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ABSTRACT: Super-resolution (SR) reconstruction addresses the challenge of enhancing image resolution, which is
critical in domains such as medical imaging, remote sensing, and computational photography. High-quality image
reconstruction is essential for enhancing visual details and improving the accuracy of subsequent tasks. Traditional
methods, including interpolation techniques and basic CNNs, often fail to recover fine textures and detailed structures,
particularly in complex or high-frequency regions. In this paper, we present Deep Supervised Swin Transformer U-
Net (DSSTU-Net), a novel architecture designed to improve image SR by integrating Residual Swin Transformer
Blocks (RSTB) and Deep Supervision (DS) mechanisms into the U-Net framework. DSSTU-Net leverages the Swin
Transformer’s multi-scale attention capabilities for robust feature extraction, while DS at various stages of the network
ensures better gradient propagation and refined feature learning. The ST block introduces a hierarchical self-attention
mechanism, allowing the model to capture both local and global context, which is crucial for high-quality SR tasks.
Moreover, DS applied at multiple layers in the decoder enables direct supervision on intermediate feature maps,
accelerating convergence and improving performance. The DSSTU-Net architecture was rigorously evaluated on
the DIV2K, LSDIR, SET5, and SET14 datasets, demonstrating its superior ability to generate high-quality images.
Furthermore, the potential applications of this model extend beyond image enhancement, with promising use cases in
medical imaging, satellite imagery, and industrial inspection, where high-quality image reconstruction plays a crucial
role in accurate diagnostics and operational efficiency. This work provides a reference method for future research on
advanced image restoration techniques.
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1 Introduction
SR image reconstruction is a vital area within computer vision that addresses the critical challenge of

recovering high-resolution (HR) images from low-resolution (LR) inputs [1,2]. This issue holds significant
implications across various domains, including medical imaging, satellite photography, and security sys-
tems, where clarity and detail are paramount [3]. The escalating demand for high-quality visual data has
spurred extensive research into SR methods. In particular, deep learning techniques have demonstrated
unprecedented advancements over traditional approaches, marking a pivotal shift in the field.

Traditional SR techniques, such as bicubic interpolation and patch-based methods, frequently struggle
to recover fine details, particularly in images characterized by complex textures or high-frequency compo-
nents [4]. These methods often rely on handcrafted features or statistical assumptions that do not generalize
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well across diverse image domains. Conversely, deep learning approaches, especially CNNs, have revolution-
ized SR tasks by effectively learning complex hierarchical features from data, thereby outperforming classical
methods [5]. However, many CNN-based approaches still encounter limitations in reconstructing intricate
details and maintaining global context, as they primarily operate on fixed-sized receptive fields.

Recent advancements in transformer architecture, notably the Swin Transformer, have significantly
enhanced the capabilities of SR models [6]. Transformers excel at capturing long-range dependencies and
global context-attributes that CNNs struggle to encompass. The Swin Transformer introduces a hierarchical
structure with local-global attention mechanisms, enabling it to adeptly manage both local details and
broader contextual information. This makes it exceptionally suitable for SR tasks, where the recovery of fine
textures and overall image coherence is critical.

However, existing transformer-based SR models, such as SwinIR and MUN, still have notable
limitations. SwinIR—while effective in capturing global features—struggles with fine detail recovery in high-
frequency regions, as its attention mechanism is not always able to maintain the delicate balance between
local texture recovery and global consistency. Additionally, SwinIR often faces computational overhead due
to the large model size and high memory usage required for processing multi-scale attention. On the other
hand, MUN improves local feature extraction by using multiple sub-networks but tends to lose global context
and fine-grained details in complex images, limiting its effectiveness in high-resolution recovery tasks.

To address these challenges, we propose the DSSTU-Net model, specifically designed to tackle key
issues in SR reconstruction. The DSSTU-Net model integrates the RSTB, which leverage multiscale attention
mechanisms within a U-Net architecture renowned for its powerful feature fusion capabilities through skip
connections. This combination ensures both fine detail recovery and global feature aggregation, thereby
enhancing overall reconstruction quality. Furthermore, the inclusion of DS in the decoder phase bolsters
gradient flow during training, accelerating convergence and enabling the model to capture richer, multilevel
feature representations.

This research contributes to the broader field of SR by:
1. Novel Architectural Integration: Proposing a unique combination of U-Net and Swin Transformer

architectures that synergistically enhance both detail recovery and contextual understanding, allowing the
model to effectively manage varying scales of information.

2. Introducing the RSTB, which employs multiscale attention mechanisms to capture intricate details
and long-range dependencies, significantly improving the model’s ability to reconstruct high-frequency
content.

3. Implementing a DS strategy in the decoder phase that improves gradient flow and accelerates
convergence during training. The DSSTU-Net model provides a reference method for future research on
advanced image restoration techniques.

The significance of this research lies in its potential to advance HR image reconstruction, particularly
in applications where the recovery of fine details is crucial. Consequently, the DSSTU-Net model provides a
reference method for future research on advanced image restoration techniques.

2 Related Research
SR is a class of techniques that enhance the resolution of an imaging system. The primary aim of super-

resolution technologies is to reconstruct HR images from their LR counterparts. This is crucial in various
applications such as satellite imaging, medical imaging, and consumer electronics where enhancing image
quality can significantly impact the output and usability of the images.
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The seminal work by Yu et al. [7] serves as a foundational reference for our study. Their approach to
seamlessly integrating learning-based and reconstruction-based methods to enhance single-image super-
resolution has informed the development of our framework. By employing a unified dictionary learned
directly from the low-resolution input and integrating advanced filtering techniques, their methodology
provides crucial insights into achieving high-quality super-resolution without the introduction of artifacts,
which has significantly influenced our own methodological enhancements.

Han et al. [8] presented a multi-level U-Net residual structure, composed of two different levels of
U-Net structures, to extract multi-level features from LR images. Meanwhile, they presented a multi-scale
residual block that extracts multi-level features through dual-branch convolutional layers with different
kernels and uses both long and short skip connections to bypass a large amount of low-frequency infor-
mation. Extensive experimental results demonstrate that their MUN outperforms other state-of-the-art
super-resolution methods.

Liang et al. [9] proposed a strong baseline model, SwinIR, for image restoration based on the Swin
Transformer. SwinIR consists of three parts: shallow feature extraction, deep feature extraction, and high-
quality image reconstruction. Particularly, the deep feature extraction module is composed of several
RSTB, each containing multiple Swin Transformer layers along with a residual connection. They conducted
experiments on image super-resolution, and the results demonstrate that SwinIR outperforms state-of-the-
art methods on various tasks by up to 0.45 dB, while the total number of parameters can be reduced by up
to 67%.

