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ABSTRACT: Brain tumor classification is crucial for personalized treatment planning. Although deep learning-based
Artificial Intelligence (AI) models can automatically analyze tumor images, fine details of small tumor regions may
be overlooked during global feature extraction. Therefore, we propose a brain tumor Magnetic Resonance Imaging
(MRI) classification model based on a global-local parallel dual-branch structure. The global branch employs ResNet50
with a Multi-Head Self-Attention (MHSA) to capture global contextual information from whole brain images, while
the local branch utilizes VGG16 to extract fine-grained features from segmented brain tumor regions. The features
from both branches are processed through designed attention-enhanced feature fusion module to filter and integrate
important features. Additionally, to address sample imbalance in the dataset, we introduce a category attention block
to improve the recognition of minority classes. Experimental results indicate that our method achieved a classification
accuracy of 98.04% and a micro-average Area Under the Curve (AUC) of 0.989 in the classification of three types
of brain tumors, surpassing several existing pre-trained Convolutional Neural Network (CNN) models. Additionally,
feature interpretability analysis validated the effectiveness of the proposed model. This suggests that the method holds
significant potential for brain tumor image classification.

KEYWORDS: Deep learning; attention mechanism; feature fusion; dual-branch structure; brain tumor MRI
classification

1 Introduction
The brain, as a crucial organ, controls central nervous system functions, and abnormal cell growth

can result in tumors [1,2]. Brain tumors are the most common primary tumors of the central nervous
system [3]. They mainly include meningiomas, gliomas, and pituitary tumors, each of which requiring
different treatment approaches. Brain tumor classification can be based on their microscopic structure and
molecular characteristics [4]. Timely and accurate classification and diagnosis of brain tumors are critical
for patient prognosis, as they assist in guiding treatment decisions and thereby improving therapeutic
outcomes [5].

Medical imaging technologies, particularly MRI, play a significant role in the detection of brain
tumors [6]. MRI provides exceptional soft tissue contrast, enabling more precise detection of moderate
infiltration or damage to parenchymal structures. Additionally, MRI offers detailed images based on
morphological and textural information, providing higher detection accuracy compared to computed
tomography images [7]. However, manually assessing MRI scans poses significant challenges for radiologists,
and the integration of artificial intelligence methods in radiology can substantially enhance diagnostic
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capabilities [8]. Consequently, to alleviate the workload of clinicians and improve diagnostic accuracy,
current research is increasingly focused on developing automated AI systems.

Recent developments in machine learning have significantly driven the development of AI-based
medical image analysis systems [9]. In particular, CNNs have been extensively applied to medical image
classification [10,11] and segmentation [12,13] tasks. CNNs are capable of efficiently extracting features
directly from raw brain tumor images [14], achieving remarkable results in tumor detection and classification.
However, despite numerous studies applying deep learning methods to brain tumor classification, existing
models still face a major challenge: balancing the extraction of global contextual information with local
feature details, especially in ensuring that small tumor regions are not overlooked. The current models,
when using whole-brain images as input, often struggle to sufficiently capture the fine details of small tumor
boundaries and textures.

In this context, the aim of this study is to propose a novel approach to brain tumor classification
that addresses the challenges of effectively integrating global contextual features and fine-grained local
tumor features, thus improving classification accuracy and robustness. The main focus of this research
is the introduction of an innovative dual-branch feature fusion architecture. The global branch utilizes a
ResNet50 model enhanced with a multi-head self-attention mechanism (MHSA) to capture global contextual
information from the entire image, recognizing the overall shape, position, and relationship of the tumor
with surrounding tissues. The local branch, on the other hand, uses VGG16 to focus on the tumor region,
capturing the texture, boundaries, and internal structure of the tumor. Through this approach, our model
effectively integrates both global and local features, providing a more precise and comprehensive tumor
feature representation, thus enhancing classification performance, particularly in the detection of small
tumor regions.

Furthermore, to achieve efficient feature fusion, we designed an Attention-enhanced Feature Fusion
Module (AFFM) that incorporates a Feature Selection Module (FSM) and an Improved Efficient Channel
Attention (IECA). Additionally, to resolve the issue of sample imbalance in the brain tumor dataset, we
introduced a Category Attention Block (CAB) to improve the recognition of minority classes. Ablation
experiments and performance comparisons on a public dataset containing three types of brain tumors
validated the effectiveness of the proposed method, while five-fold cross-validation further demonstrated its
stability and generalization ability. The main contributions of this paper are as follows:

1. Enhanced ResNet50 with MHSA: To enhance the ability of the ResNet50 model to extract global features
while reducing unnecessary computational overhead, the final 3 × 3 convolutional layers were replaced
with MHSA.

2. Proposed a novel dual-branch architecture for global and local feature extraction: The global branch
uses ResNet50 with MHSA to capture global context, while the local branch utilizes VGG16 to focus
on fine-grained tumor details. This design integrates both global and local features, providing a more
comprehensive representation than single-branch approaches, which may overlook critical information.

3. Designed an innovative AFFM: To achieve efficient integration of global and local features, we designed
a fusion module that includes FSM and IECA. This design optimizes feature representation, enhancing
the model’s classification capabilities.

4. Introduced a CAB: To address the issue of sample imbalance in the brain tumor dataset, we explored
the novel architectural design that integrates the CAB with the AFFM proposed in this paper. This
integration not only enhances the efficiency of feature fusion but also improves the model’s ability to
recognize imbalanced categories.
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The remainder of this paper is organized as follows: Section 2 reviews related work. Section 3 provides
a detailed description of the proposed methodology. Section 4 presents an analysis and discussion of the
experimental results, and Section 5 concludes the paper.

