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ABSTRACT: Infrared unmanned aerial vehicle (UAV) target detection presents significant challenges due to the inter-
play between small targets and complex backgrounds. Traditional methods, while effective in controlled environments,
often fail in scenarios involving long-range targets, high noise levels, or intricate backgrounds, highlighting the need for
more robust approaches. To address these challenges, we propose a novel three-stage UAV segmentation framework that
leverages uncertainty quantification to enhance target saliency. This framework incorporates a Bayesian convolutional
neural network capable of generating both segmentation maps and probabilistic uncertainty maps. By utilizing uncer-
tainty predictions, our method refines segmentation outcomes, achieving superior detection accuracy. Notably, this
marks the first application of uncertainty modeling within the context of infrared UAV target detection. Experimental
evaluations on three publicly available infrared UAV datasets demonstrate the effectiveness of the proposed framework.
The results reveal significant improvements in both detection precision and robustness when compared to state-of-the-
art deep learning models. Our approach also extends the capabilities of encoder-decoder convolutional neural networks
by introducing uncertainty modeling, enabling the network to better handle the challenges posed by small targets
and complex environmental conditions. By bridging the gap between theoretical uncertainty modeling and practical
detection tasks, our work offers a new perspective on enhancing model interpretability and performance. The codes of
this work are available openly at https://github.com/general-learner/UQ_Anti_UAV (acceessed on 11 November 2024).
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1 Introduction
With the rapid development of UAV technology, it is gradually being integrated into daily life and is

widely applied in various fields. Systems with remote control of drones can monitor the location of targets,
alert for potential threats, and provide communication in emergency situations [1]. However, the advantages
and disadvantages of UAVs need to be carefully scrutinized to assess their practical usability. We must be
aware of the potential threats posed by drone intrusions to the public, such as their possible use for explosives,
cyber attacks, and unauthorized access to critical facilities. Unauthorized drones pose a danger to civil aircraft
and have, on many occasions, led to the disruption of air traffic, causing significant financial losses to airlines.
In addition, the ability of drones to collect images without being detected may violate people’s right to privacy.
Therefore, it is important to monitor the operational status of drones, including their position and trajectory.
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Traditional techniques such as radio frequency (RF) [2], radar [3] and acoustic sensors [4] play an important
role in anti-UAV detection. However, these sensors perform poorly in localizing long-range targets or in
environments with strong noise sources [5]. The challenge with using standard cameras, while providing
visual cues to security personnel, is the small size of the drone in the image, which directly impacts detection
performance. The rapid development of deep neural networks has led to the widespread use of vision-based
models for various detection tasks, which are applicable to a wide range of optical images. Therefore, the use
of computer vision algorithms to recognize UAVs has become a key component of anti-UAV systems [6].

Despite notable advancements in UAV detection technologies, existing approaches continue to exhibit
significant limitations. Traditional methods, radio frequency, radar, and acoustic sensors, are each con-
strained by inherent shortcomings [2–4]. RF detection systems are highly dependent on the interception
of signals emitted by UAVs, rendering them ineffective against drones operating autonomously or utilizing
encrypted communication protocols. Similarly, radar systems, while proficient in detecting objects over long
distances, often face challenges in distinguishing UAVs from other small aerial objects, such as birds, due
to their limited resolution and a high propensity for false alarms. Acoustic sensors, although capable of
identifying drones through distinctive sound signatures, are particularly vulnerable to environmental noise.
Conventional optical cameras, though effective for visual detection, exhibit limitations in identifying small,
mobile UAVs, particularly at long ranges or under low-light conditions. Infrared (IR) imaging provides a
robust alternative by ensuring reliable operation in low-light or nighttime environments, enabling contin-
uous surveillance. Additionally, IR sensors detect the heat signatures of UAVs, facilitating their recognition
even in the presence of visual obstructions such as fog, smoke, or adverse weather. These capabilities position
IR imaging as a highly effective technology for UAV detection across diverse operational scenarios.

Infrared imaging technology, known for its all-weather capabilities and adaptability, has become a
crucial tool in remote anti-UAV monitoring. Infrared-based UAV detection complements other methods,
enhancing overall detection performance [7–8]. Infrared target detection can be broadly categorized into
general target detection and small target detection [9]. As illustrated in Fig. 1, small target detection differs
significantly from general target detection. Infrared small targets are typically imaged from greater distances,
with target sizes often smaller than 30 × 30 pixels. Moreover, drones are not only compact but also
easily camouflaged within complex backgrounds, lacking distinctive color or texture features, which poses
significant detection challenges. Current single-frame infrared UAV small target detection methods generally
fall into two categories: model-driven and data-driven approaches.