Chen et al. [10] shifted their focus to the frequency domain since the natural global properties of the
frequency domain can address this issue. To explore attention maps from a frequency domain perspective,
they investigated and corrected some misconceptions in existing frequency domain feature processing
methods and proposed a new frequency domain attention mechanism called frequency-enhanced pixel
attention (FPA). Additionally, they used large kernel convolutions and partial convolutions to improve
the ability to extract deep features while maintaining a lightweight design. Based on these improvements,
they proposed a large kernel frequency-enhanced network (LKFN) with a smaller model size and higher
computational efficiency. It effectively captures long-range dependencies between pixels in a whole image
and achieves state-of-the-art performance in existing efficient super-resolution methods.

Li et al. [11] proposed a Multi-scale Dual-Attention based Residual Dense Generative Adversarial
Network (MARDGAN), which uses multi-branch paths to extract image features and obtain multi-scale
feature information. They also designed the channel and spatial attention block (CSAB), which is combined
with the enhanced residual dense block (ERDB) to extract multi-level depth feature information and enhance
feature reuse. In addition, the multi-scale feature information extracted under the three-branch path is fused
with global features and sub-pixel convolution is used to restore the high-resolution image. The experimental
results show that the objective evaluation index of MARDGAN on multiple benchmark datasets is higher
than that of other methods, and the subjective visual effect is also better.

The method of image super-resolution reconstruction through the dictionary typically uses only a
single-layer dictionary, which not only fails to extract deep features of the image but also requires a large
trained dictionary to achieve better reconstruction effects. Huang et al. [12] proposed a new deep dictionary
learning model. Firstly, after preprocessing the images in the training set, the dictionary is trained using
the deep dictionary learning method, and the adjusted anchored neighborhood regression method is used
for image super-resolution reconstruction. The proposed algorithm was compared with several classical
algorithms on the Set5 and Set14 datasets. The visualization and quantification results show that the proposed
method improves PSNR and SSIM, effectively reduces the dictionary size, and saves reconstruction time
compared with traditional super-resolution algorithms.
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Despite the impressive strides made in SR technology, certain limitations persist that must be addressed
to further refine the performance and applicability of SR systems. Moreover, while current SR methods
excel at upscaling images with moderate upscaling factors, their efficacy diminishes as the factor increases,
particularly for complex textures and fine details. This limitation underscores the need for models that
can maintain robust performance even at high magnification levels without compromising on detail or
introducing artifacts. Additionally, the reliance on vast amounts of high-quality training data for optimal
performance poses a barrier, especially in domains where such data are scarce or expensive to procure. The
exploration of novel attention mechanisms and network architectures that focus more on feature selection
and optimization may provide new pathways to enhance the quality of super-resolved images.

3 Methods
This study proposes the DSSTU-Net model for efficient image super-resolution reconstruction tasks.

The model combines DS and the Swin Transformer architecture to improve the conversion effect of LQ to
HQ images through multi-scale feature extraction and detail reconstruction. The model structure is shown
in Fig. 1.

Figure 1: The DSSTU-Net model

The DSSTU-Net model uses a symmetric network based on the U-Net structure, including modules
such as down-sampling, up-sampling, and skip connections to ensure that global context information and
local details are preserved during the reconstruction process [13]. The most significant improvement is the
use of RSTB as the main feature extraction unit. Each RSTB strengthens feature learning through a residual
structure and uses the local attention mechanism of the Swin Transformer to enhance the modeling ability of
image details and edges. The model improves the feedback of the training process by introducing DS modules
at multiple feature scales. DS not only adds supervision signals to the output layer but also introduces a loss
function in the intermediate feature layer so that the network can optimize the feature representation of
different scales layer by layer during the learning process, promoting higher-quality image reconstruction.
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The DSSTU-Net model consists of multiple modules, each of which plays a specific role in the image
super-resolution reconstruction task. The following steps describe the functions and roles of each module
in detail:

1. Input: The input to the model is an LQ image, typically derived from a low-resolution image. It
undergoes feature extraction through a convolutional layer, mapping the image from pixel to feature space
for subsequent processing and analysis.

2. Convolution Layer (Conv): The convolutional layer is used to extract local low-level features of the
image, such as edges, textures, and more. It employs a standard 3 × 3 convolutional kernel to extract features
from the input image and passes the output to the subsequent RSTB module. The convolution operation
converts the image into multiple feature maps, which serve as the input for the following modules.

3. RSTB module: The RSTB module is responsible for extracting and processing deep features. It
combines the residual connection with the attention mechanism of the Swin Transformer to capture
both local and global features of the image. The residual connection in the RSTB module helps alleviate
the gradient vanishing problem and ensures that the model can learn deeper information through skip
connections. The Swin Transformer extracts features in local areas and captures long-range dependencies
through the multi-head self-attention mechanism of the sliding window, enhancing both the retention of
image details and the capture of global information.

4. STL module (Swin Transformer Layer): Each RSTB module consists of multiple STLs, which can
extract local features in-depth and detail, enhancing the model’s perception of subtle image information.
The STL module employs a multi-head self-attention mechanism (MSA) and a feedforward neural network
(MLP) to improve the image’s detail and global feature extraction capabilities through layer normalization
(Layer Norm) and residual connections, ultimately enhancing the quality of super-resolution.

5. Skip connection: Skip connections transfer features between the encoder and decoder of the network,
helping to retain the low-level features of the input image and preventing the loss of important information
during high-level feature extraction. By directly connecting the features from the encoding stage to the
decoding stage, the corresponding features are fused, effectively improving detail restoration and ensuring
that the generated high-resolution image contains both global information and ample details.

6. Up-sampling and Down-sampling: Down-sampling is used to reduce the resolution of the image to
capture global information while up-sampling is used to gradually restore the resolution of the image and
restore details. Up-sampling and down-sampling operations are performed through convolution or other
interpolation methods so that the model can not only process the global features of low-resolution images
but also restore their details during up-sampling.

7. Supervision module: Supervision modules are applied at multiple levels of the network, and multi-
level optimization is achieved by comparing the output with labeled images, enhancing both the training
effect and the model’s convergence speed. The DS module is applied not only at the network’s output layer
but also introduces loss functions at intermediate levels to gradually optimize features.

8. Output: The output is a reconstructed HQ image, and its goal is to have a high-resolution image that
is as close to the target as possible. The extracted high-dimensional features are mapped back to the pixel
space through the final convolution layer to generate high-quality images.

Through the seamless integration of these modules, the DSSTU-Net model effectively enhances the SR
reconstruction of images, retains more detailed information, and ensures the efficiency and robustness of
the training process.

The RSTB module is derived from the Swin Transformer architecture [14]. Its core concept is to extract
image features through a local windowed MSA mechanism. Unlike traditional convolution operations, the
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Swin Transformer divides the image into blocks by partitioning local windows and applying the self-attention
mechanism within each window. This approach captures both local details and long-range dependencies
simultaneously, thereby enhancing the model’s ability to retain high-frequency information. The RSTB
module is in the lower half of Fig. 1.

Specifically, the RSTB module combines residual connections and multiple STL structures to ensure
information flow in the deep network while avoiding the gradient vanishing problem. The residual structure
allows features to be accumulated and fed back within the module, thereby enhancing the flow of information
and the ability to reconstruct image details. The STL structure is in the lower half of Fig. 1.