2 Literature Review
In recent years, the rapid development of machine learning within the domain of medical image

processing has driven research of efficient and accurate AI models for brain tumor classification. These
studies focus on classifying tumors based on tissue type and malignancy grading, including binary tasks such
as distinguishing between high-grade and low-grade gliomas, as well as more complex multi-class tasks that
categorize tumors into various types. Additionally, some studies have also focused on recognizing normal
brain images. These studies have provided valuable insights for our research.

Geetha et al. [15] presented a brain tumor classification model based on the Sine Cosine Archimedes
Optimization Algorithm (SCAOA). First, the tumor region is segmented using a SegNet network optimized
by SCAOA to extract the tumor region. Next, feature extraction is performed on the segmented image
samples to analyze the presence of a tumor. Finally, DenseNet is employed for tumor classification, with the
DenseNet network also optimized by SCAOA, achieving an accuracy of 93%. Mishra et al. [16] proposed
a novel CNN-based model integrated with a Graph Attention Autoencoder (GATE). In this approach,
the attention values of neighboring pixels are computed for each pixel in the computational graph. These
attention values are then processed using the GATE framework. The processed graph, now with attention
values, is subsequently passed to the CNN to generate the final output. The model reached its peak accuracy
of 99.83% in the classification of glioma and pituitary datasets.

Islam et al. [17] presented an innovative brain tumor classification model based on EfficientNet. The
model incorporates comprehensive preprocessing steps, including advanced image augmentation tech-
niques, intensity normalization, and intensity standardization. These methods are further enhanced by
custom layers within the model, specifically designed to capture unique features of brain MRI images,
and by reconfiguring the transfer learning architecture. Experimental results demonstrate that various
EfficientNet-based models achieved high accuracy, with the EfficientNetB3 model achieving the highest
accuracy of 99.69%. This study [18] introduced a brain tumor classification model that integrated attention,
convolutional, and LSTM structures. This approach enabled direct processing of 3D images. The high
discriminative features extracted from the fully connected layers of the model were fed into an SVM classifier
using a weighted majority voting technique for final classification. The model achieved high accuracy, with
98.90% on the BRATS2015 dataset and 99.29% on the BRATS2018 dataset.

Ullah et al. [19] proposed a multimodal model for classifying brain tumors. The model was improved
by adding new residual blocks to ResNet50. A novel stacked autoencoder network, consisting of five
convolutional layers (encoder and decoder), was designed. The feature extraction process was optimized
using enhanced Grey Wolf and Jaya algorithms. The proposed model achieved an average accuracy of 98% on
the BraTS2020 and BraTS2021 datasets. Researchers [20] proposed a novel multi-class classification model
based on Least Squares Twin Support Vector Machine (SVM) and fuzzy concepts. The model considered
both membership and non-membership weights, integrating local neighborhood information based on the
relative importance of data points. To address uncertainty in the dataset, the method computed a fuzzy
hyperplane, treating all parameters as fuzzy variables. Additionally, the model’s computational efficiency was
improved by solving a linear system of equations instead of a complex quadratic programming problem. The
proposed model achieved an average accuracy of 93.45% in brain tumor classification.

Alyami et al. [21] introduced a brain tumor classification model utilizing AlexNet and VGG19 for
feature extraction. The extracted features were concatenated and fused, and the Salp Swarm algorithm was
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introduced to select the most effective features. The selected features were then forwarded to the SVM
classifier along with various SVM kernels for final classification. This model achieved an accuracy of 99.1%
by selecting 4111 features from a total of 8192 and performing classification. This paper [22] innovatively
integrated CNN with Graph Neural Network (GNN) to develop a deep learning model for brain tumor
recognition. In this model, the GNN captured the relationships and dependencies between image regions,
while the CNN was used to extract spatial features. This hybrid methodology, combining the benefits of both
models, resulted in an accuracy of 93.68%.

Ravinder et al. [23] introduced the integration of GNN into CNN. This approach effectively addresses
the challenges posed by similarity-based pixel proximity and non-Euclidean distances in brain tumor
imaging. The researchers trained a 26-layer CNN integrated with graph convolutional operations. This
process refines node features by aggregating information from neighboring nodes, thereby enhancing the
representation of tumor regions. Net-2 achieved the highest accuracy of 95.01%. A study [24] proposed an AI
model based on Swin Transformer for brain tumor classification. This approach employed a Hybrid Shifting
Window MHSA module and introduced a rescaled model. The traditional Multi-Layer Perceptron (MLP) in
the Swin Transformer was optimized into a Residual MLP (ResMLP), enhancing accuracy, inference time,
and overall performance. The model achieved a classification accuracy of 99.92%.

