rm′) ≥ em (qm − qm′) ≥ 0. Since α > 0
and em > 0, we have Rm ≤ Rm′ . Similarly, by the second inequality, we can prove necessity. Therefore, if a set
of PCs satisfies the IC property, they spontaneously satisfy these two monotonicities.

For the fifth inequality, we show that M (M − 1) IC constraints can be simplified to M − 1 IC constraints
in Eq. (11). We first prove that if local downward incentive compatibility (LDIC) is satisfied, i.e., αRm −
emqm ≥ αRm−1 − emqm−1, then αRm − em qm ≥ αRm′ − em qm′ hold for ∀m ≥ m′ ∈ [1, M].

Suppose em < em+1 < em+2, m ≥∈ [1, M − 2]. If the LDIC holds, we have

αRm+1 − em+1qm+1 ≥ αRm − em+1qm ⇒ em+1 (qm − qm+1) ≥ α (Rm − Rm+1)
⇒ em+2 (qm − qm+1) ≥ α (Rm − Rm+1) ⇒ αRm+1 − em+2qm+1 ≥ αRm − em+2qm . (13)

Note that αRm+2 − em+2qm+2 ≥ αRm+1 − em+2qm+1, which we can easily obtain αRm+2 − em+2qm+2 ≥
αRm+1− em+2qm+1 ≥ ⋅ ⋅ ⋅ ≥ αR1 − em+2q1. Thus, we have αRm − emqm ≥ αRm′ − emqm′ , for ∀m ≥ m′ ∈
[1, M]. Additionally, if local upward incentive compatibility (LUIC) holds, i.e., αRm − em qm ≥ αRm+1 −
emqm+1, we can obtain αRm − em qm ≥ αRm′ − em qm′ , for ∀m ≤ m′ ∈ [1, M] by a similar proof. Similar to
the approach of simplifying BF and IR constraints, for a set of optimal PCs, we have αRm − em qm = αRm+1 −
emqm+1. Because we can always find a larger participation level qm to achieve better model performance until
the equal sign holds. Notice that by the monotonicity, we also have

αRm − em qm ≥ αRm+1 − emqm+1 ⇒ α (Rm − Rm+1) = em (qm − qm+1)
⇒ α (Rm − Rm+1) ≤ em+1 (qm − qm+1) ⇒ αRm − em+1qm ≤ αRm+1 − em+1qm+1 .

(14)

Therefore, in order for the optimal contract to satisfy the IC property, we only need to ensure that
αRm − emqm = αRm+1 − em qm+1. At this point, we have completed the IC constraints simplification. ◻

According to Proposition 1, we can reduce the complexity of the problem P1 by simplifying BF, IR, and
IC constraints. Now, we formally rewrite the problem P1 as follows:

P2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
M
∑
m=1

Npm

qm
,

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

M
∑
m=1

NpmRm = B,

αRM − eM qM = 0,
αRm − emqm = αRm+1 − emqm+1 ,
∀m ∈ [1, M − 1] .

(15)

By solving P2, we can summarize the set of optimal PCs as the following theorem.
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Theorem 2. In the incomplete information scenario, the set of optimal PCs is given by

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

q∗m = B

∑M
n=1 p

1
2
n Y

1
2

n

p
1
2
mY

1
2

m ,

R∗m = B

∑M
n=1 p

1
2
n Y

1
2

n

( 1
α

em p
1
2
mY−

1
2

m +∑M
n=m+1 Δn p

1
2
n Y−

1
2

n ) , m ≠ M , R∗m = B

∑M
n=1 p

1
2
n Y

1
2

n

1
α

em p
1
2
mY−

1
2

m , m = M ,

(16)

where Δ1 ≜ 0, Δm ≜ 1
α (em − em−1) for ∀m ∈ [2, M], and Ym = N pm

α em + NΔm ∑m−1
n=1 pn .

Proof. According to the last two constraints of P2, we have

αRM−1 − eM−1qM−1 = αRM − eM−1qM = eM qM − eM−1qM = (eM − eM−1) qM ,

⇒ RM−1 =
1
α

eM−1qM−1 +
1
α
(eM − eM−1) qM .