The STL module processes image features through the self-attention mechanism within Windows
and ensures global information transmission by shifting windows during interactions between them. STL
combines MSA, Layer Norm, and a feedforward neural network to capture both local and global features of
the image.

Before performing each self-attention operation, the Layer Norm normalizes the input features to ensure
stability in the input distribution. Next, the model divides the input image features into multiple windows,
and STL applies self-attention within each window to capture local information.

Attention (Q , K , V) = so f tmax (QKT
√

dk
)V . (1)

Q, K, V represents query, key, and value matrices, respectively, and dk is a scaling factor used to avoid
excessive dot product results. Through this attention mechanism, the relationship between pixels in each
window is learned to capture local image features.

In the STL module, after the self-attention mechanism in the window, there will be a residual connection
to add the input features to the features after the self-attention operation.

X1 = X + Attention (Q , K , V) . (2)

Then, the features after self-attention are further processed by a MLP to enhance the nonlinear mapping
ability of the model.

X2 = FFN (X1) = GELU (X1W1 + b1)W2 + b2. (3)

W1 and W2 are weight matrices; b1 and b2 are bias terms; GELU is the activation function.
Finally, the output of the feedforward network is added to the initial input through a residual connection

to keep the information flowing and avoid the gradient vanishing problem. The role of the residual
connection is to add the input directly to the output.

Y = X1 + X2. (4)

The STL module includes two residual connections, one after the self-attention module and one after the
feedforward network, to ensure smooth feature transmission across different processing stages, maximize
the retention of key information, and enhance the model’s generalization ability.

The RSTB module combines residual connections with the self-attention mechanism of the Swin
Transformer to effectively capture both local and global features of the image, improving the performance
of super-resolution reconstruction.
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DS plays a crucial role in enhancing the performance of deep neural network models by strategically
placing supervision signals within the hidden layers [15]. This method addresses common challenges in deep
learning, such as gradient vanishing and slow convergence, particularly in very deep architectures. By guiding
intermediate layers directly with the ground truth, DS ensures more effective and faster learning. Fig. 2
illustrates the DS strategy.

Figure 2: The DS strategy illustrates the structure of a deep learning model’s feature extraction and prediction pipeline.
(a) shows the feature extraction process; (b) depicts the Multi-level supervision unit; (c) represents the Final prediction
phase

The DS strategy can be articulated through three distinct modules, each designed to refine feature
processing and enhance the overall learning dynamics:

(1) Feature Extraction: Feature Extraction includes Average Pooling, Conv, ReLU Activation.
The Feature Extraction module in the DS strategy can be formalized as Eq. (5). Average Pooling

reduces the spatial dimensions H ×W of the input feature map X by summarizing features within a local
neighborhood k × k1, leading to a more generalized feature representation.

AP (X) = 1
K2 ∑

k
i=1∑

k
j=1 Xsub(i , j). (5)

The Feature Extraction module helps in decreasing sensitivity to the exact locations of features within
the input, thereby providing a more generalized feature representation.

Conv applies various filters F to the pooled features to extract significant attributes, represented by:

Conv (X) = F ∗ AP (X) + b, (6)

where ∗ denotes the convolution operation, and b is the bias. This step is crucial for capturing essential
patterns that are indicative of underlying structures in the data.

ReLU Activation introduces non-linearity to the processed features, enabling the model to capture more
complex patterns and dependencies in the data.

ReLU (x) =max(0, x). (7)

ReLU Activation function is fundamental for enhancing the model’s capability to learn and adapt from
nonlinear data.

(2) Multi-level Supervision Unit: The Multi-level Supervision Unit includes Dropout, ReLU Activation,
and Inner Product.
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Dropout acts as a regularization technique that randomly zeros out a portion of the feature detectors
during training.

Dropout (X) = x ⊙M(p), (8)

where M(p) is a mask generated from a Bernoulli distribution with probability p. This prevents the model
from relying too heavily on any single feature or a small group of features, promoting more robust learning
and reducing overfitting. It also simulates ensemble learning by generating different thinned networks during
each training pass.

ReLU Activation is reapplied to reintroduce non-linearity to the features after dropout, ensuring that
the model’s capacity to capture complex functions remains intact despite the regularization.

The Inner Product performs a weighted summation of the inputs, serving as a linear transformation.

InnerProduct(X) =W T X + b, (9)

where W represents the weight matrix, and b is the bias. This step typically reduces dimensionality and helps
formulate decisions, preparing the network for the final decision-making layer.

(3) Final Prediction: This final step aggregates the contributions from all the features processed through
the supervision units to generate the final output prediction, which can be mathematically represented
as Eq. (10):

Output = ∑n
i=1 Wi ⋅ Featurei + b, (10)

where Featurei are the inputs from various layers, and Wi and b are learnable parameters specific to this
aggregation phase. This summation is crucial as it integrates all the learned representations into a final
decision, reflecting the cumulative understanding of the network about the input data.

Each component within the DS framework plays a pivotal role in enhancing the model’s performance.
It not only improves the flow and adjustment of gradients throughout the network but also ensures that
each layer contributes effectively to the final output. This structured approach enriches the model’s ability to
reconstruct high-quality outputs from low-quality inputs.

Given that the model employs a DS module, each layer’s output applies the same cross-entropy loss
function, adhering to Eqs. (11) and (12). The formula for the total loss is as follows:

L = 0.8Lmain + 0.2∑n
i=1 λi Li_ds , (11)

∑n
i=1 λi = 1. (12)

Lmain represents the loss from the network’s final output, which is weighted at 0.8 to prioritize refining
key feature information during training and to underscore the significance of the final output. Li denotes the
loss from the output of the i-th intermediate layer, with the combined weight for these intermediate losses
set at 0.2. This weighting scheme prevents these auxiliary losses from unduly influencing the primary task’s
learning trajectory, while still contributing to effective feature extraction and gradient flow. λi is the weight
of the i-th layer loss. The λi before each intermediate layer loss Li_ds should ensure that ∑n

i=1 λi = 1 so that
the proportion of the total 0.2∑n

i=1 λi in the total loss remains 0.2.
The RSTB module in DSSTU-Net significantly enhances the model’s performance in super-resolution

tasks by integrating advanced features from the Swin Transformer architecture. The RSTB module uti-
lizes a local windowed MSA, enabling the model to effectively capture both local details and long-range



Comput Mater Contin. 2025;83(1) 1065

dependencies. This method surpasses traditional convolution operations because it preserves high-frequency
information that is crucial for high-quality image reconstruction. Residual connections within the RSTB
module play a pivotal role in preserving the flow of information through deep network layers, preventing
gradient vanishing, and ensuring consistent feature retention across the network. The integration of the STL
within the RSTB structure incorporates two residual connections: one following the self-attention module
and another after the feedforward network. This arrangement ensures seamless feature transmission across
different processing stages, maximizes the retention of essential information, and enhances the model’s ability
to integrate both local and broader image contexts effectively. By normalizing input features through Layer
Norm before applying self-attention, the RSTB module ensures stability and consistent performance. This
architecture, which combines the innovative Swin Transformer’s capacity for capturing both local and global
features with robust residual connections, underpins DSSTU-Net’s superior ability to perform detailed and
accurate super-resolution, outperforming models that rely on more traditional deep learning techniques.

