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ABSTRACT: The efficient implementation of the Advanced Encryption Standard (AES) is crucial for network
data security. This paper presents novel hardware implementations of the AES S-box, a core component, using
tower field representations and Boolean Satisfiability (SAT) solvers. Our research makes several significant contri-
butions to the field. Firstly, we have optimized the GF(24) inversion, achieving a remarkable 31.35% area reduction
(15.33 GE) compared to the best known implementations. Secondly, we have enhanced multiplication implementa-
tions for transformation matrices using a SAT-method based on local solutions. This approach has yielded notable
improvements, such as a 22.22% reduction in area (42.00 GE) for the top transformation matrix in GF((24)2)-type S-
box implementation. Furthermore, we have proposed new implementations of GF(((22)2)2)-type and GF((24)2)-type
S-boxes, with the GF(((22)2)2)-type demonstrating superior performance. This implementation offers two variants: a
small area variant that sets new area records, and a fast variant that establishes new benchmarks in Area-Execution-Time
(AET) and energy consumption. Our approach significantly improves upon existing S-box implementations, offering
advancements in area, speed, and energy consumption. These optimizations contribute to more efficient and secure
AES implementations, potentially enhancing various cryptographic applications in the field of network security.

KEYWORDS: AES S-box; SAT optimization; tower field; hardware implementation; area efficiency; energy
consumption

1 Introduction
Information security is crucial in the Internet of Things (IoT) [1,2], particularly in healthcare, trans-

portation, and smart cities. Cryptography plays a key role in protecting the security of IoT data. However,
IoT devices have limitations in computational, storage, and energy. Improving the efficiency of cryptographic
implementations in terms of area, delay, and power consumption has become a critical challenge. As
a dominant encryption, the performance requirements (such as low area and low delay) for AES [3]
implementation have become increasingly urgent. The AES consists of four subfunctions: SubBytes (S-box),
ShiftRows, MixColumns, and AddRoundKey. As a core component, the implementation of the S-box directly
affects the circuit area and delay of the AES implementations [4–6]. Therefore, the goal of this paper is
to improve the area and delay of the S-box implementation, thereby enhancing the performance of the
AES implementation.
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The AES S-box involves the inversion over GF(28) and an affine transformation over GF(2). Since
2001, many approaches have been proposed to reduce the area and delay of the inversion circuit over
GF(28). These approaches typically use tower field algorithms, which decompose GF(28) as GF((24)2) or
GF(((22)2)2). Tower field algorithms also include the selection of basis, e.g., polynomial basis (PB), normal
basis (NB), Polynomial Ring Representation (PRR), or redundantly represented basis (RRB). In 2001, Rudra
et al. [7] proposed an S-box implementation based on GF((24)2) and Satoh et al. [8] optimized isomorphic
mappings using a greedy algorithm and proposed an S-box implementation based on GF(((22)2)2) and PB.
In 2005, Canright [9] proposed a tree search algorithm to eliminate the redundancy of the method in [8],
and demonstrated GF(((22)2)2)-type S-box implementations based on different PB and NB. To get more
isomorphic matrices, mixed bases was first used in [10,11]. Nogami et al. [10] proposed a GF(((22)2)2)-
type S-box implementation based on NB and PB. Nekado et al. [11] proposed a GF((24)2)-type S-box
implementation with NB and RRB. However, these optimizations had non-cancellable property. Boyar et al.
proposed two GF(((22)2)2)-type S-box implementations using cancellable heuristic methods. One mini-
mizes area [12] and the other minimizes depth [13]. Ueno et al. introduced a mixed bases (NB, PRR and RRB)
representation [14], and used multiplication offsets [15] to optimize the area and depth of GF((24)2)-type
S-box. Reyhani et al. proposed a small depth implementation of the NB-based GF((24)2)-type S-box using
cancellable Focused-Search heuristics [16]. Subsequently, they proposed an area-minimized implementation
of GF(((22)2)2)-type S-box by extending logic gates [17]. Recently, multiplicative and exponential offsets
were applied to optimize GF(((22)2)2) and GF((24)2)-type S-boxes [18,19]. For GF(((22)2)2)-type S-box,
Maximov et al. [18] proposed three implementations (small area, fast, and trade-off) based on NB. For
GF((24)2)-type S-box, Nakashima et al. [19] introduced two implementation variants (small area and fast)
with NB, PRR and RRB. Additionally, several implementations [20,21] for resisting side-channel attacks have
been proposed to improve security. Analysis of the above implementations, [18] and [19] are the most efficient
implementations for GF(((22)2)2) and GF((24)2)-type AES S-boxes, respectively.

Nowadays, the methods for optimizing combinational logic mainly include heuristic [22,23] and SAT-
based methods [24,25]. The above AES S-box implementations are mainly based on heuristics. Heuristics
provide satisfactory results, but they may not necessarily achieve the optimal results. Specifically, these
heuristics primarily rely on 2-input logic gates. In fact, 3-input and 4-input logic gates (such as NOR3, OA21,
MOAI) can also be used to optimize AES S-box. SAT-based methods includes more logic gate types than
heuristics. Using more logic gate types can improve the performance of AES S-box. Although SAT-based
methods cannot directly optimize the entire circuit of AES S-box, they can provide better optimization results
in certain criticals (e.g., the inversion over GF(24), and the transformation matrix) for AES S-box.

Therefore, to enhance the performance of AES S-box, we combine SAT-based methods with field-
tower approachs using a greater variety of logic gate types. This combination optimizes the implementations
of GF(((22)2)2)-type S-box with NB and GF((24)2)-type S-box with PB, PRB and RRB, as proposed
in [18,19]. We first decompose the field-tower structures into smaller functions, such as the top/bottom
matrix multiplications TL/BL, multiplication and addition Mul-(Sum), and inversion over GF(24). Then,
SAT models for each component are designed to search for their optimized implementations. Finally, novel
S-box implementations are proposed based on these implementations. The main contributions are as follows.

(1) A novel SAT-based method (GEC model with more logic gate types) is proposed to optimize the
inversion over GF(24) for the above two types S-boxes. For the GF(((22)2)2)-type AES S-box, our
small area implementation of the inversion over GF(24) requires 15.33 GE, which is 31.35% smaller
than [18]. For GF((24)2)-type S-box, our small area implementation of the inversion over GF(24)
requires 23.00 GE, which corresponds to a reduction by 36.02% compared to [19].