(17)

Following the same procedure, we obtain

Rm = 1
α

em qm +
M
∑

n=m+1
Δnqn , (18)

where Δ1 ≜ 0, Δm ≜ 1
α (em − em−1) for ∀m ∈ [2, M]. Adding up the rewards of all clients, we have

M
∑

m=1
NpmRm = NpM

α
eM qM + NpM−1

α
eM−1qM−1 + NpM−1ΔM qM + NpM−2

α
eM−2qM−2

+NpM−2 (ΔM−1qM−1 + ΔM qM) + ⋅ ⋅ ⋅ +
Np1

α
e1q1 + Np1 (Δ2q2 + ⋅ ⋅ ⋅ + ΔM qM)

= qM [
NpM

α
eM + NΔM (p1 + ⋅ ⋅ ⋅ + pM−1)]

+ qM−1 [
NpM−1

α
eM−1 + NΔM−1 (p1 + ⋅ ⋅ ⋅ + pM−2)] + ⋅ ⋅ ⋅ + q1

Np1

α
e1 .

(19)

Let Ym = Npm em/α + NΔm ∑m−1
n=1 pn , we have

M
∑
m=1

NpmRm =
M
∑
m=1

Ymqm = B. (20)

So far, we have simplified the constraint conditions of P2 into one. Since P2 is convex, we can use the
KKT condition to find the optimal set of PCs. The corresponding Lagrangian dual function is

L (qm , λ) =
M
∑
m=1

Npm

qm
+ λ

M
∑
m=1

Ymqm − λB, (21)

where λ is the Lagrange multiplier. By solving the first-order condition, we have q∗m =
√

Npm/λYm .
Substitute the result into Eq. (20), we have
√

N
λ

M
∑
m=1

Ym p
1
2
mY−

1
2

m = B ⇒ q∗m = Bp
1
2
mY−

1
2

m

∑M
m=1 p

1
2
mY

1
2

m

, R∗M = 1
α

eM q∗M =
BeM p

1
2
MY−

1
2

M

α∑M
m=1 p

1
2
mY

1
2

m

. (22)
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Using Eqs. (18) and (22) with some simple transformations, we complete this proof. ◻

4.2 Optimal Contract Design under Sufficient Budget
Recall that the previous analysis builds on the premise that the budget is inadequate to incentivize full

participation by any client type, i.e., ∀qm ∈ (0, 1). In this part, we explore two scenarios: one where the
server’s budget can support full participation by a subset of clients, and another where the server’s budget is
adequate for full participation by all clients. We consolidate the optimal set of PCs for both scenarios in the
following theorem:

Theorem 3. In the incomplete information scenario, and when the server’s budget is sufficient, the set of
optimal PCs is given as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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α
) , if B > NeM

α
.

(23)

Proof. According to the monotonicity of the participation level of the set of optimal PCs, we can easily
get that when the server’s budget is not enough to incentivize all clients to fully participate, only the clients
with the lowest type can satisfy full participation. Thus, we have

q∗1 =
B

M
∑

m=1
p

1
2
mY

1
2

m

p
1
2
1 Y−

1
2

1 = 1 ⇒ B
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1
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2
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α
)

1
2 M
∑
m=1

p
1
2
mY

1
2

m . (24)

Bringing the above results into Eq. (16), we can obtain the optimal set of PCs.
For the case where the server has sufficient budget to incentivize full participation by all clients, we only

need to design one PC term. This is because when all clients are fully participated, the clients belonging to the
highest type have the largest participation costs, i.e., the optimal PC term only needs to be able to compensate
for the M type clients’ costs. In this case, we have R∗1 = ⋅ ⋅ ⋅ = R∗M = eM/α an q∗1 = ⋅ ⋅ ⋅ = q∗M = 1. Furthermore,
we can calculate the budget to satisfy at least B = eM/α∑M

m=1 Npi =NeM/α. This completes the proof. ◻

5 Experiments
In this section, we perform an extensive experimental evaluation of ENTIRE on three real-world

datasets and compare it to three baselines.