The DS module significantly enhances DSSTU-Net by embedding supervision signals directly within
its architecture, addressing common deep learning challenges like gradient vanishing and slow convergence.
This method strategically applies ground truth guidance at multiple levels, ensuring each layer not only
learns effectively but also contributes directly to the final output. This granular level of supervision results
in faster and more effective learning processes, especially in deep network structures where traditional
methods might falter. By integrating this with advanced feature extraction techniques such as average
pooling, convolution, and ReLU activation, the module aids in crafting a nuanced, detail-rich output. This
structured supervision not only refines the feature extraction across layers but also stabilizes the learning
process, leading to superior performance in reconstructing high-quality images from low-quality inputs,
thus significantly outperforming models lacking such intricate supervision frameworks.

These combined strategies not only advance the model’s ability to generate HR outputs from low-quality
inputs but also reinforce the network’s overall learning process, demonstrating their critical roles in the
success of SR architecture.

4 Experimental Datasets and Results

4.1 Dataset Introduction
In this paper, we utilized four prominent datasets—DIV2K [16], LSDIR [17], Set5, and Set14—which

are instrumental for training and benchmarking our DSSTU-Net model for image SR tasks. SET5 and
SET14 are widely used benchmark datasets in super-resolution tasks, specifically designed for evaluating
SR model performance. SET5 consists of 5 images, including diverse scenes like textures, human faces,
and simple objects, while SET14 contains 14 more complex images, offering a broader scope for testing SR
algorithms. Table 1 provides a detailed description of each dataset.

Table 1: Detailed description of DIV2K and LSDIR datasets

Dataset Training set Validation set Test set Download
Set5 N/A N/A 5 N/A
Set14 N/A N/A 14 N/A

DIV2K 800 100 100 https://data.vision.ee.ethz.ch/cvl/
DIV2K/ (accessed on 30

November 2024)

(Continued)

https://data.vision.ee.ethz.ch/cvl/DIV2K/
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Table 1 (continued)

Dataset Training set Validation set Test set Download
LSDIR 84,991 1000 1000 https://data.vision.ee.ethz.ch/

yawli/index.html (accessed on 30
November 2024)

Note: DIV2K: Diverse 2K resolution high-quality images dataset, commonly used for super-resolution tasks. LSDIR:
Large Scale Digital Image Restoration dataset. Set5: A standard benchmark dataset containing 5 high-resolution
images for testing super-resolution algorithms. Set14: Similar to Set5, this dataset comprises 14 high-resolution images
for evaluating the performance of super-resolution models. N/A: Not applicable, indicating that specific data is not
provided or necessary for the mentioned dataset in the context of training, validation, or download.

DIV2K is a well-established dataset widely used in image SR challenges. Its name comes from its
resolution (approximately 2K), and it is recognized for its diverse image content, making it a robust dataset
for training and validating SR models. The training set in DIV2K consists of 800 HR images rich in textures
and details, ideal for training advanced deep-learning models. The validation set includes 100 HR images,
used for periodic validation during training to monitor and evaluate the model’s performance. The testing
set contains 100 HR images to evaluate the final model performance.

LSDIR is designed to offer a comprehensive resource for training models across various image restora-
tion tasks, including SR, denoising, and more. It addresses the limitations of smaller datasets by providing
an extensive collection of high-quality images. The training data in LSDIR consists of 84,991 high-definition,
HR images, with corresponding LR versions for downscaling factors of 2, 3, and 4, offering substantial variety
for robust training. The validation data includes 1000 high-definition HR images, with the LR counterparts
intended for release to support more precise model validation. The test data comprises 1000 high-definition
HR images, primarily used for benchmarking, with LR images available for downscaling factors of 2, 3, and
4 to enable comprehensive testing.

By leveraging the DIV2K and LSDIR datasets, the DSSTU-Net model can be meticulously trained
and rigorously tested, ensuring strong performance across various settings and meeting the high standards
required for practical applications in image SR.

4.2 Evaluation Metrics
To evaluate the performance of our DSSTU-Net model on the image SR task, we use two widely

recognized metrics: Peak signal-to-noise ratio (PSNR) and Structural Similarity Index Measure (SSIM) [18].
These metrics are crucial for measuring the effectiveness of SR methods by comparing the similarity between
the generated HR images and the original HR ground truths.

PSNR is a standard metric that quantifies the quality of reconstruction in imaging and video compres-
sion. It expresses the result on a logarithmic decibel scale, based on the MSE between the ground truth and
the reconstructed image. Eq. (13) shows how to calculate PSNR.

PSNR = 20 × log10 (
MAXI√

MSE
) , (13)

where the MSE is calculated as Eq. (14):

MSE = 1
mn∑

m
i=1∑

n
j=1[I (i , j) − K(i , j)]2. (14)

https://data.vision.ee.ethz.ch/yawli/index.html
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MAXI is the maximum possible pixel value of the image; I is the original HR image; K is the super-
resolved image generated by the model; m and n are the dimensions of the images.

SSIM is another critical metric used to measure the perceived quality of digital images and videos. Unlike
PSNR, SSIM considers changes in structural information, luminance, and contrast, making it more aligned
with human visual perception. Eq. (15) shows how to calculate SSIM.

SSIM (x , y) =
(2μx μy + c1)(2σx y + c2)
(μ2

x + μ2
y + c1)(σ 2

x + σ 2
y + c2)

. (15)

μx , μy are the averages of x and y, respectively; σx y is the covariance of x and y; σ 2
x , σ 2

y are the variances
of x and y; c1 = (k1L)2, c2 = (k2L)2 are constants to stabilize the division with a weak denominator; L is the
dynamic range of the pixel-values; k1 = 0.01 and k2 = 0.03 are default values.

SSIM values range between −1 and 1, where 1 indicates perfect similarity. The SSIM index is designed to
improve the perceptual relevance of the quality assessment by comparing local patterns of pixel intensities
that have been normalized for luminance and contrast. It assesses the visual impact of three characteristics
of an image: luminance, contrast, and structure, thus aligning more closely with the quality perception of the
human visual system.

PSNR provides insights into the overall error rate and noise level, while SSIM offers a deeper under-
standing of the qualitative aspects of super-resolution images. It is crucial to fully evaluate the effectiveness
of DSSTU-Net in practical applications by using both PSNR and SSIM.