Comput Mater Contin. 2025;83(1) 1517

(2) Novel SAT-based methods using local solutions (LocalBGC and LocalGEC models) are introduced to
optimize the implementations of TL/BL and Mul(-Sum). For GF(((22)2)2)-type AES S-box, a smaller
area implementation of TL0 has been found that requires one XOR gate less and has the same depth
compared to [18]. For GF((24)2)-type, our minimum area implementations of TL1 and BL1 require
42.00 and 52.00 GE, respectively, which is 22.22% and 7.14% less than [19]. Moreover, our minimized
area implementation of Mul(-Sum) requires 35.00 GE, which is 24.81% less than [19].

(3) A comprehensive strategy (i.e., creating modules of different logic gate types using Verilog or setting
comprehensive constraints) is proposed to avoid the automatic optimization of Synopsys Design
Compiler. This automatic optimization may alter the logic gate types and structures of the original
AES S-box designs. Additionally, the implementations and evaluations of GF(((22)2)2)-type and
GF((24)2)-type S-boxes with two variants (a small area variant and a high speed variant) are presented.

The performed synthesized experiments demonstrate that, when the area is considered, the area of
the proposed GF((22)2)2-type small area variant is 171.00 GE, which is 18.57% smaller than the minimum
area implementation in [19]. When the delay or AET is considered, The delay and AET of the proposed
GF((22)2)2-type fast variant are 0.69 ns and 148.58 GE ⋅ ns, respectively. Compared to the implementations
with the best delay or AET in [19], it has been optimized by 41.03% and 43.36%, respectively. Considering
the impact of automatic optimization of Synopsys Design Compile on the implementation results presented
in [19], the works of [15–19] were also implemented and synthesized under the above comprehensive strategy.
The implementation results of the proposed circuit structures were also compared with these implementation
results of [15–19]. When considering implementation area, the small area variant of GF(((22)2)2)-type S-box
achieves a smallest area, which is 3.93% smaller than the current minimum area implementation [18]. And the
AET and energy of the small area variant reduced by 4.65% and 5.28% respectively compared to [18]. When
delay, AET or energy is considered, the proposed GF((22)2)2-type fast variant has a better performance. For
instance, the AET is reduced 2.71% compared to the best implementations in [15–19].

Summarizing the above experimental results, compared to the most efficient implementations [18,19],
the proposed GF(((22)2)2)-type S-box, with two variants (small area and fast), has better implementation
performance. To our knowledge, the small area variant of GF(((22)2)2)-type S-box sets new area records,
and the fast variant of GF(((22)2)2)-type S-box sets new AET and energy consumption records. The source
codes of our implementations are available online1, whereas the results are summarized in Section 4.

2 Theoretical Background and SAT-based Optimization Methods

2.1 A Tower Field Representation of AES S-Box
Fig. 1 shows the implementation process of the AES S-box based on a tower field representation. The

main idea is that an element U in GF(28) is first transformed, using the so-called isomorphic mapping
matrix, so that it can be represented as an element of GF((24)2). Then, the inversion over GF((24)2)
(alternatively of GF((22)2)2)) is calculated. This inversion involves four 4-bit multiplications, two 4-bit XO
Rings, one 4-bit Square, and the inversion over GF(24) operations, as shown in Fig. 1b. As the last step, the
computed result over GF((24)2) is transformed so that it belongs to GF(28), and the output R of the AES
S-box is obtained through the affine transformation M ⋅ x−1 + c.

Fig. 1 depicts quite a standard implementation. In recent works, the isomorphic mapping matrix
representations of the S-boxes of GF((24)2)-type and GF(((22)2)2)-type are extended using multiplicative
and exponential offsets, respectively [18,19]. The multiplicative offset method calculates the inversion using
α−1 = γ(αγ)−1, where γ (γ ≠ 0) is a constant on GF(28). On the other hand, the method using exponential

1https://github.com/fjyxzm/AESSbox (accessed on 01 February 2025).

https://github.com/fjyxzm/AESSbox
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offset computes the inversion as α−1 = ((α2θ
)−1)28−θ

, where θ is an integer, θ ∈ [0, 7]. The combination of
multiplicative and exponential offsets can increase the cardinality of matrix representations by a factor
2040 (255 × 8). The ultimate goal of these methods is to find a minimal implementation of the linear
transformation matrix.
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Figure 1: The computing process of the S-box using a tower of fields

2.2 Boolean Satisfiability (SAT)
The main idea behind SAT-based methods is to establish a series of Boolean expressions between the

inputs/outputs of the logic circuits, and use SAT solvers to search for optimal implementations. To optimize
the implementation of logic circuits, Feng et al. [25] proposed three models: Bit-Slice Gate Complexity
(BGC), Gate Equivalent Complexity (GEC), and local solutions models (LocalBGC and LocalGEC), for
different design goals in moderately complex circuits. For instance, the GEC model is employed when
searching for those implementations that use K logic gates, G gate equivalents (GE) or/and depth level D, for
a circuit with n inputs and m outputs. The encoding process of this model is as follows:

First, define the n inputs as X0, X1 , . . . , Xn−1, the m outputs as Y0, Y1 , . . . , Ym−1, and assign their values
based on the circuit.

Then, the encoding between the inputs and outputs of the circuit is established through the inputs and
outputs, denoted by Q and T respectively of K logic gates.

Encoding gate inputs Q: For the i-th gate Ti , the input Q4i+l is one of the inputs {X0, X1 , . . . , Xn−1}
and the i − 1 gates’ outputs {T0, T1 , . . . , Ti−1}, as shown in Eq. (1).