3 Proposed Methodology
In this study, we proposed an innovative dual-branch structure model for automatic classification of

brain tumors in MRI images. The two branches of the model process whole-brain images and segmented
tumor region images, extracting global contextual features and localized fine-grained tumor features, respec-
tively. We assessed the classification performance of our proposed method using standard performance
metrics and validate its effectiveness by comparing it with existing CNNs. Fig. 1 illustrates the technological
flowchart for brain tumor classification developed in this study.
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Data 
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Spilt Dataset

Test Set 
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Experiment
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Figure 1: Flowchart of the proposed brain tumor MRI classification technique

3.1 Dataset
The model presented in our research was trained and tested on a publicly available Figshare dataset

which includes MRI scans of three distinct brain tumor types. This dataset [25] comprises a total of 3064
images, including 708 slices of meningioma, 1426 slices of glioma, and 930 slices of pituitary tumor. The
original images and tumor masks are stored in.mat format files, which were converted to PNG format images
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for ease of subsequent experimental analysis. The division of the dataset into training and testing sets is
shown in Table 1. During model training, the training set is split into training and validation data to select
the optimal parameters.

Table 1: Dataset partition table

Tumor class Training (70%) Testing (30%) Total
Meningioma 496 212 708

Glioma 998 428 1426
Pituitary tumor 651 279 930

Total 2145 919 3064

3.2 Dataset Preprocessing
3.2.1 Segmentation and Size Adjustment

The input for the global branch uses the original whole-brain images, while the input for the local branch
uses the tumor region mask files annotated by experts in the dataset. Based on these mask files, we directly
segmented the tumor regions. First, we crop the original images according to the range specified in the mask
files to extract the complete tumor regions. Subsequently, we fill the non-foreground areas with zeros in the
cropped images to focus exclusively on the tumor regions. By inputting the segmented images into the local
branch, we can extract and analyze features within the tumor regions in greater detail. Furthermore, the
image size is critical for transfer learning methods, as pre-trained CNN models require inputs of specific
dimensions. In this study, we resize both the original and segmented images uniformly to 224 × 224 pixels
to ensure compatibility with the input requirements of the two pre-trained branches.

3.2.2 Gaussian Blur for Image Denoising
Medical imaging data is often affected by high levels of noise, which can compromise the accuracy of

subsequent analysis and interpretation. To address this issue, we apply Gaussian blur to smooth the images,
thereby reducing interference from details and noise. This method is based on the application of the Gaussian
function, as shown in Eq. (1).

G (a, b) = 1
2Πσ 2 e−

a2
+b2

2σ2 (1)

where G (a, b) denotes the value of the Gaussian kernel at position (a, b). In this work, we selected an 11 × 11
kernel size for the denoising task. The specific value of the standard deviation σ is automatically calculated by
the processing software using a predefined empirical Eq. (2), based on the kernel dimension of the Gaussian
kernel and image characteristics such as resolution and noise levels.

σ = n − 1
6

(2)

where n represents the kernel dimension. The convolution operation is performed on the image using this
kernel, resulting in a blurred output.

3.2.3 Image Contrast Enhancement
Contrast-Limited Adaptive Histogram Equalization (CLAHE) technique was introduced during the

data preprocessing step to obtain high-quality and high-contrast data. CLAHE is a method used to enhance
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the contrast of images by applying histogram equalization in different regions to improve the clarity of
image details. During the preprocessing step of the dataset, images were divided into 8 × 8-sized grids, and
histogram equalization was applied to the pixels in each grid. By experimenting with different methods,
we set the clipping limit to 2.0 to achieve more significant contrast enhancement effects. Fig. 2 shows some
samples after preprocessing is completed.

Meningioma Glioma Pituitary Tumor

Global Image :

Tumor Mask :

Figure 2: Samples of three types of tumor images in the preprocessed dataset, including the original global images and
the segmented tumor region images

3.3 Parallel Dual-Branch for Feature Extraction
The proposed method employs a parallel dual-branch structure, where one branch processes whole-

brain images and the other focuses on local tumor images. This design aims to fully capture the features
of brain tumor MRI images while minimizing information loss. Based on the characteristics of the input
data and the task requirements, we selected appropriate pre-trained network models for each branch. The
following section introduces the two branches in detail.

3.3.1 Global Branch: ResNet50 with MHSA
The global branch is designed to capture the overall contextual information of MRI images. In this

branch, we utilize the ResNet50 [26] as the backbone network. The core concept of ResNet50 is the
introduction of residual connections, where the data flow bypasses certain layers to learn residual functions.
This approach allows the network to learn higher-order and more complex feature representations. To
improve the model’s capacity for capturing global features, we replaced the final 3 × 3 convolutional layer of
ResNet50 with MHSA. MHSA effectively captures long-range dependencies and contextual information in
images, which is crucial for understanding spatial relationships in complex brain MRI data.

Some studies suggest that MHSA can be applied across the entire network backbone with input
resolutions of 224 × 224 or 640 × 640 [27,28]. However, the resource consumption of the global self-attention
mechanism is O (n2d) [29], where n denotes the number of input features and d represents the dimen-
sionality of each feature. This implies that as the size of the input data increases, both computational and
memory requirements grow significantly, particularly when applying the self-attention mechanism across
all layers of the network. To address this challenge, some studies propose restricting the use of self-attention
mechanisms to the lowest resolution layers of the network [30]. Residual networks consist of multiple stages,
with the resolution of feature maps progressively decreasing at each stage. Therefore, we propose replacing
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the 3 × 3 convolutional layer in the final stage of ResNet50 with MHSA. This design effectively captures global
information while minimizing computational overhead at high-resolution layers. Given that the MHSA
mechanism does not inherently reduce the feature map resolution through down-sampling, we incorporate
a 2 × 2 average pooling layer with a stride of 2 in place of the convolutional operation at the first replacement
layer. This adjustment helps avoid computational bottlenecks when integrating the self-attention mechanism.