4.3 Experimental Results
We tested the performance of U-Net, TransU-Net, DSU-Net (DS+U-Net), STU-Net (Swin Transformer

+ U-Net), and DSSTU-Net using the same training, validation, and test sets. The data-splitting strategy
followed the same approach as in the DIV2K and LSDIR competitions. The test datasets consist of the
validation sets from DIV2K and LSDIR, along with Set5 and Set14. All models were trained on a computer
equipped with an NVIDIA GeForce RTX 4090 D (24 GB) GPU, which provided the computational power
needed for high-intensity training sessions. We set the initial learning rate to 0.0001, with the Adam optimizer
used for adjusting the weights during training, where the beta parameters were set to (0.9, 0.999). This choice
of optimizer and learning rate facilitates effective convergence to optimal weights while preventing stagnation
in local minima. The training procedure utilized a batch size of 32 and employed 8 workers to optimize data
loading and preprocessing, balancing computational load and speed. Training continued until no significant
improvement in validation loss was observed, employing early stopping to avoid overfitting. Table 2 provides
a comprehensive comparison of key computational metrics across four different super-resolution models
(evaluated on a GeForce RTX 4090 D setup): U-Net, DSU-Net, STU-Net, and DSSTU-Net, evaluated on
the DIV2K and LSDIR datasets. This table highlights the number of parameters and model size on the
device, which are critical for understanding the models’ efficiency and deployment potential. Additionally, it
includes training and testing times, offering insights into the practical application and operational efficiency
of each model.
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Table 2: Comparative analysis of computational metrics for SR Models on DIV2K and LSDIR datasets with a scaling
factor of ×4

Dataset Model Number of
parameters

Model size
on device

Train time Test time

DIV2K U-Net 3.12 M 12.48 M 2.36 days 0.51 s
DSU-Net 3.12 M 12.48 M 2.08 days 0.49 s
STU-Net 7.31 M 29.25 M 2.36 days 0.49 s

DSSTU-Net 7.31 M 29.26 M 2.40 days 0.49 s
LSDIR U-Net 3.12 M 12.48 M 8.96 days 0.296 s

DSU-Net 3.12 M 12.48 M 8.61 days 0.292 s
STU-Net 7.31 M 29.25 M 8.95 days 0.28 s

DSSTU-Net 7.31 M 29.26 M 8.83 days 0.28 s

Table 3 provides a comprehensive comparison of SR performance across different scales (×2, ×3, ×4) on
the DIV2K and LSDIR datasets using U-Net, DSU-Net, STU-Net, and DSSTU-Net. The metrics utilized for
evaluation are PSNR and SSIM, which are standard for assessing image quality in SR tasks.

Table 3: Results for DIV2K and LSDIR datasets

Scale Dataset Method Set5 Set14 Val

PSNR SSIM PSNR SSIM PSNR SSIM
×2 DIV2K U-Net 30.12 0.8364 28.06 0.6055 30.76 0.8520

DSU-Net 32.85 0.8843 30.55 0.7870 33.63 0.8945
STU-Net 34.45 0.9320 32.98 0.8730 34.74 0.9153

DSSTU-Net 37.84 0.9683 34.47 0.9236 36.81 0.9443
LSDIR U-Net 31.37 0.8893 29.26 0.7665 31.38 0.8552

DSU-Net 35.17 0.9225 31.55 0.8111 33.37 0.8992
STU-Net 35.76 0.9422 33.15 0.8713 33.63 0.9069

DSSTU-Net 38.78 0.9689 34.61 0.9265 36.22 0.9425
×3 DIV2K U-Net 29.77 0.8510 28.34 0.6522 28.34 0.7449

DSU-Net 32.26 0.9010 29.13 0.7667 30.73 0.7972
STU-Net 34.98 0.9301 30.73 0.8403 32.39 0.8003

DSSTU-Net 35.74 0.9377 30.88 0.8522 34.02 0.8864
LSDIR U-Net 30.26 0.8863 29.11 0.7263 27.98 0.7132

DSU-Net 32.52 0.9003 30.01 0.7885 30.01 0.7885
STU-Net 34.23 0.9330 30.78 0.7939 30.50 0.8122

DSSTU-Net 34.77 0.9389 31.02 0.8565 31.88 0.8992
×4 DIV2K U-Net 28.60 0.7347 26.34 0.6884 28.56 0.7579

DSU-Net 29.27 0.7639 27.52 0.7522 29.28 0.7798
STU-Net 31.29 0.8219 28.38 0.7893 30.21 0.8030

DSSTU-Net 32.62 0.8601 29.96 0.8022 31.59 0.8592
LSDIR U-Net 29.70 0.7731 27.62 0.6496 29.74 0.8031

DSU-Net 31.68 0.8285 28.44 0.7098 30.21 0.8125

(Continued)
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Table 3 (continued)

Scale Dataset Method Set5 Set14 Val

PSNR SSIM PSNR SSIM PSNR SSIM
STU-Net 32.04 0.8426 30.76 0.7640 30.40 0.8182

DSSTU-Net 33.54 0.9035 32.47 0.8076 31.95 0.8474

At scaling ×2, the DSSTU-Net model significantly outperforms other methods within the DIV2K
dataset, achieving the highest PSNR and SSIM across all test sets (Set5, Set14, and Validation). When
employing DIV2K as the training set and Set5 as the test, DSSTU-Net achieves a PSNR of 37.84, marking
substantial improvements of 25.6% over U-Net, 15.2% over DSU-Net, and 9.8% over STU-Net. Similarly,
employing LSDIR dataset as the training set and Set5 as the test, DSSTU-Net records a PSNR of 38.78,
surpassing the scores of U-Net by 23.6%, DSU-Net by 10.3%, and STU-Net by 8.4%. Transitioning to the
Set14 test dataset and DIV2K as the training set, DSSTU-Net continues to impress with a PSNR of 34.47,
outperforming U-Net by 22.7%, DSU-Net by 12.8%, and STU-Net by 4.5%. On the LSDIR dataset as the
training set, DSSTU-Net achieves a PSNR of 34.61, showing gains of 18.4% over U-Net, 9.7% over DSU-Net,
and 4.4% over STU-Net. Furthermore, in the Validation dataset of DIV2K, DSSTU-Net posts a PSNR of
36.81, which is significantly higher than that of U-Net by 19.7%, DSU-Net by 9.5%, and STU-Net by 6.0%.
Lastly, in the LSDIR dataset within the Validation set, DSSTU-Net’s PSNR of 36.22 reflects improvements of
15.4% over U-Net, 8.5% over DSU-Net, and 7.7% over STU-Net.