∀i ∈ {0, 1, . . . , 4K − 1},∀l ∈ {0, 1, 2, 3}∶
n−1
⋁
j=0
(Q4i+l = x j) ∨

i−1
⋁
j=0
(Q4i+l = Tj). (1)

Encoding outputs T and Y: The GEC model includes NOT and 2-, 3-, 4-input logic gates, and the
encoding of the i-th logic gate Ti is given as in Eq. (2), where Fi f (a, b) = if a then b else 0 endif, and Bi[ j] is
the j-th bit of Bi . Bi is used to choice the logic gates. 15 logic gates are introduced, e.g., when Bi = 0b00000010
then the logic gate is a 2-input XOR, i.e., Ti = Q4i ⊕ Q4i+1. The encoding is given below:

∀i ∈ {0, 1, . . . , K − 1}∶
Ti = Fi f (Bi[0], ∼ (Q4i ⋅ Q4i+1)⋅ ∼ Q4i+2 ⋅ Q4i+3) + Fi f (Bi[1], Q4i+2 ⋅ (Q4i + Q4i+1))+

Fi f (Bi[2], (Q4i ⋅ Q4i+1 ⋅ Q4i+2)) + Fi f (Bi[3], Q4i+2) + Fi f (Bi[4], Q4i) + Fi f (Bi[5], Q4i ⋅ Q4i+1)
+ Fi f (Bi[6], Q4i + Q4i+1) + Fi f (Bi[7], 22n

− 1).
(2)
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The outputs Yj is constrained as one of the K gates outputs Ti , as shown in Eq. (3).

∀ j ∈ {0, 1, . . . , m− 1},
K−1
⋁
i=0
(Yj = Ti). (3)

Finally, the area Gsum (the areas of K logic gates) of the circuit is constrained to be less than G using

Gsum =
K−1
∑
i=0

CostBi ∣sc l , Gsum ≤ G , (4)

where CostBi ∣sc l represents GE required for logic gate Bi in scl library, see [25] for details.
Take a circuit with 2 inputs (X0 = 0 × 6088, x1 = 0 × 9544) and 1 output (Y0 = 0 × 0A33) as an example,

when searching for the implementations of this circuit that require K = 2 logic gates and G GE, the GEC
model described in CVC language2 is shown in Example 1. This encoding is saved as a CVC file, and solved
using “stp./*.CVC – cryptominisat” command. In this command, STP (Satisfiability Theory Prover) solvers
convert the CVC file into the corresponding logical formula and CryptoMiniSat solvers are used to solve this
SAT problem. Finally, if the model has a solution, each variable will be listed. Otherwise, return Invalid.

Example 1: The encoding of a GEC model for a circuit with 2 inputs and 1 output
ASSERT(X0 = 0x6088); ASSERT(x1 = 0x9544); ASSERT(Y0 = 0xF5CC);
ASSERT((Qi = X0) ∨ (Qi = X1)); //i ∈ [0, 3]
ASSERT(T0 is constrained with Eq. (2) using B0 and Q0 − Q3);
ASSERT((Qi = X0) ∨ (Qi = X1) ∨ (Qi = T0)); //i ∈ [4, 7]
ASSERT(T1 is constrained with Eq. (2) using B1 and Q4 − Q7);
ASSERT(Gsum = BVPLUS(8, B0, B1));
ASSERT(BVLEG(Gsum , G));

The encoding of BGC is similar to that of GEC. The only difference lies in the encoding of the
inputs/outputs of logic gates. BGC only includes XOR, OR, AND, and NOT, imposing constraints on the
number of logic gate types. The encoding of a search model based on local solutions (LocalBGC/LocalGEC)
is similar to the encoding of BGC/GEC models, except that it first finds a solution of partial outputs and then
searches for a solution of the remaining outputs based on the found partial solution.

3 SAT-Based Optimization of AES S-Box Implementations
The implementation method of GF(((22)2)2)-type S-box was studied. And an area/speed-optimized

method for GF(((22)2)2)-type AES S-box using SAT solvers was proposed, as shown in Fig. 2. From Fig. 1,
it can be seen that only multiplication and inversion are nonlinear operations. Moreover, some linear
operations are also included in multiplication operation. Therefore, the optimized method decomposes the
implementation of AES S-box into some functions using the method [18]. All linear operations before/after
the multiplication are defined as top/bottom linear matrices TL0/BL0 (as shown in Eq. (5)). The inversion
over GF((22)2) is a function with a 4-bit input and a 4-bit output, and its lookup table representation is
shown in Table 1. Mul-Sum is a function with a 18-bit input and a 4-bit output, while 2Mul is a function
with a 22-bit input and a 18-bit output. The detail of Mul-Sum and 2Mul can be found in [18]. The SAT-
based methods are used to search for (sub)optimal solutions of each function. A GEC model is first used to

2One of the file based input formats that STP reads, https://stp.readthedocs.io/en/stable/cvc-input-language.html (accessed on 01 February 2025).

https://stp.readthedocs.io/en/stable/cvc-input-language.html
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search for a smaller area (or low depth) implementation of the inversion over GF((22)2). Afterwards, the
LocalBGC and LocalGEC models are used to search for smaller area/depth implementations for TL0/BL0
and Mul(-Sum), respectively, as these functions involve more inputs and outputs.

TLT
0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 1 1 0 0 1 1 0 0 0 1 1 1 0 0
1 0 1 1 1 0 0 1 1 0 1 0 1 1 0 1 1 1
0 1 1 0 1 1 1 0 1 0 1 0 0 1 1 1 0 0
1 0 1 1 1 1 1 1 0 1 0 0 1 0 0 1 0 0
1 0 1 1 1 1 0 1 1 0 1 0 1 0 0 1 0 0
1 1 1 0 1 1 0 0 0 1 0 1 0 1 0 1 1 0
0 1 0 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0
1 1 1 0 1 1 0 0 0 1 0 0 1 0 1 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

BL0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0
0 1 1 0 0 0 0 1 1 1 1 0 0 1 1 1 0 1
0 1 1 0 1 1 0 0 0 0 1 1 1 1 0 1 0 1
0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 1 0 1 1 1 0 0 0 0 1 1 0
1 1 0 1 0 1 0 1 1 1 0 1 0 1 1 1 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Figure 2: Optimized method for GF(((22)2)2)-type AES S-box using SAT

Table 1: Lookup table of the inversion on GF((22)2) based on NB

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
f(x) 0 12 8 4 3 10 7 6 2 13 5 14 1 9 11 15