5.1 Experiment Setup
FL Setup. Similarly to [28,31], we consider the FL scenario with a central server and N = 100 clients.

Besides, we assume that clients’ participation preferences can be divided into M = 10 types, and satisfy
ei ∈ [10, 30] for ∀i ∈ M. All clients are randomly distributed among the ten participant groups, the reward
sensitivity parameter is satisfied α ∈ [0.5, 1.5], and the total budget for the server satisfies B ∈ [100, 3000].

Datasets & Models. We use non-convex deep learning models on two datasets, i.e., a multi-layer
perceptron (MLP) on the MNIST dataset and Fashion-MNIST (FMNIST) dataset. We sort and slice the
datasets by label to ensure that each client’s local dataset meets non-IID requirements. In this case, most
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clients will only have data of one class (out of all the 10 classes). Additionally, we train a convolutional neural
network (CNN) on the CIFAR-10 dataset to test the performance of our method in IID scenarios. For the
training parameters, we use SGD batch size 30 and local epoch 2.

Baselines. (1) CC: A contract-based incentive mechanism under complete information, i.e., the server
knows each client’s participation preference. It is unnecessary to consider IC property when designing
optimal participation contracts. (2) UC: A contract-based incentive mechanism with a uniform contract, i.e.,
the server makes the same contract for all client types, and only clients with non-negative utility choose to
accept the contract [33]. (3) SG: A Stackerberg game-based incentive mechanism, i.e., the server distributes
rewards proportionally based on the participation level selected by the clients, and each client aims to
maximize their own utility [28].

5.2 Experimental Results
We compare the design of optimal PCs for complete and incomplete information scenarios, i.e., CC

and ENTIRE. For CC, the server knows the type of each client, and therefore only needs to send one
corresponding contract to each client. The optimal set of contracts for the full information scenario is given
as

q∗m = αBe−
1
2

m

∑M
n=1 Npn e

1
2
n

, R∗m = Be
1
2
m

∑M
n=1 Npn e

1
2
n

, ∀m ∈ [1, M] . (25)

Fig. 2 demonstrates that ENTIRE satisfies monotonicity, IR, and IC simultaneously. In Fig. 2a, the
participation levels assigned by CC and ENTIRE for various client types are displayed. Clients with higher
types opt for lower participation levels. This decision is driven by the server’s strategy to maximize model
performance within a constrained budget by favoring smaller client types in more training rounds due to
their lower participation costs. Conversely, under the same budget constraints, ENTIRE designates a reduced
participation level for each client type compared to CC. This adjustment is necessary in an environment of
incomplete information, where the server lacks specific knowledge about individual client types and must
motivate lower client types with positive utility (Fig. 2b).

Figure 2: Contract properties: (a) Participation level monotonicity; (b) Reward monotonicity; (c) IR & IC

illustrates the rewards specified by ENTIRE and CC for each contract type. ENTIRE satisfies the
monotonicity of rewards in Proposition 1, whereas CC exhibits the opposite behavior. This aligns with
the reasoning in Fig. 2a, where the server can guarantee zero utility for all client types in the complete
information scenario, but can only ensure that the highest type client achieves zero utility in the incomplete
information case. Fig. 2c shows that any client type can only obtain maximum utility by choosing its
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corresponding type of PC, which satisfies the IC property. In addition, each client has a non-negative utility
in choosing its corresponding contract, which satisfies the IR property.

Table 1 illustrates the effect of system parameters on participation levels and rewards specified by
ENTIRE. Regarding the reward sensitivity factorα, as its value rises, clients prioritize the rewards offered
by the server, leading to a selection of higher participation levels. However, since the total reward remains
constant, the server’s reward for different contract types does not fluctuate. This indicates that heightened
client reward sensitivity facilitates model training at a consistent budget level. Moreover, with an increase
in the total server budget, both participation levels and rewards for each client type increase gradually. At
a budget of B = 2000, type-1 clients achieve full participation. To maintain the monotonicity of the PCs,
contracts remain unchanged until the budget reaches B = 3000, at which stage full participation is attained
for all client types, resulting in identical PCs for all clients.