In this approach, all attention is focused on a two-dimensional feature map, with relative positional
encodings for height and width denoted as Rh and Rw , respectively. The attention mechanism is denoted
by qkT + qrT , where q represents the query encoding, k represents the key encoding, and r represents the
positional encoding, which utilizes relative distance encoding. With the use of multiple heads, the dashed
boxes in the diagram (position encoding and value projection) are the only three elements absent in the
non-local layer. The schematic diagrams are shown in Fig. 3.
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r q k
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Figure 3: Replacing the 3 × 3 convolutional layers in stage 5 of ResNet50 with MHSA layers and schematic diagram of
the MHSA layer

3.3.2 Local Branch: VGG16
VGG16 [31] has been selected as the backbone network for the local branch due to its excellent

performance in capturing texture and shape features. VGG16 consists of 13 convolutional layers and 3 fully
connected layers, with each convolutional layer employing 3 × 3 kernels and a stride of 1. This configuration is
designed to preserve spatial resolution while capturing fine-grained local features. The architecture leverages
a deep stack of convolutional layers, which sequentially extract hierarchical feature representations, from
low-level to high-level information. The outputs of the convolutional layers are typically passed through a
ReLU activation function, which effectively mitigates the vanishing gradient problem and accelerates the
training process. In addition, VGG16 places a pooling layer after every two convolutional layers, utilizing a
2 × 2 max pooling operation with a stride of 2. The pooling layers progressively reduce the spatial dimen-
sions of the feature maps, while retaining critical spatial information. This helps decrease computational
complexity and improves the robustness of the extracted features.

This design enhances the efficiency of feature extraction and representation learning in VGG16, making
it well-suited for capturing local features, particularly in small tumor regions. The small convolutional kernels
and frequent pooling operations are highly effective in processing segmented images of smaller tumor areas,
increasing sensitivity to subtle details and thus improving the performance in classification tasks.
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3.4 AFFM for Feature Fusion
Local and global features are both indispensable for enhancing the representational capacity of brain

tumor classification models. However, simply concatenating or summing these features may not sufficiently
highlight the individual importance of local and global characteristics. To address this issue and balance
the significance of each branch at different levels, we propose an AFFM to integrate information from both
branches. As illustrated in the Fig. 4, we designed AFFM consists of two main components: FSM and IECA.
This approach selectively emphasizes the distinct significance of local and global features, thereby optimizing
the overall performance of the model.

GAP

Conv

1 1

AvgPool

MaxPool

Stride=2

C

: Sigmoid : Element-wise multiplication : Element-wise addition C : Concatenate

Conv 1 1

C

FSM IECA

Figure 4: Detailed view of the designed AFFM architecture

3.4.1 FSM
The feature maps Fi (i = 1, 2) representing the outputs from the global and local branches respectively,

first undergo global average pooling. These pooled feature maps are then passed through a 1 × 1 convolution
layer followed by a sigmoid activation function to evaluate the importance of each feature map within the
global context, generating a feature importance vector u. The vector u = [u1 , u2, u3, . . . , uC] represents the
importance of each channel in the feature selection module. Next, the original input feature map Fi is
multiplied by the feature importance vector u, and the resulting product is then added to the original feature
map to generate the refined feature map F′i . The processing is illustrated by the following Eq. (3).

u = σ (Conv (Fi)) , F′i = Fi ⊕ Fi ⊗ u (3)

3.4.2 IECA
ECA [32] is a lightweight channel attention mechanism. To meet our task requirements, we applied both

max pooling and average pooling to the input of ECA, further enhancing the integration of global and local
branch features. Max pooling preserves local salient features, while average pooling aids in extracting global
contextual information. The IECA consists of max pooling, average pooling, a 1D convolution layer, and a
sigmoid activation function. Additionally, the kernel size k of the 1D convolution is adaptively adjusted based
on the number of channels and relevant coefficients, thereby optimizing the model’s performance.

As shown in Eq. (4), the feature map FEC A−IN fed into the ECA module is obtained by concatenating F′1
and F′2, followed by a 1 × 1 convolution.

FEC A−IN = Conv (Concat (F′1 , F′2)) (4)

where Conv denotes the 1 × 1 convolution and concat represents the concatenation operation.
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Assuming FEC A−IN ∈ RH×W×C , where H and W denote the 1 × 1 height and width of the input feature
maps, and C represents the number of channels. The expressions for average pooling, max pooling, and their
concatenation are shown in Eq. (5).

FA =
1

H ×W

H
∑
i=1

W
∑
j=1

f (i , j) , FM =max ( f (i , j)) , FAM = Concat (FA, FM) (5)

where FA and FM are the outputs of global average pooling and global max pooling, respectively, and FAM is
the result of their concatenation. f represents a set of 2D feature maps.

Then, the global-local dual-branch features, after being fused with attention enhancement, can be
represented by Ff as shown in Eq. (6).

Ff = σ (C1Dk (FAM)) ⊗ FEC A−IN (6)

where σ denotes the sigmoid activation function, and C1Dk represents the 1D convolution with a kernel size
of k, which adapts during network training.

3.5 CAB for Addressing Sample Imbalance
Inspired by the CAB mechanism, this approach focuses on identifying more distinctive regional features

for each category while ensuring equal treatment across all categories. We introduced this block to assign
higher weights to features that are relevant to specific classes while suppressing irrelevant or less important
features, thereby improving classification performance for the three brain tumor classes in the presence of
sample imbalance.