Meanwhile, the SAT-based method was also applied on the circuit structure of GF((24)2)-type S-box
in [15]. And an area/speed-optimized method of GF((24)2)-type S-box was proposed, as shown in Fig. 3.
All linear operations (e.g., isomorphic mapping matrix, exponential offset, multiplicative offset and H/L/F
functions, see [15] for details) before/after the multiplication are also defined as top/bottom linear matrices
TL1/BL1 (as shown in Eq. (6)). The inversion over GF(24) based on RRB is a function with a 5-bit input and
a 5-bit output, and its lookup table representation is shown in Table 2. The GEC, LocalBGC and LocalGEC
models are used to search for smaller area/depth implementations of the inversion over GF(24) based RRB,
TL1/BL1 and Mul(-Sum), respectively.
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TLT
1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 1 0 1 0 1 1 1 1 0 1 0 1 1 0 1
1 1 1 0 1 1 1 0 0 0 1 0 1 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 0 1 0 1 0 0 0 0 1 0 1 1 1 0 0 1 1 0
1 1 0 1 1 0 0 0 0 1 0 1 0 1 1 1 1 0 0 0
0 0 1 0 0 0 1 1 0 1 0 1 0 1 0 1 1 1 1 0
1 0 1 0 0 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1
0 0 0 1 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

BL1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1
1 1 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 1 1
0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0
0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 0
1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1 0 0 0 0
1 1 0 0 0 0 1 1 0 0 0 0 1 1 1 1 1 1 1 1
1 1 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Table 2: Lookup table of the inversion on GF(24) based on RRB

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
f(x) 0 5 3 18 12 17 9 16 10 6 24 16 20 16 16 16

x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
f(x) 0 5 3 30 12 27 9 30 10 6 29 29 23 27 23 31

Furthermore, to optimize the implementation of the above functions based on more logic gates, the
logic gate types used in the GEC/LocalGEC model have been further extended, as shown in Table 3. And
for a fair comparison, the (sub) optimal solutions of each function have been searched based on Nangate
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45 nm Open Cell Library. Moreover, to ensure the optimization implementation adopts the logic gate types
in Table 3, a constraint has been added to the new GEC/LocalGEC model, as shown in Eq. (7). The specific
search processes for different operations are described as below:

(Bi[0 ∶ 7] = 0b00110101) ∨ (Bi[0 ∶ 7] = 0b01100001) ∨ (Bi[0 ∶ 6] = 0b0010000)∨
(Bi[0 ∶ 6] = 0b0111011) ∨ (Bi[0 ∶ 6] = 0b1011000) ∨ (Bi[0 ∶ 5] = 0b000100)∨ (7)
(Bi[0 ∶ 5] = 0b010010) ∨ (Bi[0 ∶ 5] = 0b000010) ∨ (Bi[0 ∶ 4] = 0b00000).

Table 3: Encoding and area (GE) of expanded logic gates

Logic gates Bi [0:7] Area (GE) Gate function
XOR 0 0 0 0 0 0 1 0 2.00 Q0 ⊕ Q1

XNOR 0 0 0 0 0 0 1 1 2.00 ∼ (Q0 ⊕ Q1)
AND 0 0 0 0 0 1 0 0 1.33 Q0 ∧ Q1

NAND 0 0 0 0 0 1 0 1 1.00 ∼ (Q0 ∧ Q1)
OR 0 0 0 0 0 1 1 0 1.33 Q0 ∨ Q1

NOR 0 0 0 0 0 1 1 1 1.00 ∼ (Q0 ∨ Q1)
NOT 0 0 0 0 1 0 0 1 0.67 ∼ (Q0)
NOT 0 0 0 0 1 0 1 1 0.67 ∼ Q1
NOT 0 0 0 1 0 0 0 1 0.67 ∼ Q2
XOR3 0 0 0 1 0 0 1 0 4.00 Q0 ⊕ Q1 ⊕ Q2

XNOR3 0 0 0 1 0 0 1 1 4.00 ∼ (Q0 ⊕ Q1 ⊕ Q2)
AND3 0 0 1 0 0 0 0 0 1.67 Q0 ∧ Q1 ∧ Q2

NAND3 0 0 1 0 0 0 0 1 1.33 ∼ (Q0 ∧ Q1 ∧ Q2)
OR3 0 1 1 1 0 1 1 0 1.67 Q0 ∨ Q1 ∨ Q2

NOR3 0 1 1 1 0 1 1 1 1.33 ∼ (Q0 ∨ Q1 ∨ Q2)
MAOI1 1 0 1 1 0 0 0 0 2.33 ∼ ((Q0 ∧ Q1) ∨ (∼ (Q2 ∨ Q3)))
MOAI1 1 0 1 1 0 0 0 1 2.33 ∼ (∼ (Q0 ∧ Q1) ∧ ((Q2 ∨ Q3)))
AO21 0 0 1 1 0 1 0 1 1.33 ∼ ((Q0 ∧ Q1) ∨ Q2)
OA21 0 1 1 0 0 0 0 1 1.33 ∼ ((Q0 ∨ Q1) ∧ Q2)
MUX 0 1 0 0 1 0 0 0 3.00 (Q2 ∧ Q1) ⊕ (∼ Q2 ∧ Q0)

NMUX 0 1 0 0 1 0 0 1 2.33 ∼ ((Q2 ∧ Q1) ⊕ (∼ Q2 ∧ Q0))
MUX 0 1 0 0 1 0 1 0 3.00 (Q2 ∧ Q0) ⊕ (∼ Q2 ∧ Q1)

NMUX 0 1 0 0 1 0 1 1 2.33 ∼ ((Q2 ∧ Q0) ⊕ (∼ Q2 ∧ Q1))

3.1 Inversion over GF(24)
For instance, minimizing the implementation area, the specific process of using the GEC model to search

for (sub)optimal implementations of the inversion is described as follows:

(1) Defining inputs/outputs: The inversion over GF(24) (using the tower-field GF(22)2 with a normal
basis) in [18] is shown as Table 1. Using bit-slicing, its inputs and outputs are defined as X0 = 0 × 00FF,
X1 = 0 × 0F0F, X2 = 0 × 3333, X3 = 0 × 5555, and Y0 = 0 × 6457, Y1 = 0 × 5371, Y2 = 0 × 0F93, Y3 = 0 ×
0A6F.

(2) Design goal: The inverse circuit (minimizing the area) with a depth of 3 and an area G of 22 GE was
proposed by Maximov et al. [18]. So our goal is to search for solutions of the inversion that have an
area smaller than G, according to Eq. (4).
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(3) Encoding inputs and outputs of logic gates: Constrain the number of logic gates as K ≤ 9, and then
encode the inputs and outputs of K logic gates using Eqs. (1), (2) and (7). In addition, encode the
outputs Yi using Eq. (3).