Table 1: Impact of system parameters

Contract α = 0.8 α = 1.0 α = 1.2 B = 1000 B = 2000 B = 3000
1 (0.644, 19.02) (0.805, 19.02) (0.966, 19.02) (0.537, 12.68) (1.000, 23.63) (1.00, 30.00)
2 (0.553, 17.66) (0.691, 17.66) (0.830, 17.66) (0.461, 11.77) (0.859, 21.94) (1.00, 30.00)
3 (0.510, 16.91) (0.638, 16.91) (0.766, 16.91) (0.425, 11.27) (0.793, 21.01) (1.00, 30.00)
4 (0.453, 15.77) (0.566, 15.77) (0.680, 15.77) (0.378, 10.51) (0.704, 21.01) (1.00, 30.00)
5 (0.403, 14.64) (0.504, 14.64) (0.605, 14.64) (0.336, 9.760) (0.627, 18.19) (1.00, 30.00)
6 (0.396, 14.45) (0.495, 14.45) (0.593, 14.45) (0.330, 9.630) (0.615, 17.96) (1.00, 30.00)
7 (0.385, 14.15) (0.481, 14.15) (0.577, 14.15) (0.320, 9.430) (0.597, 17.58) (1.00, 30.00)
8 (0.376, 13.90) (0.470, 13.90) (0.564, 13.90) (0.314, 9.260) (0.584, 17.27) (1.00, 30.00)
9 (0.353, 13.13) (0.441, 13.13) (0.529, 13.13) (0.294, 8.750) (0.547, 16.31) (1.00, 30.00)
10 (0.315, 11.80) (0.393, 11.80) (0.472, 11.80) (0.262, 7.870) (0.489, 14.66) (1.00, 30.00)

Fig. 3 illustrates the model performance of three methods on different datasets. ENTIRE demonstrates
the optimal model performance in Fig. 3a,b, as it ensures that all clients participate in the model training,
resulting in an unbiased global model. On the contrary, UC and SG only ensure that a fixed subset of clients
joins FL at the same participation level. Although this may lead to a faster convergence rate, due to the lack
of training data (especially in extreme non-IID cases), the global model cannot converge to the degree of full
client participation.

Fig. 4 depicts the effect of varying budgets on model performance. In Fig. 4a, both the convergence
rate and performance of the global model improve as the budget increases. With B = 300, the training
process exhibits significant fluctuations due to lower participation levels across all client types. As the
budget escalates from B = 1000 to B = 3000, the final global model performance remains relatively consistent,
but training fluctuations decrease as full client participation is achieved B = 3000. This highlights that
our aggregation strategy enables the model to converge towards full client participation. Furthermore, we
show the performance of ENTIRE with IID setting in Fig. 4b. Increasing budget increase enhances model
performance significantly at lower budgets but shows slower accuracy improvements at higher budgets.
The main difference is that the training accuracy fluctuates less in the IID setting, which suggests that our
conclusions can be applied to the IID scenario as well.
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Figure 3: Model performance on different datasets: (a) MNIST dataset with three methods; (b) FMNIST dataset with
three methods

Figure 4: Model performance for different B: (a) non-IID with FMNIST; (b) IID with CIFAR-10

6 Conclusion
In this paper, we proposed ENTIRE, a dynamic participation incentive mechanism for unbiased

FL, which was able to guarantee an unbiased FL model in scenarios with asymmetric information, and
appropriately compensated clients with differing participation costs. First, the impact of clients’ participation
levels on the model performance was explored by rigorously deriving a non-convex convergence bound with
random client participation. Second, a set of optimal PCs was derived based on the convergence bound to
maximize the model performance. Third, the practicality and efficacy of ENTIRE were validated through
extensive experiments, showcasing ENTIRE was also applicable to IID scenarios. Note that although ENTIRE
uses the FL framework, it still has privacy concerns. Future considerations involve integrating differential
privacy to enhance client privacy protection, but this requires sacrificing some model performance. The
privacy-utility trade-off under independent client participation is the pivotal direction for future research.
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