For the input feature map MC AB−IN ∈ RH×W×C we first apply a 1 × 1 convolution layer to generate a
feature map M′ ∈ RH×W×kL where k represents the number of channels required to detect the discriminative
regions for each class L. To encourage each of the k feature maps within a class to learn distinct discriminative
regions, we randomly drop half of the features during training by setting their values to zero. This results
in M′′ ∈ RH×W×kL , which retains only half of the features in each feature map. The importance of each class
feature map can be calculated using the Eq. (7). S = {S1 , S2, ⋅ ⋅ ⋅, SL} represents the importance scores for each
class.

Si =
1
k

k
∑
j=1

GMP (m′′i , j), i ∈ {1, 2, ⋅ ⋅ ⋅, L} (7)

where m′′i , j represents the j-th feature map for the i-th class from M′′, and GMP denotes global max pooling.
The semantic feature map M′I−AVG for the i-th class can be represented by Eq. (8).

M′I−AVG =
1
k

k
∑
j=1

m′i , j , i ∈ {1, 2, . . . , L} (8)

where m′i , j represents the response of the j-th feature of the i-th class in M′.
By multiplying the importance scores of each class with their corresponding semantic features and

then averaging the results, we can obtain the category attention CABatt ∈ RH×W×1, which highlights the
discriminative regions for brain tumor classification, as expressed in Eq. (9).

CABatt =
1
L

L
∑
i=1

Si M′i−AVG (9)
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Finally, the CAB output MC AB−OU T is obtained by multiplying input feature map MC AB−IN with the
attention map CABatt element-by-element. As shown in Eq. (10). The schematic diagram is illustrated
in Fig. 5.

MC AB−OU T = MC AB−IN ⊗ CABatt (10)

Conv

1×1

Dropout GMP

Intra-class AVG

…

AVG

AVG

Figure 5: Architectural details of CAB

3.6 Hyperparameter Settings
In this study, we conducted end-to-end training and testing for our model. Given the significant impact

of hyperparameter settings on model performance, we performed a series of systematic experiments to
optimize training parameters, including batch size, learning rate, optimizer, loss function, and number of
training epochs. The selection of hyperparameters was based on preliminary experimental results and rec-
ommendations from relevant literature to ensure optimal model performance. During the hyperparameter
optimization process, we defined the value ranges for each hyperparameter and systematically evaluated
different combinations of hyperparameters using strategies such as grid search or random search to identify
the best configuration. We also divided the training dataset into training and validation sets, and the
best model configuration was selected based on performance evaluation on the validation set. The final
hyperparameter settings are presented in Table 2. For the loss function, we employed the Multi-Class Binary
Cross-Entropy Loss. This function is suitable for three-class classification tasks, where each class is treated as
an independent binary classification problem [33]. The formula for the loss function is provided in Eq. (11).

L = − 1
N

N
∑
i=1

C
∑
c=1
[yic log ( ŷi c) + (1 − ŷi c) log (1 − ŷi c)] (11)

where N is the number of samples, and C is the number of classes. yic represents the true label of i-th instance
for c-th class, indicating whether the instance belongs to class c. ŷi c is the predicted probability for the i-th
instance to belong to the c-th class.
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Table 2: Optimal hyperparameter settings

Hyperparameter Value
Batch size 16

Learning rate 0.001
Optimizer Adam

Loss function Multi-class binary cross-entropy
Epochs 60

3.7 Performance Metrics
Evaluating performance metrics is essential in classification research, as different models may prioritize

various metrics. In this study, we assessed brain tumor classification using widely accepted metrics: accuracy,
precision, recall, and F1-score. All metrics were were calculated based on the confusion matrix, consisting of
true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN).

Accuracy serves as a pivotal metric in assessing the correctness of classification models. As shown in
the following Eq. (12), accuracy is the ratio of correctly predicted samples to total samples.

Accurac y = TP + TN
TP + TN + FP + FN

(12)

Precision and recall are common parameters used for evaluating classifier performance. In three-class
classification task, precision refers to the proportion of samples predicted by the classifier to be a certain class
that are actually of that class; recall refers to the proportion of samples actually belonging to a certain class
that are correctly predicted by the classifier. The equations are referred to as Eq. (13).

Precision = TP
TP + FP

, Recal l = TP
TP + FN

(13)

The F1-score considers both Precision and Recall, providing a comprehensive measure of the classifica-
tion model’s performance. The expression is seen in Eq. (14).

F1 − score = 2 (Precision × Recal l)
Precision + Recal l

(14)

Fig. 6 presents the framework of the proposed brain tumor classification model outlined in this paper.

4 Experiments Results and Discussion
Experiments were conducted on a computer equipped with an Intel R© Core™ i5 processor. The dataset

preprocessing was performed using MATLAB R2021a software running on a Windows 10 operating system.
The remaining experiments were conducted by connecting to a server via XSHELL software under the
Windows 10 operating system and utilizing an NVIDIA GeForce RTX 3090 graphics card for computation.
We implemented the proposed model and the CNN models used for comparative analysis using TensorFlow,
Keras, and Scikit-Learn frameworks in Python.