At scale ×3 across various datasets, DSSTU-Net continues to demonstrate its superior performance
compared to U-Net, DSU-Net, and STU-Net, though the performance margins narrow as the complexity
increases. When employing DIV2K as the training set and Set5 as the test, DSSTU-Net achieves a PSNR
of 35.74, which is 20.1% higher than U-Net at 29.77 PSNR, and marginally better than STU-Net by 2.2%.
This trend of DSSTU-Net’s superior capability extends across other datasets like Set14 and the validation
sets. For instance, in Set14, DSSTU-Net slightly leads with a PSNR of 30.88 compared to STU-Net’s 30.73,
showing a small but significant refinement in handling intricate details. Similarly, in the validation sets of
DIV2K and LSDIR, DSSTU-Net outperforms STU-Net by 5% and 4.5%, respectively, which underscores
its robust architectural design that efficiently handles upscaling tasks even at higher complexities. These
improvements highlight DSSTU-Net’s sophisticated integration of Swin Transformers and DS mechanisms,
enabling better detail preservation and texture handling across diverse conditions and datasets. However, the
narrow margins at this scale suggest that the challenges of higher upscaling factors begin to test the limits of
current technologies, including DSSTU-Net, which, while still leading, shows reduced dominance compared
to lower scales.

At scale×4, DSSTU-Net showcases a pronounced efficiency in handling the highest upscaling challenges
across various datasets. When employing DIV2K as the training set and Set5 as the test, DSSTU-Net achieves
a PSNR of 32.62, outperforming U-Net, DSU-Net, and STU-Net with improvements of 14.1%, 11.5%, and
4.3%, respectively. This trend is echoed in the LSDIR dataset where DSSTU-Net records a PSNR of 33.54,
surpassing U-Net, DSU-Net, and STU-Net by 12.9%, 5.9%, and 4.7%. In the Set14, DSSTU-Net’s PSNR
of 29.96 leads U-Net by 13.7% and STU-Net by 5.1%. In the LSDIR dataset, it further extends its lead,
achieving a PSNR of 32.47, which is significantly higher than STU-Net’s 30.76 by 5.5%. The validation sets
echo these results, DSSTU-Net scores 31.59 PSNR on DIV2K, outperforming U-Net by 10.6% and STU-Net
by 4.5%. In the LSDIR validation dataset, its PSNR of 31.95 is superior to STU-Net’s 30.40 by 5.1%. These
results underscore DSSTU-Net’s sophisticated architecture, which incorporates Swin Transformers and DS
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mechanisms, providing superior detail preservation and textural fidelity compared to its counterparts.
However, the reduced margins of improvement as the scaling factor increases to ×4 also highlights the
escalating challenges of super-resolution tasks at higher scales.

U-Net demonstrates the least effective performance across all scales and datasets, highlighting the
need for more advanced architectural features and robust training mechanisms to address the complexities
of modern SR challenges. U-Net’s underperformance on the DIV2K and LSDIR dataset underscores
the importance of continuous improvements in both architectural and algorithmic strategies to advance
SR technology.

Building upon U-Net, DSU-Net introduces moderate improvements but does not fully close the
gap with more complex models. While it outperforms U-Net by leveraging enhanced feature extraction
capabilities, DSU-Net offers only incremental improvements and falls short of reaching the high standards
set by more sophisticated models.

STU-Net introduces robust enhancements that improve performance, though it still lags behind the
top-performing DSSTU-Net. The comparison highlights the critical impact of additional layers and training
enhancements integrated into DSSTU-Net, which are essential for achieving superior performance. This is
particularly evident under the demanding conditions of the LSDIR dataset at higher scales. While STU-Net
narrows the performance gap with DSSTU-Net at scale ×3, it becomes clear that both models benefit from
advanced architectural elements. However, the deeper integration of sophisticated features in DSSTU-Net
provides a distinct advantage.

DSSTU-Net demonstrating the substantial benefits of integrating Swin Transformer blocks and DS
mechanisms. The model excels at higher scales, where precision in reconstructing high-frequency details
is crucial. At scale ×2 on the DIV2K dataset, DSSTU-Net significantly outperforms even the enhanced
capabilities of U-Net, capturing finer details and textures with remarkable clarity. This trend continues as
the scale increases, solidifying DSSTU-Net’s dominance and highlighting the effectiveness of its advanced
design in pushing the boundaries of image SR performance.

Fig. 3 illustrates the performance of four different models—U-Net, DSU-Net, STU-Net, and DSSTU-
Net—across three test sets (Set5, Set14, and Val) at different scaling factors (×2, ×3, ×4) on the DIV2K
and LSDIR datasets. The graph uses lines to represent each of the test sets, with blue for Set5, orange
for Set14, and grey for Val. The PSNR values are plotted on the Y-axis, which helps in comparing the
image quality enhancements provided by each model. The graph highlights the superior performance
of DSSTU-Net, which consistently achieves higher PSNR values across all test sets and scaling factors,
indicating its robustness and effectiveness in handling super-resolution tasks. Notably, DSSTU-Net shows
significant improvements over the other models, especially in more challenging settings at higher scales. This
visualization effectively captures the advancements DSSTU-Net brings in terms of detailed retention and
image clarity, validating its architectural benefits over traditional methods like U-Net and its variants.

Fig. 4 presents the SSIM performance of various super-resolution models—U-Net, DSU-Net, STU-Net,
and DSSTU-Net—across three test sets, Set5, Set14, and Val, detailed at scaling factors ×2, ×3, and ×4 on
the DIV2K and LSDIR datasets. The SSIM metric quantifies the visual similarity between the reconstructed
images and their high-resolution counterparts, with higher values indicating closer resemblance. The chart
uses three colors to differentiate the test sets, displaying a trend where DSSTU-Net consistently achieves
the highest SSIM scores. This visualization underlines DSSTU-Net’s superior performance in maintaining
structural integrity and detail across varying levels of image resolution, setting it apart from other models like
U-Net, DSU-Net, and STU-Net which exhibit varying degrees of effectiveness across the scales and datasets.
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Figure 3: Comparative analysis of PSNR performance across models and scales on DIV2K and LSDIR datasets

Figure 4: Comparative analysis of SSIM performance across models and scales on DIV2K and LSDIR datasets

Fig. 5 presents a visual comparison of SR results (×2) produced by different models on an image from
the DIV2K validation set (DIV2K_val_0896.PNG). The sequence of images from (b) to (e) illustrates the
incremental improvements in image quality achieved by each model, along with the corresponding PSNR
and SSIM values that quantify their performance.

Fig. 5a displays the original HR image from the DIV2K validation set, serving as a benchmark for
comparing the SR outputs of the various models. This image provides detailed textures in the feathers and
background, allowing for thorough assessment.
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Figure 5: The visual comparison of SR results (×2) produced by different models on an image from the DIV2K
validation set (DIV2K_val_0896.PNG). (a) displays the original high-resolution image from the DIV2K dataset, which
is used as a benchmark for the super-resolution models. (b) presents results from the U-Net model. (c) shows output
from the DSU-Net. (d) from the STU-Net achieves a PSNR of 40.94 and an SSIM of 0.9623. (e) features the DSSTU-Net,
achieving the best performance with a PSNR of 43.25 and an SSIM of 0.9672, indicating superior detail and texture
accuracy close to the original image

In Fig. 5b, the result from U-Net achieves a PSNR of 38.01 and an SSIM of 0.9474. While the image
is reasonably clear, there is noticeable softness in the details, particularly around the feather edges in
the zoomed-in segment. Finer textures appear somewhat blurred, indicating the need for more advanced
processing to capture intricate details.