(4) Using SAT to search for solutions: If the solution exists, obtain the area of the current solution and
assign it to G. Go to step 2) and continue searching for a smaller area implementation. Otherwise, the
minimum area of the inversion over GF(24) is G.

Employing our method, for GF(((22)2)2)-type S-box with a normal basis, a smaller area implementa-
tion (with 15.33 GE) of the inversion over GF(24) has been found compared to the implementation in [18].
Also, a lower depth implementation (with depth D = 2 and 19.33 GE) for the inversion over GF(24) could be
specified. More precisely, compared to the implementation of the inversion over GF(24) in [18], our approach
that optimizes the area gives a reduction by 7 GE (from 22 to c.a. 15 GE), whereas targetting a lower depth
we obtain a depth reduction by one and the area is reduced by 2.67 GE. The specific implementations of the
inversion over GF(24) are given in Table 4.

Table 4: The implementations of the inversion on GF(24) for the GF(((22)2)2)-type S-box

The implementation with a smaller area:
1. T0 = NOR(X1 , X3), 4. T3 = MOAI1(T1 , X2, T0, X2), 7. Y2 = MAOI1(X0, T3, X0, X1),
2. T1 = XNOR(T0, X0), 5. Y0 = MAOI1(T1 , X2, X2, X3), 8. Y3 = MAOI1(T1 , X3, X1 , T3).
3. T2 = OA21(T1 , X3, X2), 6. Y1 = OA21(T0, X1 , T2)

The implementation with a lower depth:

1. T0 = NMU X(X1 , X2, X0), 4. T3 = XNOR(X2, X3), 7. Y2 = XOR(T2, T4),
2. T1 = MOAI1(X0, X1 , X2, X3), 5. T4 = MOAI1(X0, X2, X1 , X0), 8. Y0 = NMU X(T0, T3, T2),
3. T2 = OA21(X3, X1 , X0), 6. Y1 = MOAI1(X3, T4, T0, T1), 9. Y3 = MOAI1(T1 , X1 , T0, T3).

Furthermore, the inversion over GF(24) based on RRB for the GF((24)2)-type S-box in [15,19] are
also optimized, as shown in Table 2. Similar improvements are obtained for the implementations of this
inversion. A smaller area and depth implementation (23.00 GE and 2 depth) has been found. The specific
implementation is given in Table 5. Compared with the small area implementations of the inversion over
GF(24) in [15,19], the area is reduced by 12.95 GE, and the depth is reduced by 1.

Table 5: The inversion on GF(24) for the GF((24)2)-type S-box

The smaller area and depth implementation with 23.00 GE and 2 depth:
1. T0 = OA21(X3, X2, X0), 5. T4 = OA21(X4, X1 , X0), 9. Y2 = MAOI(X3, T4, X3, T5),
2. T1 = XNOR(X3, X4), 6. T5 = XOR(X2, X4), 10. Y4 = NUML(X1 , T0, T1),
3. T2 = XNOR(X1 , X2), 7. T6 = XOR(X1 , X3), 11. Y3 = MAOI(X2, T4, X2, T6),
4. T3 = NOR(X1 , X4), 8. Y0 =

NOR(T3 , NOR(X2, X3)),
12. Y1 = NUML(X3, T0, T2),

3.2 Optimizing TL/BL/Mul(-Sum) Using Local Solutions
Although the GEC and BGC models can search for optimized implementations for some logic cir-

cuits, including the TL/BL/Mul(-Sum) in our approach, their efficiency still depends on the complexity
of the considered circuits. However, finding optimized/improved implementations for circuits with high
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computational complexity may become infeasible. Therefore, a method for optimizing the implementation
of (complex) circuits using local solutions is proposed, as shown in Fig. 4. For a circuit with n inputs X =
{X0, . . . , Xn−1} and m outputs Y = {Y0, . . . , Ym−1}, a BGC/GEC model with K0 logic gates is first applied to
search for the optimized implementations of (Y)m0 (m0 outputs of Y, called local outputs, m0 < m). In the
BGC model, logic gates only consists of two inputs (thus I = 2). While in the GEC model, logic gates include
four inputs, so I = 4. To find an optimal implementation of LY, the outputs are recorded as LY ← LY ∪ (Y)m0 ,
and the solutions of LY are defined as T = {T0, . . . , Tt+K−1}. Finally, whether LY is equal to Y needs to be
determined. If LY is equal to Y, an optimized implementation of this circuit has been found. Otherwise, the
search for an optimized implementation of other local outputs (Y)mi using BGC/GEC models (based on X
and T) is continued, until LY is equal to Y.

. . .
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The solution 

of outputs (Y)

(Y)mi
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Y ?

t=t+K
The local solution of LY: T={T0, . . ., Tt-1}

yes

no

Local outputs (LY) based on BGC/GEC model

. . .

LY   
LY    (Y

)m

Tt+1:

Qt+1,0

Qt+1,1

. . .

Qt+1, l-1

X0

. . .

Xn-1

Tt:

Qt,0
Qt,1
. . .

Qt, l-1

Tt+K-1:

Qt+K-1,0

Qt+K-1,1

. . .

Qt+K-1, l-1

Figure 4: Optimized implementation of circuit based on local solution

For the GF(((22)2)2)-type S-box with a small area in [18], TL0/BL0 are 8 × 18 and 18 × 8 matrices,
respectively. For the GF((24)2)-type S-box in [15,19], TL1/BL1 are 8 × 20 and 20 × 8 matrices, respectively.
At present, the optimization of TL/BL mainly relies on heuristics. Therefore, SAT solvers are used to search
for better implementations of TL/BL. The main idea is to decompose the m outputs of a matrix into p parts,
namely (Y)m0 , . . . , (Y)m p−1 , where (m0 + ⋅ ⋅ ⋅ +mp−1 =m). Then, a BGC model is used to find the solutions
for mi (0 ≤ i < p) outputs. After obtaining the (sub)optimal implementation for mi outputs, the BGC model
is used again to search for the implementation of m j(i ≠ j) outputs. This process continues iteratively until a
solution for m outputs is found. To provide a more detailed explanation of this method, the 8 × 8 matrix M0
in [15] is used as an example, as shown in Eq. (8). Matrix M0 has 8 inputs X0, . . . , X7 and 8 outputs Y0, . . . , Y7,
where X0 = 0 × 80, . . ., X7 = 0 × 01, and Y0 = 0 × CA, . . ., Y7 = 0 × A4.
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M0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 1 0 1 0
1 1 0 0 1 0 0 0
0 1 1 0 0 1 1 0
0 0 0 1 1 0 0 1
0 1 1 0 1 0 0 0
1 1 1 1 0 0 0 0
0 1 0 0 0 1 1 0
1 0 1 0 0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8)