4.1 Ablation Experiment
To validate the effectiveness of the our model, we performed a series of ablation experiments, with results

summarized in Table 3 (based on 30% testing set). First, to verify the effectiveness of MHSA in enhancing
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global feature extraction capability, we compared the performance of ResNet50 with and without MHSA.
The results showed that adding MHSA improved the accuracy by approximately 1%. Next, we evaluated
the performance of the two individual branches by measuring accuracy, precision, recall, and F1-score,
establishing baseline performance metrics. Compared to these metrics, our model achieved an accuracy
improvement of 3.69% and 3.91%, with other evaluation criteria also showing significant enhancements.
Additionally, we evaluated simple feature concatenation without attention mechanisms by comparing
its performance to the individual branches. The results showed that concatenation led to performance
improvements. Finally, we explored the impact of incorporating the AFFM for enhanced feature fusion and
the CAB for addressing sample imbalance within the dual-branch model. The results indicate that while
both modules individually contribute to performance gains, their combined application in our model yields
superior overall performance.
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Figure 6: Overall architecture of the proposed brain tumor MRI classification model

Table 3: Comparison of ablation experiments

Model Accuracy Precision Recall F1-score
ResNet50 92.76% 0.924 0.922 0.923

ResNet50 with MHSA 93.63% 0.931 0.933 0.932
VGG16 93.82% 0.937 0.938 0.938

ResNet50 with MHSA + VGG16 (Concat) 95.24% 0.950 0.949 0.950
ResNet50 with MHSA + VGG16 + AFFM 96.74% 0.967 0.966 0.966
ResNet50 with MHSA + VGG16 + CAB 96.62% 0.962 0.966 0.964

Our model 98.04% 0.978 0.982 0.980

4.2 Comparative Analysis with Established Models
In this study, we conducted a comparative analysis of the proposed model against classical pre-trained

CNN models, including InceptionV3, Xception, GoogleNet, MobileNet, and DenseNet121. To adapt these
models for brain tumor classification, we integrated fully connected layers and classification layers, utilizing
them in an end-to-end framework.

As shown in Fig. 7, we compared the accuracy and micro-average AUC values of each model on the
testing set. The micro-average AUC incorporates results from all classes to reflect overall classification
performance. The results indicate that the proposed model achieved the best performance, with an accuracy
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of 0.980 and an AUC of 0.989, surpassing all other models. The more complex DenseNet121 model also
performed well, with an accuracy of 0.943 and an AUC of 0.952. In contrast, Xception showed relatively
lower performance, with an accuracy of 0.874 and an AUC of 0.863.

Figure 7: Comparison of accuracy and micro-average AUC across all applied models

As shown in Fig. 8, we generated class-wise heatmaps to compare the precision, recall, and F1-score
performance of different models in the classification of gliomas, meningiomas, and pituitary tumors. The
heatmap results in Fig. 8a,c indicate that our model outperforms the other models across all performance
metrics in the classification of meningiomas and pituitary tumors. This suggests that incorporating CAB
substantially improves the model’s ability to classify these two types of brain tumors, even with smaller
sample sizes. In the glioma classification heatmap shown in Fig. 8b, proposed model achieves the highest
precision and recall, while DenseNet121 also demonstrates high precision and recall. Overall, the heatmap
results suggest that the proposed model performs well not only in categories with larger sample sizes but also
maintains strong performance in categories with smaller sample sizes.

Additionally, confusion matrices were generated for each model, as shown in Fig. 9. These matrices
visually summarize the classification results for each class, including both correctly and incorrectly classified
samples. The results demonstrate that our proposed model has the fewest misclassified samples across all
tumor types, confirming its superior accuracy and reliability. Further comparison of the confusion matrix
results shows that, without CAB, the baseline CNN model exhibits generally low recognition accuracy for
the minority class Meningioma in the imbalanced dataset, with the best-performing model achieving a
maximum accuracy of only 90.1%. However, after incorporating CAB, the proposed model’s recognition
accuracy for this class increased to 98.6%, representing an improvement of 8.5%. This significant improve-
ment demonstrates the effectiveness of CAB in handling imbalanced datasets, particularly in enhancing the
classification accuracy for minority classes.
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Figure 8: Class-wise heatmaps: (a) Meningioma; (b) Glioma; (c) Pituitary Tumor, depicting precision, recall, and F1-
score for each model

Figure 9: Confusion matrices of various models on the testing set

4.3 Performance Comparison of the Dual-Branch Model Combined with Various Attention Modules
To better validate the performance advantages of the proposed attention-enhanced feature fusion

dual-branch model, we combined the dual-branch network with several existing attention modules and
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conducted performance comparison experiments. Specifically, we integrated the dual-branch network with
the Convolutional Block Attention Module (CBAM), Global Attention Module (GAM), Squeeze-and-
Excitation (SE) module, and ECA module, and systematically evaluated their performance. Through these
comparative experiments, we further demonstrated the superiority of the proposed model in feature fusion
and attention mechanism application. As shown in Table 4, although the performance of the dual-branch
network combined with various attention modules is generally effective, it still outperforms in terms of
various performance metrics compared to the model we proposed. Among these combinations, the network
integrated with the CBAM module achieved a high accuracy of 96.52%, while the network with the GAM
module achieved 94.12%, which is lower than the direct concatenation result. This may be due to the fact
that the GAM module suppresses certain key features, making it less suitable for the dual-branch structure
we proposed.