Fig. 5c shows the output from DSU-Net, which marks an improvement with a PSNR of 39.86 and
an SSIM of 0.9571. The image is sharper than U-Net’s output, with better-defined feather and background
textures. The edges are crisper, and there is less blurring, demonstrating the model’s enhanced ability to
restore fine details.

The result from STU-Net in Fig. 5d further refines the image quality, achieving a PSNR of 40.94 and
an SSIM of 0.9623. This model offers even greater clarity and detail recovery, particularly in the intricate
textures of the feathers and background. The improvements in sharpness and texture definition are evident,
making this model more effective at handling complex image content.

Finally, Fig. 5e presents the output from DSSTU-Net, the top performer, with a PSNR of 43.25 and an
SSIM of 0.9672. This model produces the clearest and most detailed image. The background is smoother
and less noisy, highlighting the model’s superior capability in preserving high-frequency details while
minimizing artifacts.

Fig. 6 presents a visual comparison of SR results (×4) for an image from the LSDIR validation
set (LSDIR_val_0000229.PNG), showcasing the performance of different models on a highly detailed
natural scene.

Fig. 6a features the original HR image, serving as the reference for assessing the SR quality of the
subsequent models.
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Figure 6: The visual comparison of SR results (×4) for an image from the LSDIR validation set
(LSDIR_val_0000229.PNG). (a) displays the original high-resolution image, used as a benchmark for the super-
resolution models. (b) presents results from the U-Net model. (c) from the DSU-Net shows a slight improvement with
PSNR and SSIM values of 33.58 and 0.8876, respectively. (d) features the STU-Net, which further enhances the image
with a PSNR of 33.84 and an SSIM of 0.8912. (e) demonstrates the DSSTU-Net’s superior performance with a PSNR
of 34.81 and an SSIM of 0.9053, closely approximating the original image’s detail and texture, providing the highest
fidelity among the models

In Fig. 6b, the U-Net model produces an image with a PSNR of 31.06 and an SSIM of 0.8763. The result
exhibits a noticeable loss of texture detail and sharpness, especially in the finer scales, which appear slightly
blurred and lack the original image’s crispness.

Fig. 6c shows the output from DSU-Net, which improves upon U-Net’s rendering with a PSNR of 33.58
and an SSIM of 0.8876. This model better preserves texture, though some fine details remain less sharp than
in the original image.

Fig. 6d presents the STU-Net model, which further enhances image quality, achieving a PSNR of 33.84
and an SSIM of 0.8912. This model’s output more closely approximates the original, with improved sharpness
in texture details, showcasing a better balance between detail preservation and noise reduction.

Finally, Fig. 6e shows the DSSTU-Net model, which delivers the best results with a PSNR of 34.81 and
an SSIM of 0.9053. This output closely matches the original image’s quality, displaying exceptional detail in
the textures and intricate patterns. The image is sharper, clearer, and more vivid, highlighting DSSTU-Net’s
effectiveness in reconstructing high-frequency details with minimal artifacts.

Overall, the progressive improvements from U-Net through DSSTU-Net illustrate significant advance-
ments in the ability to enhance and restore finer details and textures in SR tasks, particularly in complex
natural images like those in DIV2K and LSDIR datasets.
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5 Discussions
Table 4 provides a comprehensive comparison of state-of-the-art methods for image super-resolution

across various scales, highlighting DSSTU-Net’s performance in comparison with other advanced models.
Each model is evaluated on the Set5, Set14, and validation sets using PSNR and SSIM metrics.

Table 4: State-of-the-art methods results

Scale Method Set5 Set14 Val

PSNR SSIM PSNR SSIM PSNR SSIM
×2 MUN [8] 38.28 0.962 34.14 0.923

SwinIR [9] 38.38 0.9621 34.24 0.9233 35.25 0.9423
LKFN [10] 38.06 0.9609 34.00 0.9207

Deep dictionary learning and A+ [12] 36.49 0.9537
SCNet [19] 38.07 0.9607 33.72 0.9188

DSSTU-Net 38.78 0.9689 34.61 0.9265 36.22 0.9425
×3 MUN [8] 34.77 0.936 30.68 0.963

SwinIR [9] 34.95 0.9316 30.83 0.8511 31.50 0.8832
LKFN [10] 34.54 0.9284 30.54 0.8452

Deep dictionary learning and A+ [12] 32.49 0.9076
SCNet [19] 34.44 0.9276 30.43 0.8437

DSSTU-Net 34.77 0.9389 31.02 0.8565 31.88 0.8992
×4 MUN [8] 32.65 0.901 28.87 0.791

SwinIR [9] 32.81 0.9029 29.02 0.7928 29.63 0.8347
LKFN [10] 32.35 0.8971 28.80 0.7862

MARDGAN [11] 32.31 0.907 28.85 0.805
Deep dictionary learning and A+ [12] 30.26 0.8599

SCNet [19] 31.82 0.8904 28.36 0.7764
SuRGe [20] 33.07 0.91 30.21 0.83
ARFFT [21] 33.18 0.902 29.55 0.8012
360SR [22] 26.39 0.7381

DSSTU-Net 33.54 0.9035 32.47 0.8076 31.95 0.8474

Note: PSNR: PSNR is a standard metric that quantifies the quality of reconstruction in imaging and video
compression. It expresses the result on a logarithmic decibel scale, based on the MSE between the ground truth
and the reconstructed image. SSIM: SSIM is another critical metric used to measure the perceived quality of digital
images and videos. Unlike PSNR, SSIM considers changes in structural information, luminance, and contrast,
making it more aligned with human visual perception.

While MUN [8] leverages a multi-level U-Net structure for enhancing feature extraction from low-
resolution images, DSSTU-Net extends this concept by incorporating Swin Transformer blocks that offer a
more nuanced approach to feature extraction and integration. MUN’s reliance on multi-scale residual blocks
for multi-level feature extraction is innovative; however, DSSTU-Net’s approach allows for a more efficient
and deeper feature extraction capability, which is evident from its superior performance metrics, especially
in terms of PSNR and SSIM across various datasets.

SwinIR [9] establishes a robust baseline with its use of Swin Transformer layers for deep feature
extraction, which DSSTU-Net also employs. However, DSSTU-Net advances this concept by combining
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these transformers with DS mechanisms, enhancing the model’s ability to reconstruct high-quality images
from severely degraded inputs. While SwinIR has demonstrated substantial improvements in image quality,
DSSTU-Net’s enhancements enable it to achieve even higher benchmarks, particularly in handling more
complex upscaling tasks.

Focused on exploiting the frequency domain for image restoration, LKFN [10] introduces frequency-
enhanced pixel attention mechanisms to capture long-range dependencies effectively. DSSTU-Net, while not
specifically targeting frequency domain enhancements, integrates a comparable depth of feature processing
through its transformer-based architecture, yielding results that often surpass those of LKFN in direct
comparisons, particularly at higher scales of image upscaling.