(1) (Obtaining local outputs): Obtain a local output set m0 based on the Hamming weight of the outputs
Y. For instance specifying (Y)m0 = {Y1 , Y3, Y4, Y6, Y7} of M0, where the Hamming weight of Yi (i ∈
{0, 1, ⋅ ⋅ ⋅ 7}) is less than 4. Notice that other choices of Hamming weights of the output Yi are possible.

(2) (Partial encoding): Encode m0 outputs, to obtain a minimal number/depth of XORs, and check
whether there is an implementation of {X0, . . . , X7} → (Y)m0 with K0 XORs using BGC models,
where Ti is encoded as Q2i ⊕ Q2i+1. The minimized implementations that use 9 XORs (with depth
D = 2) for {Y1 , Y3, Y4, Y6, Y7} have been found. One of the solutions is shown as follows:

T0 = X1 ⊕ X4, T1 = X5 ⊕ X6, T2 = X0 ⊕ X2, T3 = X3 ⊕ X4, Y1 = T0 ⊕ X0,
Y3 = T3 ⊕ X7, Y4 = T0 ⊕ X2, Y6 = T1 ⊕ X1 , Y7 = T2 ⊕ X5.

(3) Obtain other local outputs (Y)mi , alternatively the remaining subset (Y)m p−1 . Based on the above
solutions and X, the implementation of {X0, . . ., X7, T0, . . ., Tj}→(Y)mi/m p−1 with Ki/Kp−1 XORs
has been searched, where K0 + ⋅ ⋅ ⋅ + Ki/Kp−1 < Ku p (Ku p specifies the number of XORs for the
best-known implementation). Using the solution of (Y)m0 , the optimal area implementations of
(Y)m1 ={Y0, Y2, Y5} have been found, which require 4 XORs and has depth 3. An optimal solution
with minimized number of XORs is

T4 = X1 ⊕ X3, Y0 = Y1 ⊕ X6, Y2 = Y6 ⊕ X2, Y5 = T4 ⊕ T2.

Therefore, the minimum area and fast implementations of the matrix M0 require 13 (with depth 3) and
14 XORs (with depth 2), respectively. Compared to the implementations in [15], a reduction by 2 and 1 XORs
has been achieved, respectively.

Based on the above method, for the GF(((22)2)2)-type S-box with the small area, the same implemen-
tations of TL0/BL0 as in [18] have been found. Moreover, for the fast variant, a smaller area implementation,
requiring one XOR gate less (with the same depth of TL0 compared to [18]) could be specified. For the
GF((24)2)-type S-box, the smaller area implementations of the TL1/BL1 matrices have been identified. Our
implementations require 21 and 26 XORs, for TL1/BL1, respectively, which is 6 and 2 XORs less than [19].
The specific implementations can be seen online 1.

Furthermore, LocalGEC models are employed in the search for efficient implementations of Mul(-Sum).
In difference to the results in [18,19], our implementations replace some AND/OR gates with smaller area
NAND/NOR gates. As a consequence, the implementation of Mul(-Sum) in [19] requires 25 ANDs and 10
ORs, while our approach, utilizing 25 NANDs and 10 NORs, achieves an area reduction of 11.55 GE.

4 Eexperimental Results
The implementations of GF(((22)2)2)-type and GF((24)2)-type S-boxes are searched, primarily with

respect to two optimization goals (small area and fast execution). Table 6 shows the number of logic gates,
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logic gate types, circuit path depth (CPD) and circuit path (CP) of the proposed hardware implementations
for AES S-box, where XO3, XO, XN3, XN, AD, ND, NR, NT, MU, NM, MA, MO, OA, OA3 and OA4 represent
XOR3, XOR, XNOR3, XNOR, AND, NAND, NOR, NOT, MUX, NMUX, MAOI1, MOAI1, OA21, OA32 and
OA222, respectively. OA32 and OA222 are 5/6-input logic gates, where OA32(a, b, c, d , e) =∼ ((a ∨ b ∨ c) ∧
(d ∨ e)) and OA222 (a, b, c, d , e , f ) =∼ ((a ∨ b) ∧ (c ∨ d) ∧ (e ∨ f )). “Fields” denotes the representations
of GF(((22)2)2) and GF((22)4). For GF(((22)2)2) S-box, compared to the works in [9,12,13,17,18], our
small area variant has the smallest gate count of 93. Our fast variant has the lowest CPD of 11. For GF((24)2)
S-box, Compared to the works in [14–16,19], our small area variant has the smallest gate count of 120. For our
fast variant, while its depth is not the lowest, its gate count is smaller than [15,19]. Based on the comparison,
the two variants of the proposed GF(((22)2)2)-type S-box demonstrate certain advantages. The small area
variant requires the fewest logic gates, while the fast variant has the lowest circuit depth.

Table 6: The gate count of different AES S-box implementations

Works Fields Gates Gate types CPD Cirtical path
Canright [9] GF(((22)2)2) 120 81XO + 34ND + 6 NR 23 19XO + 3ND + 1NR

Boyar et al. [12] GF(((22)2)2) 115 79XO + 4XN + 32AD 27 20XO + 1XN + 6AD
Reyhani et al. [17] GF(((22)2)2) 104 7XO3 + 48XO + 1XN3 + 32ND +

6NR + 2OA3 + 2OA4 + 6NT
— —

Boyar et al. [13] GF(((22)2)2) 128 94XO + 34AD 16 13XO + 3AD
Maximov-area [18] GF(((22)2)2) 102 58XO + 6XN + 27ND + 5NR + 6MU 24 18XO + 2XN + 1ND + 2NR + 1MU
Maximov-fast [18] GF(((22)2)2) 130 77XO + 1XN + 4AD + 37ND + 5NR