Table 4: Performance comparison of the dual-branch network with various attention modules

Model Accuracy Precision Recall F1-score
ResNet50 with MHSA + VGG16 + CBAM 96.52% 0.966 0.958 0.962
ResNet50 with MHSA + VGG16 + GAM 94.12% 0.941 0.931 0.936

ResNet50 with MHSA + VGG16 + SE 95.97% 0.959 0.953 0.956
ResNet50 with MHSA + VGG16 + ECA 95.43% 0.963 0.954 0.958

Our model 98.04% 0.978 0.982 0.980

4.4 Analysis of the Proposed Model’s Work Effects
To evaluate the learning process of the proposed model, we plotted the accuracy and loss curves for each

epoch during the training and testing phases, as shown in Fig. 10. The figure shows that over the course of 60
iterations, the model’s accuracy exhibits an overall upward trend, while the loss gradually decreases. In the
early stages of iteration, the model rapidly learns from the data and generalizes well, resulting in a significant
increase in accuracy and a sharp reduction in loss. As the number of epochs increases, the accuracy and
loss curves gradually stabilize, indicating that the model training is approaching convergence. The choice
of 60 epochs was based on performance evaluations from preliminary experiments with varying training
durations. These experiments showed that after 60 epochs, the model’s performance stabilized, with no signs
of overfitting. Although more epochs might yield slight improvements, the performance gains diminished
over time, and the computational cost increased. Therefore, we selected 60 epochs as the final training
duration to balance model performance and computational efficiency.

The multi-class receiver operating characteristic (ROC) curves for the validation set are shown
in Fig. 11a. The model achieved AUC values of 0.988 and 0.984 for the less represented classes of meningioma
and pituitary tumors, respectively. For glioma, which had a larger sample size, the AUC reached 0.994.
The micro-average AUC was 0.989, further demonstrating the model’s overall effectiveness in handling
multi-class classification tasks.

In addition, to understand the model’s decision-making behavior, we employed t-distributed Stochastic
Neighbor Embedding (t-SNE) algorithm to visualize the feature distribution of of testing set samples. The
primary objective is to examine whether the feature clusters in the 2D space are closely related to each
tumor category. Close intra-class clustering indicates that the model can effectively distinguish between these
categories. Fig. 11b demonstrates well-separated and compact clusters, further validating the model’s superior
ability to identify and distinguish features associated with different tumor types.
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Figure 10: Training and testing accuracy and loss curves of the proposed model. (a) Accuracy curve; (b) Loss curve

Figure 11: Comprehensive evaluation of the proposed brain tumor classification model: (a) Multi-class ROC curve and
(b) Feature space analysis

4.5 Feature Interpretability Analysis of the Proposed Dual-Branch Model
To further analyze the interpretability of the model’s decision-making process, this study employed the

Local Interpretable Model-agnostic Explanations (LIME) method to identify the key image features that
the model relied upon in tumor classification tasks. LIME worked by perturbing individual samples and
generating interpretable local models, which effectively visualized the contribution of each feature to the
prediction results. As shown in Fig. 12, the model in tumor classification not only focuses on fine-grained
features within the tumor region but also takes into account the global contextual information surrounding
the tumor. The highlighted yellow areas indicate that the model’s prediction relies on both the local features
of the tumor and its spatial relationships with the surrounding environment.

This indicates that, when making classification decisions, the model did not solely rely on the detailed
features within the tumor region, but was capable of integrating local information with global context to make
more comprehensive and accurate predictions. This further validated the effectiveness of the proposed dual-
branch network design, which enabled the model to simultaneously extract both the microscopic features
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of the tumor and the macroscopic information of its environment. It highlighted the critical role of local
features and global context in tumor classification tasks.

Figure 12: LIME-based feature importance analysis: (a) Meningioma; (b) Glioma; (c) Pituitary Tumor

4.6 Five-Fold Cross-Validation
We employed five-fold cross-validation to assess the generalization capability and stability of the

proposed model. The entire dataset was proportionally divided into five folds. Each fold contained 141
meningiomas, 285 gliomas, and 186 pituitary tumor samples, totaling 612 samples per fold. In each iteration
of cross-validation, four folds were used as the training set, while the remaining fold served as the test set.
Through cross-validation, we could more accurately estimate the performance of the proposed method on
unknown data, thereby validating the model’s adaptability to different datasets. Table 5 presents the overall
accuracy as well as the precision, recall, and F1-scores for each class during the five-fold cross-validation.
In the five-fold cross-validation, the proposed method achieved accuracy rates of 97.55%, 98.20%, 96.91%,
98.86%, and 97.88% across the five iterations. These results demonstrate consistent performance, with only
minor fluctuations, indicating the model’s robustness and reliability in classification tasks.

Table 5: Performance metrics of the proposed model under five-fold cross-validation

Fold index Accuracy Tumor Precision Recall F1-score
Meningioma 0.971 0.965 0.968

Fold-1 97.55% Glioma 0.979 0.979 0.979
Pituitary 0.973 0.978 0.976

Meningioma 0.979 0.972 0.975
Fold-2 98.20% Glioma 0.983 0.986 0.984

Pituitary 0.984 0.984 0.984

Meningioma 0.964 0.950 0.957
Fold-3 96.91% Glioma 0.972 0.976 0.974

Pituitary 0.968 0.973 0.971

Meningioma 0.993 0.986 0.989
Fold-4 98.86% Glioma 0.989 0.986 0.988

Pituitary 0.984 0.995 0.989

(Continued)
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Table 5 (continued)