Model-based methods for infrared small target detection utilize prior knowledge of targets, back-
grounds, or imaging features to construct detection models, typically categorized into filtering techniques,
human visual system-inspired approaches, and low-rank models [10–12]. Despite their ability to handle
complex backgrounds, these methods are hindered by high computational costs, sensitivity to parameter
adjustments, and significant manual tuning requirements. Their performance is often compromised by
noise and background clutter, limiting robustness, while the reliance on hyperparameter optimization
further reduces generalization across diverse scenarios. With advancements in deep learning and the
availability of infrared small target datasets [13], data-driven methods for infrared small target detection
have rapidly evolved. Convolutional neural networks (CNNs), known for extracting deep semantic features,
have achieved significant success in general target detection. However, the unique characteristics of infrared
small targets, such as their limited size and shape, necessitate specialized architectures. To address this,
researchers have developed networks tailored for this task. Li et al. [14] introduced a dense nested attention
network (DNA Net) to mitigate deep feature loss by enhancing and integrating contextual information.
Liu et al. [15] employed a transformer-based self-attention mechanism to capture large-scale feature cor-
relations and distinguish targets from backgrounds. Similarly, Qi et al. [16] proposed a hybrid architecture
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combining transformers and CNNs, leveraging a dual-branch structure to capture fine-grained target details
while suppressing background interference. These innovations significantly improve detection performance
and robustness.

Figure 1: Visual differences between general infrared target detection and unmanned aerial vehicle small target
detection

Despite notable progress, existing methods struggle to address performance degradation caused by
the small size of targets. To mitigate this, some researchers have reformulated drone object detection as a
semantic segmentation task rather than a traditional object detection problem. For instance, Dai et al. [17]
proposed an attention-based local contrast network to capture long-range background interactions and
implemented infrared small target segmentation using a cross-layer fusion module. However, in complex
backgrounds, factors such as background fluctuations, signal noise, and spatial uncertainty of targets
complicate detection. To address these challenges, Qu et al. [18] introduced a local entropy operator to
quantify image complexity and suppress cloud-like backgrounds by analyzing target-background differ-
ences. Nevertheless, this approach overlooks interactions within and across component signals, limiting its
effectiveness in processing highly complex scenes.

To develop a single-frame infrared drone target detection method capable of handling complex scenes,
we incorporate uncertainty quantification to enhance target saliency by analyzing the uncertainties of
targets and backgrounds. Uncertainty is typically classified into data (aleatoric) uncertainty, caused by
inherent observational noise such as that from radar or cameras, and model (epistemic) uncertainty,
arising from limitations in the model or insufficient data understanding [19]. While aleatoric uncertainty is
unavoidable, epistemic uncertainty can be mitigated by acquiring additional data or improving the model.
In fact, Uncertainty quantification has shown significant success in fields such as medical imaging [20] and
autonomous driving [21], where it guides network learning and supports decision-making based on the
reliability of predictions [22]. Despite its potential, uncertainty quantification has received limited attention
in infrared drone target detection. Addressing uncertainties related to image blurriness and target similarity
in infrared drone detection can significantly enhance model performance, particularly for small target
detection in complex scenarios.

The data ambiguity arising from the overlap of drones with trees, buildings, and other objects, along
with significant noise in small-target datasets, is collectively referred to as data uncertainty. This uncertainty
introduces penalizing factors during model training, contributing to cognitive uncertainty in the learning



1442 Comput Mater Contin. 2025;83(1)

process of model. To address this challenge, we propose a novel three-stage drone segmentation framework
that leverages Bayesian networks to quantify uncertainty, guiding the segmentation process to focus on
high-uncertainty regions and optimizing the model through uncertainty learning. Traditional segmentation
models perform well when targets are clearly distinguishable from the background but struggle with complex
backgrounds and visually similar targets. The proposed framework addresses this limitation by incorporating
uncertainty into the segmentation process. In the first stage, rough predictions and uncertainty estimates are
generated for image regions, followed by uncertainty map creation through quantification. In the final stage,
the segmentation network prioritizes high-uncertainty areas to refine target detection. This framework is
specifically designed to improve segmentation performance in challenging scenarios. The key contributions
of this work are outlined as follows:

1. We propose a novel three-stage framework for UAV segmentation that integrates uncertainty quantifi-
cation to enhance segmentation accuracy and robustness. Unlike traditional encoder-decoder convolutional
neural networks (CNNs), our approach extends the architecture into a Bayesian convolutional neural
network (BCNN), enabling the simultaneous generation of segmentation maps and probabilistic uncertainty
maps. This integration provides a more comprehensive understanding of the confidence of model in its
predictions, particularly for infrared UAV scenarios.