+ 6MU
12 7XO + 1XN + 1AD + 2NR + 1MU

Our area GF(((22)2)2) 93 5XO3 + 30XO + 3XN3 + 18XN +
2OA + 26ND + 5NR + 3MA + 1MO

22 9XO + 5XN + 2XO3 + 1XN3 +
2ND + 1NR + 1MO + 1MA

Our fast GF(((22)2)2) 125 4XO3 + 65XO + 5XN + 1OA + 40ND
+ 4NR + 4MO + 2NM

11 7XO + 1XO3 + 1ND + 1NR + 1OA

Ueno et al. [14] GF((24)2) 155 91XO + 48ND + 13NR + 4NT 15 10XO + 5ND
Reyhani-area [16] GF((24)2) 123 69XO + 43ND + 7NR + 4NT 20 16XO + 4ND
Reyhani-fast [16] GF((24)2) 133 79XO + 43ND + 7NR + 4NT 16 11XO + 5ND
Ueno-area [15] GF((24)2) 145 83XO + 4XN + 16OR + 38AD + 4NT 15 11XO + 1OR + 3AD
Ueno-fast [15] GF((24)2) 158 89XO + 4XN + 10OR + 45AD + 10NT 15 11XO + 3AD

Nakashima-area [19] GF((24)2) 142 80XO + 4XN + 16OR + 38AD + 4NT 15 11XO + 1OR + 3AD
Nakashima-fast [19] GF((24)2) 155 86XO + 4XN + 10OR + 45AD + 10NT 14 11XO + 3AD

Our area GF((24)2) 120 72XO + 4XN + 2OA + 25ND +13NR
+ 2MA + 2NM

22 18XO + 1XN + 1ND + 1NR + 1MA

Our fast GF((24)2) 147 78XO + 14XN + 45ND + 10NR 15 10XO + 2XN + 2ND + 1NR

To verify the efficiency and performance of the above approach, the new AES S-box circuit structures
are implemented using Verilog language and synthesized using Synopsys Design Compiler software with
Nangate 45 nm Open Cell Library. The implementation performance have been evaluated, more precisely
specifying the number of 2-input NAND gate equivalents (Area), the circuit delay for the critical path
(Delay), the area-execution-time product (AET), power and energy. Table 7 presents the implementation
results of different AES S-box structures on different standard cell libraries, where ‘#’ indicates the results
from [19], and ‘*’ indicates the results implemented by the comprehensive strategy proposed by us.
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Table 7: The experimental results of different AES S-box implementations

Variants Fields Works Area Delay AET Power Energy Tech.
(GE) (ns) (GE ⋅ ns) (μw) (f J)

GF(((22)2)2) Satoh et al. [8] 280.67 3.02 847.62 95.27 — TSMC 65 nm
Canright [9] 226.40 — — — — GlobalFoundries 22 nm

Boyar et al. [13] 264.24 — — — — GlobalFoundries 22 nm
Maximov et al. [18] 195.10 — — — — GlobalFoundries 22 nm

210.00# 1.26# 264.60# — — Nangate 45 nm
178.00* 1.33* 236.74* 23.64* 31.44* Nangate 45 nm

This work 171.00* 1.32* 225.72* 22.56* 29.78* Nangate 45 nm
Small area GF((24)2) Ueno et al. [15] 249.00 3.04 756.96 — — TMSC 65 nm

229.33# 1.49# 341.70# — — Nangate 45 nm
248.67* 0.81* 201.42* 30.76* 24.92* Nangate 45 nm

Nakashima et al. [19] 222.33# 1.18# 262.34# — — Nangate 45 nm
242.67* 0.81* 196.56* 30.46* 24.67* Nangate 45 nm

This work 202.67* 1.28* 259.41* 26.44* 33.84* Nangate 45 nm

GF(((22)2)2) Maximov et al. [18] 248.33# 1.18# 293.03# — — Nangate 45 nm
221.33* 0.69* 152.72* 28.06* 19.36* Nangate 45 nm

This work 215.33* 0.69* 148.58* 27.85* 19.22* Nangate 45 nm
GF((24)2) Nekado et al. [11] 272.67 1.89 515.35 99.63 —— TSMC 65 nm

Ueno et al. [14] 229.67 1.89 415.70 74.14 — TSMC 65 nm
Ueno et al. [15] 261.50 2.78 726.98 — — TSMC 65 nm

234.33# 1.45# 339.77# — — Nangate 45 nm
Fast 266.00* 0.78* 207.48* 32.79* 25.58* Nangate 45 nm

Nakashima et al. [19] 228.66# 1.17# 267.53# — — Nangate 45 nm
260.00* 0.78* 202.80* 32.46* 25.32* Nangate 45 nm

This work 245.67* 0.79* 194.08* 31.78* 25.11* Nangate 45 nm

Note: Area-execution-time AET (GE ⋅ ns) = Area (GE) × Delay (ns), Energy ( fJ) = Power (μw) × Delay (ns).

The synthesis strategy covers the encapsulation technology of modules and logic gates. Its specific
implementation includes using Verilog language to build modules with certain functions or specific logic
gates. An example of a module using encapsulation techniques is presented, as shown in Eq. (9). It shows that
an implementation module of the inverse over GF((22)2) is encapsulated using Verilog. The logic gates used
in this model are also encapsulated in this method. The specific implementations can be seen online 1. This
prevents unnecessary optimization of AES S-box circuits by the Synopsys Design Compiler, as its automatic
optimization could alter the logic gate types and structures of the original design.

module InvGF_222(input X0, input X1 , input X2, input X3, output Y0, output Y1 , output Y2, output Y3);
wire T0, T1 , T2, T3;
NOR g0(X1 , X3, T0);
XNOR g1(T0, X0, T1);
MAOI1 g2(T1 , X2, X2, X3, Y0);
OA2 g3(X3, T1 , X2, T2); (9)
MOAI1 g4(T1 , X2, T0, X2, T3);
MAOI1 g5(X0, T3, X0, X1 , Y2);
MAOI1 g6(T1 , X3, X1 , T3, Y3);
OA21 g7(T0, X1 , T2, Y1);

endmodule
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Meanwhile, some strategies and constraints have been set up to prevent automatic optimization from
changing the logic gate types and structure of the proposed S-box circuits. For example, the “set_dont_touch”
command is used to protect specific modules, logic units, and signals, preventing their structures from
being modified by the Synopsys Design Compiler. Furthermore, the timing, area, and power consumption
evaluations provided by Design Compiler are based on actual comprehensive results. However, it is worth
noting that it performs a logical synthesis rather than a physical implementation. Therefore, if the design
constraints, tool settings, and verification process are consistent during logic synthesis, the performance
indicators of the same circuit implementation will remain consistent. To ensure the stability of the circuit
implementation, the specific comprehensive commands are described as Command 1.