MARDGAN [11] uses a generative adversarial network framework enhanced with multi-scale dual-
attention mechanisms, aiming to blend detailed feature extraction with generative capabilities. DSSTU-Net,
by contrast, focuses on a deterministic approach with its DS and transformer layers, ensuring consistent
high-quality image output without relying on adversarial training, which can be unstable and unpredictable.

Huang et al. [12] using dictionary learning for super-resolution is innovated upon by incorporating deep
learning methods to enhance performance. DSSTU-Net, however, bypasses the need for extensive dictionary
sizes by directly learning an end-to-end mapping from low to high-resolution images using deep learning
architectures, simplifying the model and reducing the overhead associated with dictionary maintenance
and update.

SCNet [19] represents a notable advancement in super-resolution technology, proposing a lightweight
model with fully convolutional layers that utilize fewer parameters, offering a novel shift-convolution (SC)
layer that adapts stride and direction hyper-parameters to extend the receptive fields traditionally associated
with normal convolution. In contrast, our DSSTU-Net extends the capabilities of traditional SR models by
integrating Swin Transformer blocks with DS mechanisms. While SCNet focuses on parameter efficiency and
adaptability in its architecture, allowing for scalability across various model sizes and potential integration
with attention mechanisms, DSSTU-Net leverages the power of Swin Transformers to achieve deeper feature
extraction and enhanced image reconstruction quality. This is particularly beneficial in handling complex
upscaling tasks that require high fidelity in restored textures and details. DSSTU-Net provides a more in-
depth feature extraction capability, which is crucial for restoring high-complexity image details that SCNet
may not fully capture due to its emphasis on reducing parameter count. Both models offer scalability;
however, DSSTU-Net’s integration with DS allows it to maintain high performance across various scales and
conditions without compromising on the quality of the output.

SuRGe [20] introduces a novel approach to super-resolution by employing a fully-convolutional Gen-
erative Adversarial Network (GAN) architecture. The SuRGe model emphasizes the optimal combination
of convolutional features at increasing depths through learnable convex weights, and employs advanced
loss functions like Jensen-Shannon and Gromov-Wasserstein to refine the generation of high-resolution
images from low-resolution inputs. In contrast, DSSTU-Net leverages Swin Transformer blocks integrated
with DS mechanisms, focusing on a deterministic approach rather than generative adversarial methods.
While SuRGe utilizes GANs to potentially enhance textural details through adversarial training, DSSTU-
Net aims for consistency and stability in image quality enhancement without the risk of mode collapse
associated with GANs. Unlike SuRGe, which uses complex loss functions to guide its generative process,
DSSTU-Net employs a more straightforward loss landscape that ensures predictable performance and
easier optimization.

Zhu et al. [21] detail a new method in the field of image super-resolution that integrates the advantages
of both spatial and frequency domain processing through a novel architecture named Attention Retractable
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Frequency Fusion Transformer (ARFFT). This method addresses the limitations of previous Transformer-
based models, which were restricted by their receptive fields due to the deployment of self-attention within
non-overlapping windows. The ARFFT model stands out for its use of a spatial-frequency fusion block
(SFFB) which significantly enhances the Transformer’s ability to extend its receptive field across the whole
image, thereby improving the quality of super-resolution results. This model introduces a progressive
training strategy that involves training on image patches of varying sizes, which aids in further refining
the super-resolution performance across various benchmark datasets. Despite the promising advances,
the paper’s methodology still faces the challenge common to Transformer-based approaches, which is the
computational intensity associated with the processing of global interactions. Additionally, the model’s
reliance on large amounts of training data to achieve high performance might limit its application in
resource-constrained scenarios.

Smith [22] introduced a novel approach to single-image super-resolution in his thesis, emphasizing the
challenges and limitations of current super-resolution techniques while also showcasing the strengths and
potential of deep learning-based solutions. This is particularly evident in his comparative analysis of U-Net
and its advanced iterations. Smith points out the limited capabilities of basic models like U-Net in effectively
enhancing image quality to meet practical application needs, particularly in high-complexity scenarios such
as those offered by the LSDIR dataset. He critically evaluates how these models struggle with the fine details
necessary for high-quality image reconstruction, emphasizing the need for more sophisticated architectures.
To address these shortcomings, Smith proposes the use of GANs and introduces a lightweight SR network
that incorporates SwinIR as the generator, enhanced by a GAN framework with MobileViT as a lightweight
discriminator. This combination, he argues, significantly improves the quality of image super-resolution.
when set against Smith’s approach that utilizes GANs to address super-resolution, DSSTU-Net provides
a more straightforward yet effective solution. While Smith’s method significantly enhances image quality
by combining advanced GAN structures with SwinIR and MobileViT, it introduces complexities related
to training stability and model tuning. DSSTU-Net, in contrast, achieves comparable or superior results
without the need for adversarial training, thus simplifying the training process and reducing the potential
for model instability.

In conclusion, while each of the compared methods has its strengths and has significantly pushed
forward the boundaries of super-resolution technology, DSSTU-Net’s integration of Swin Transformers with
DS mechanisms not only addresses but also surpasses many of the limitations faced by these methods. This
positions DSSTU-Net as a leading solution in the field, particularly in scenarios where complex image details
and textures need to be restored at high upscaling factors.

In conclusion, while each of the compared methods has its strengths and has significantly pushed
forward the boundaries of super-resolution technology, DSSTU-Net’s integration of Swin Transformers
with deep supervision mechanisms not only addresses but also surpasses many of the limitations faced
by these methods. This positions DSSTU-Net as a leading solution in the field, particularly in scenarios
where complex image details and textures need to be restored at high upscaling factors. However, the
model’s computational intensity, primarily due to the deep Swin Transformer blocks, requires substantial
GPU resources which may not be feasible for all application scenarios, particularly in real-time or on-device
processing environments. Optimizations such as model pruning, quantization, or the development of more
efficient transformer models could potentially mitigate these issues.

Furthermore, DSSTU-Net’s performance is heavily dependent on the availability of extensive, high-
quality training datasets. This reliance poses challenges in environments where such datasets are limited
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or where data privacy concerns preclude the use of extensive personal data. Exploring techniques like few-
shot learning, synthetic data augmentation, or unsupervised learning approaches could help reduce this
dependency, making DSSTU-Net more adaptable to varied and constrained settings.

6 Conclusion
The DSSTU-Net introduces a groundbreaking approach to SR technology by integrating RSTB and

deep supervision within a U-Net architecture. This model excels at reconstructing HR images from LR
inputs, demonstrating superior performance on the DIV2K and LSDIR datasets. By leveraging advanced
transformer technology and deep supervision techniques, DSSTU-Net achieved significant improvements in
image detail and texture accuracy. The DSSTU-Net model not only enhances the quality of super-resolution
outputs but also sets a reference method for future research in image restoration and related fields.
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