2. Uncertainty modeling is applied to infrared UAV target detection for the first time, addressing
segmentation challenges posed by complex backgrounds and low-contrast targets. The framework leverages
uncertainty visualization to identify and rectify potential segmentation errors, while the generated uncer-
tainty maps serve as auxiliary guidance for the segmentation network, leading to improved segmentation
performance and robustness under diverse environmental conditions.

3. Extensive experiments on three public infrared UAV datasets demonstrate the efficacy of the proposed
framework. The results show that incorporating uncertainty modeling not only enhances the segmentation
accuracy across various segmentation models but also improves the generalization and reliability of the
network, making it better suited for real-world UAV detection tasks.

The remainder of this article is organized as follows: Section 2 briefly reviews the research methods
related to object segmentation and uncertainty quantification. Section 3 provides a detailed introduction
to the proposed three-stage unmanned aerial vehicle target segmentation framework, including methods
for uncertainty quantification. Section 4 analyzes the experimental results from two single-frame infrared
drone image datasets. Finally, Section 5 summarizes the findings and discusses potential future directions
for this research.

2 Related Work

2.1 Object Segmentation
Image segmentation, as a pixel-level classification task, focuses on dense image prediction. With the

rapid advancement of Convolutional Neural Networks (CNNs), segmentation methods have evolved from
early fully convolutional networks [23] and encoder-decoder frameworks [24] to approaches utilizing
dilated or atrous convolutions [25]. Infrared small target detection networks like NUDT-SIRST [14] and
MSAFFNet [26] incorporate attention mechanisms to enhance spatial and semantic information, improving
detection of shallow targets. However, these CNN-based methods are limited by their local receptive fields,
reducing their ability to model long-range dependencies in large-scale images. To address this, Transformer-
based approaches [15–16] have been introduced, utilizing hierarchical self-attention mechanisms to capture
correlations between distant image features effectively. This network has significantly improved detection
performance compared to previous detection methods. However, most of these deep learning models focus



Comput Mater Contin. 2025;83(1) 1443

on the one-to-one mapping from images to segmentation labels. In reality, the inherent uncertainty and the
impact of low-contrast drone targets or similar targets in weak sampling environments can lead to ambiguity
in infrared drone target segmentation tasks.

Unlike previous work, we have designed a novel three-stage drone segmentation framework that extends
the encoder decoder convolutional neural network to a Bayesian convolutional neural network to quantify
the uncertainty information in the image. We use this information to guide the segmentation network to
focus on highly uncertain regions and optimize them by learning uncertainty auxiliary models.

2.2 Uncertainty Quantification
Existing deep learning models perform well on various tasks, but in point estimation neural networks,

the probability obtained by the softmax layer is often mistakenly interpreted as confidence, resulting in the
model generating unreasonably high confidence for points far from the training data [27]. In addition, there
is a lack of attention to uncertainty issues in infrared drone target detection tasks. Quantifying the blurriness
in infrared drone images and the uncertainty caused by drone like targets can provide more accurate
adversarial decisions [28]. In fact, since bayesian neural networks are composed of probability distributions
of parameters instead of parameter point estimation, they can quantify the cognitive uncertainty of neural
networks [29]. However, in practice, inferring the posterior distribution of weights requires marginalization
or integration across the entire parameter space, making it extremely difficult to perform precise inference
on bayesian neural networks. Instead, approximate methods based on Monte Carlo sampling and variational
inference are commonly used. One of the most popular and simple methods is Monte Carlo dropout,
which activates the dropout operation during both the training and testing phases of the model, effectively
using different sets of random weights for each network evaluation to quantify uncertainty by evaluating
any differences in the results [22]. Dropout is a commonly used method to avoid overfitting of neural
networks [30]. In [27], the author proves that using dropout during neural network training can approximate
bayesian inference without changing the model architecture and without incurring heavy computational
costs. Based on this principle, Monte Carlo dropout technology uses dropout to train the model and
keep it active during the inference phase, as described in Fig. 2. Perform multiple forward propagation
on a given input query, with each forward propagation randomly using a different dropout mask to
generate different predictions. The above process is similar to bayesian neural networks, which can obtain
predicted distributions.
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Figure 2: Description of Monte Carlo dropout paradigm

3 Proposed Methods

3.1 Overview of the Proposed Methods
The method proposed is divided into three steps for segmenting unmanned aerial vehicles (as shown

in Fig. 3):
Monte Carlo dropout for obtaining segmentation samples: In the first step, the encoder based DNN

is combined with Monte Carlo dropout for semantic segmentation training, and Monte Carlo dropout is
activated during the test phase to obtain multiple segmentation samples. In addition, averaging the multiple
segmented samples obtained can yield the initial segmentation results.