Fold index Accuracy Tumor Precision Recall F1-score
Meningioma 0.986 0.979 0.982

Fold-5 97.88% Glioma 0.982 0.975 0.979
Pituitary 0.968 0.984 0.976

4.7 Comparison of the Proposed Model with State-of-the-Art Study
Several recent studies on the same dataset have been compared with the proposed work in terms

of accuracy performance. For example, Deepak et al. [34] proposed a novel class-weighted focal loss and
achieves an accuracy of 95.60% using CNN features for classification. Ali et al. [35] proposed wrapper-based
metaheuristic deep learning network feature optimization algorithm achieves a brain tumor classification
accuracy of 95.70% by selecting the best deep learning network and features. The researchers employed a
transfer learning method based on YOLOv2 (you only look once) to classify the extracted tumors, achieving
an accuracy of 97% [36]. Poonguzhali et al. [37] employed wiener filtering for preprocessing, utilizes the
VGG19 model for feature extraction to optimize performance, and applies the Tunicate Swarm Optimization
(TSO) algorithm to fine-tune the hyperparameters of the classification model, achieving a classification
accuracy of 97.48% for three types of brain tumors. This research [38] develops a CNN model from scratch,
followed by fine-tuning a deep network based on the ResNet50 model, ultimately achieving a classification
accuracy of 97.39%. This study [39] proposes a novel framework that integrates four distinct kernel functions
into the SVM classifier, achieving an accuracy of 95.88%. This paper [40] proposes an attention-guided CNN
architecture that integrates three lightweight encoders at the feature level to combine feature maps with local
details, achieving a maximum accuracy of 97.62%. Sandhiya et al. [41] combined deep features extracted from
InceptionV3 and DenseNet201, along with radiomics features, and employed a Particle Swarm Optimized
Kernel Extreme Learning Machine (PSO-KELM) for classification, achieving an accuracy of 97.92%. Khan
et al. [42] extracted features using the DenseNet169 model and fed them into three multi-class machine
learning classifiers, achieving a maximum accuracy of 95.10%. Despite the promising results reported in these
studies, our proposed method achieved even better accuracy rates, as shown in Table 6.

Table 6: Accuracy performance comparison of different research methods on the same dataset

Reference Year Method used Dataset Accuracy
[34] 2023 Weighted Loss and Deep

Feature Fusion
Figshare 95.60%

[35] 2023 Wrapper-based Metaheuristic
Deep Learning Network

Figshare 95.70%

[36] 2023 YOLOv2 and Transfer Learning Figshare 97.00%
[37] 2023 VGG19 Model + TSO Figshare 97.48%
[38] 2024 Fine-Tuned ResNet50 Figshare 97.39%
[39] 2024 Distinct Customised Kernel

with SVM Classifier
Figshare 95.88%

[40] 2024 Attention
Ensembled-EncoderNet

Figshare 97.62%

(Continued)
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Table 6 (continued)

Reference Year Method used Dataset Accuracy
[41] 2024 Deep Features + Radiomics

Features + PSO-KELM
Figshare 97.92%

[42] 2024 DenseNet169 +Machine
Learning Classifiers

Figshare 95.10%

Proposed – Dual-Branch and
Attention-Enhanced Feature

Fusion

Figshare 98.04%

4.8 Discussion of the Merits and Demerits of the Proposed Model
The key merits of the proposed model lies in its ability to simultaneously capture global context and

fine-grained local features, and efficiently fuse them to generate more comprehensive feature representations.
The complementary dual-branch structure enables the model to achieve higher classification accuracy and
stronger noise robustness when processing complex brain tumor image data, compared to single-branch
models. Despite the advantages of the proposed algorithm, there are some demerits. For instance, the dual-
branch structure inherently involves higher computational complexity, which may limit its application on
devices with limited memory. Especially in resource-constrained environments, the trade-off between model
complexity and computational efficiency needs to be carefully considered.

4.9 Limitations of the Study and Future Work
This study has several limitations. First, it utilizes a small publicly available dataset, which may limit the

generalizability of the findings. Second, due to the inclusion of tumor segmentation masks in the dataset,
the development of a corresponding tumor segmentation model was not pursued. To further validate the
effectiveness of our method, we plan to extend the study to larger, multi-center datasets in the future.
Additionally, we intend to apply the proposed dual-branch network to the fusion of multimodal information
in brain tumor analysis. Considering that not all datasets include tumor mask files, developing an automatic
tumor segmentation model is necessary. These extensions will be the focus of future research, thereby
enhancing the scientific value and practical application potential of this study.

5 Conclusion
This study proposes a brain tumor MRI classification model based on a global-local dual-branch

structure, designed to enhance classification accuracy by addressing the potential omission of small tumor
region details during global feature extraction. The model employs a ResNet50 with MHSA branch to
capture global contextual information and a VGG16 branch to extract fine-grained local tumor features.
Each branch is tailored to its specific task, using whole brain images and segmented tumor region images
as inputs, respectively. The effective fusion of features extracted by the two branches is achieved through
the designed AFFM. Additionally, the introduction of CAB improves the model’s ability to recognize
minority classes, effectively mitigating sample imbalance in the dataset. The ablation and comparative
experiments demonstrate that the proposed model outperforms the baseline model and existing CNNs in
terms of accuracy and F1-score. The method achieved an accuracy of 98.04%, an F1-score of 0.980, and
a micro-average AUC of 0.989 in the classification of three types of brain tumors. The results of five-fold
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cross-validation further validate the model’s stability and generalization ability, indicating its potential as an
effective solution for future brain tumor classification.
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