Command 1: The comprehensive commands for the hardware implementation of AES S-box
set target_library “./45 nmNangate.db” //specify NanGate 45 nm library in Synopsys Design Compiler.
set link_library “*$target_library” //target_library used to logical support for the synthesized netlist.
read_verilog ./AES_sbox.v // Read Verilog file.
link //link the design with the target_library.
// Specify the conditions for synthetic design, such as voltage, temperature, and the library used.
set_operating_condition -library “./45 nm Nangate.db” -voltage 1.1 -temperature 25
set_load 0.2 [all_outputs] //Set the load capacitance of all output ports to 0.2 pf.
create_clock -period 20 -name clk [get_ports clk] //Set the cycle of the clock to 20 ns.
set_dont_touch_network [list all_inputs]
compile //Perform logical synthesis under the set constraints and library.
report_area > ./area.rpt //Generate area report.
report_timing > ./timing.rpt //Generate timing report.
report_power > ./power.rpt //Generate power report.

Fig. 5 shows the comparison between the implementation results of the proposed structure and the
implementation results in [19]. “M”, “U”, “N”, and “T” represent the works of [15,18,19] and this work,
respectively. “A” and “F” represent the small area variant and the fast variant, respectively. “0” and “1”
represent GF(((22)2)2) and GF((22)4) S-box, respectively. In four proposed AES S-box implementation
schemes, the implementation performance for the proposed two variants (TA0 and TF0) of GF(((22)2)2)-
type S-box is better than that of the proposed two variants (TA1 and TF1) of GF((24)2)-type S-box.
For example, the area, AET, and power consumption of TA0 are 171.00 GE, 225.72 GE ⋅ ns, and 22.56
μw, respectively, which are 31.67 GE, 33.69 ⋅ ns, and 3.58 μw less than the implementation area, delay,
and power consumption of TA1. Similar advantages have also been achieved by TF0, compared to TF1.
While in existing AES S-box implementations, the small area implementation MA0 proposed by Maximov
et al. [18] outperforms others in terms of area. On GlobalFoundries 22 nm library, it requires only 195.10 GE,
significantly better than implementations in [9,13]. Similarly, on the Nangate 45 nm process library, MA0 also
occupies the smallest area, according to existing experimental results in [19]. In addition, the MF0 proposed
by Maximov et al. [18], and NA1 and NF1 proposed by Nakashima et al. [19], exhibit better delay performance.
Specifically, the delay of these variants is 1.17–1.18 ns on Nangate 45 nm library. Their delay is significantly
lower than other fast variant implementations in [11,14,15]. Therefore, the proposed implementations of AES
S-box are also mainly compared with the current best works [18,19] on Nangate 45 nm library. When the area
is considered, the area of TA0 is 18.57% smaller than [18]. When the delay or AET is considered, the delay and
AET of TF0 are 0.69 ns and 148.58 GE ⋅ ns, respectively. Compared to state-of-the-art implementations [19],
TF0 achieves a 41.03% reduction in area and a 43.36% improvement in delay.
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Figure 5: Comparison of implementation results between our structures (TA0, TA1, TF0 and TF1) and the structures
in [19]

It is worth noting that Table 7 shows that MA0 in [18] requires 210.00 GE (reported in [19]). In contrast,
MA0 requires 58 XORs, 6 XNORs, 27 NANDs, 5 NORs, and 6 MUXs, with an estimated area of (58 +
6) × 2 + 27 + 5 + 6 × 3 = 178.00 GE. The significant difference in area arises because the implementation
results of [15,18,19] from [19] do not fully account for the impact of the automatic optimization technology
in Synopsys Design Compiler software on circuits. Therefore, the works of [15,18,19] were implemented
on the NanGate 45nm standard cell library using the same conditions as the proposed structures. The
implementation results show that, when considering the implementation area, the proposed GF((22)2)2-
type small area variant achieves a 3.93% smaller area than the current minimum implementation [18].
Additionally, the AET and energy of this variant are reduced by 4.65% and 5.28%, respectively, compared
to [18]. When the delay, AET or energy is considered, the proposed GF((22)2)2-type fast variant has a



1530 Comput Mater Contin. 2025;83(1)

improved implementation performance. For instance, the AET of this fast variant is reduced 2.71% compared
to the best implementations in [15,18,19].

From the above comparison, it can be concluded that the proposed GF(((22)2)2)-type S-box with a
small area variant has the smallest area and power, and the proposed GF(((22)2)2)-type S-box with a fast
variant has the smallest delay, AET and energy.

5 Conlusion
This paper presented a novel hardware implementation strategy for AES S-boxes. It combines composite

field arithmetic with SAT solvers. We decomposed the AES S-box implementation into five optimization
tasks. These tasks include inversion over GF(24), top and bottom linear transformations (TL/BL), mul-
tiplication (Mul), and multiplication-sum (Mul-Sum). Using the GEC model, we optimized the inversion
over GF(24) for GF((24)2)-type S-boxes. This resulted in a small area implementation of 15.33 GE and
a low-depth implementation of 19.33 GE with depth 2. We further improved TL/BL and Mul(-Sum)
implementations using LocalBGC and LocalGEC models. These improvements surpass the current best-
known implementations. Our key contribution is the implementations of two GF(((22)2)2)-type S-box
variants. The first is a small area variant that sets new area records. The second is a fast variant that establishes
new benchmarks for Area-Execute-Time (AET) efficiency and energy consumption. Evaluation results
confirm that our proposed S-boxes achieve the smallest area and lowest delay, AET, and energy consumption
compared to existing implementations. These optimizations contribute to more efficient and secure AES
implementations, enhancing cryptographic applications in network security. Future research will extend this
SAT-based method to other block cipher components. Furthermore, efficient implementation structures for
diverse application requirements will be explored.
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