Uncertainty quantification: In the second step, uncertainty quantification is performed on the seg-
mented samples to obtain a global heatmap containing uncertainty values for each pixel, and arbitrary
uncertainty maps and cognitive uncertainty maps are generated separately.

Global enhancement: In the third step, a deep neural network for global segmentation is trained by
combining the uncertainty map from the previous step with the global feature map to obtain the final
segmentation result. Using uncertain information can make the network focus on high uncertainty areas,
improve overall segmentation accuracy, and ultimately enhance the quality of semantic segmentation.
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Figure 3: Overview of the proposed network architecture. The infrared UAV image is first processed by an encoder-
based deep neural network to generate multiple (N) segmentation samples via Monte Carlo dropout. Uncertainty
quantification is then applied to produce uncertainty maps, which are fed back into the network to guide learning and
refine the final segmentation output

3.2 Uncertainty Quantification
Bayesian methods are widely used for uncertainty quantification by assigning a prior distribution to

neural network parameters and computing the posterior distribution based on training data [31]. For a
dataset sample X = x1 , . . . , xN and Y = y1 , . . . , yN , the random output of bayesian network is represented as
f W(x), with the likelihood p(y∣ f ω(x)). Bayesian inference calculates the posterior distribution p(ω∣X , Y)
of the weights ω given a prior p(ω). The posterior distribution for the model parameters is provided in Eq. (1).

p(ω ∣ X , Y) = p(Y ∣ X , ω)p(ω)
p(Y ∣ X) (1)

For a given test sample x∗, Eq. (2) presents the posterior distribution of the parameters along with the
predictive distribution derived by marginalizing over the model parameters.

p (y∗ ∣ x∗, X , Y) = ∫ p (y∗ ∣ x∗, ω) p(ω ∣ X , Y)dω (2)

For the input infrared uav image, the model derived through the inference of Eq. (2) is capable of
performing a weighted average of the posterior distribution for each pixel in the image, a process com-
monly referred to as Bayesian Model Averaging (BMA). Nevertheless, the underlying rationale for Eq. (2)
stems from the inherent challenges associated with the analytical computation of the parameter posterior
distributions.

p(Y ∣ X) = ∫
ω

p(Y ∣ X , ω)p(ω)dω (3)
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Eq. (3) represents the likelihood term in Eq. (1), which necessitates marginalizing ω by integrating over
the entire weight space. However, given that deep neural networks often contain millions of parameters,
performing such comprehensive integration is computationally infeasible.

Due to the large computational complexity of bayesian methods, it is impractical to directly quantify
model uncertainty. To address this, Monte Carlo dropout has become a widely recognized statistical approach
for approximating Bayesian models to estimate uncertainty in predictions [27]. Building upon this, Kwon
et al. [28] developed a method tailored for classification tasks, which decomposes the variation in pre-
dicted probabilities into components representing aleatoric and epistemic uncertainties. In this framework,
G = {(xi , yi)}N

i=1 denotes a dataset of independent and identically distributed random variables, where xi ∈
R and yi ∈ {e1 , . . . , eJ} correspond to the i-th input and output, respectively. Here, N represents the sample
size, J indicates the total number of classes, e j is a one-hot encoded label vector, and ω signifies the neural
network’s parameters learned during training.

Varp(y∣x ,G)(y) = ∫
Ω

Varp(y∣x ,G)(y)p(ω ∣ G)dω+

∫
Ω
{Ep(y∣x ,ω)(y) − Ep(y∣x ,G)(y)}

⊗2 p(ω ∣ G)dω (4)

In Eq. (4), the first term of the summation reflects arbitrary uncertainty, capturing the inherent
randomness in the output, while the second term denotes cognitive uncertainty, representing the variability
in the input model data.

To integrate uncertainty quantification into infrared UAV image detection model, we employ a bayesian
convolutional neural network (BCNN) as the core framework. The BCNN extends conventional convo-
lutional neural networks by introducing the Monte Carlo (MC) dropout mechanism, treating the model
parameters as distributions rather than fixed values. In the encoder stage, feature extraction is performed
using convolutional layers interspersed with dropout layers, which maintain a fixed dropout probability of
15% during both training phases. This enables the model to approximate bayesian inference by performing N
times forward passes over the same input image, generating N predictions of distribution. The N predictions
are then utilized to compute uncertainty maps [28], distinguishing between aleatoric uncertainty, which
captures inherent noise in the data, and epistemic uncertainty, which reflects limitations in the knowledge
of model due to finite training data. Specifically, the uncertainty maps are incorporated into the global
enhancemen phase as auxiliary feature maps. This is achieved by the feature fusion in uncertainty guiding
encoder structure. By embedding this additional information, the encoder is guided to focus on regions
with high uncertainty, improving the segmentation accuracy in challenging scenarios, such as low-contrast
or occluded regions in infrared UAV images. This integration not only enhances the interpretability and
robustness of the segmentation results but also preserves the modularity of the architecture, allowing the
method to be easily adapted to other encoder-decoder-based networks.

3.3 Uncertainty Guiding Encoder
For conventional image segmentation, the network treats every pixel in the image equally. In fact, images

have rich contextual information, and the difficulty of segmentation varies greatly between different regions.
In infrared uav segmentation tasks, drones with complex background areas are often difficult to segment.
In Section 3.2, we extended the deep neural network to a bayesian network using Monte Carlo dropout
technique, sampled its output, and obtained the uncertainty maps using uncertainty quantization method.
In the uncertainty map, regions with higher values indicate that the network has a high degree of uncertainty
in the image region, corresponding to greater segmentation difficulty.
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To enable the network learn the varying difficulty of segmenting different regions, we propose an uncer-
tainty guiding encoder structure, as illustrated in Fig. 4. This innovative framework integrates uncertainty
information into the feature extraction process of deep neural networks, allowing the segmentation model
to dynamically focus on regions with high uncertainty. The structure begins by transforming the uncertainty
map, derived through Monte Carlo dropout-based bayesian inference, into feature blocks using a series of
convolutional and activation layers. These feature blocks are then processed using max pooling and average
pooling to retain both the most prominent uncertainty features and the overall uncertainty distribution
across the image. The pooled outputs are concatenated along the channel dimension and further refined
through convolutional operations to generate global uncertainty features. These global features are subse-
quently fused with specific feature maps extracted from the encoder. By combining the global uncertainty
features with the outputs of encoder, the network is empowered to simultaneously prioritize uncertain
regions at both local and global scales. This novel approach not only enhances segmentation accuracy in
challenging scenarios, such as occluded or low-contrast regions, but also preserves the modularity and
adaptability of the network, making it a flexible component for a variety of encoder-decoder architectures.
Integrating uncertainty directly into the encoding process, rather than treating it as a post-processing step,
underscores the innovative nature of this design and its potential to significantly improve segmentation
robustness and interpretability.

Figure 4: An uncertainty guiding encoder structure is proposed, consisting of an uncertainty feature extraction module
and an uncertainty feature fusion module. It can adapt to various encoder based network structures

4 Experimental Analysis and Results
In addition, this paper conducts comparative experiments on multiple encoder-based segmentation

networks to demonstrate the importance of introducing uncertainty learning and a priori constraints in the
infrared UAV segmentation task.
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4.1 Dataset Analysis
1) Anti-UAV Test-dev Dataset [6]: To date, two versions of the dataset have been released. The former

contains 100 high-quality infrared and RGB video sequences, and the UAVs in the dataset are characterized
by multi-scale and cross-scene. Among them, the UAV images have complex backgrounds, including clouds
and urban buildings. The latter version discards the RGB video sequences and expands the infrared data. The
second version of the dataset contains more complex scenes, including ocean, forest, and mountain scenes.
In addition, small objects and UAV-like targets often appear in the images, making it easy for the UAV to be
submerged in the background.

2) Infrared Dim-Small Aircraft Detection Dataset [32]: This dataset aims to address the lack of
authenticity in simulation data and the scarcity of measured data samples in the field of infrared target
detection and recognition. It is designed for low altitude weak aircraft target detection applications and
integrates a set of test datasets using one or more fixed wing unmanned aerial vehicle targets as detection
objects through methods such as shooting and data processing in an off-site environment. The dataset covers
various scenarios such as the sky and the ground.

3) Multi-Sensor Drone Detection Dataset [33]: This dataset focuses on the relatively understudied
challenge of UAV detection using thermal infrared cameras. It includes data captured by thermal infrared
cameras, visible light cameras, and microphones. Notably, the dataset provides the infrared UAV target image
sources essential for this research, as well as data on other aerial objects that could be misclassified as UAVs,
such as birds, airplanes, and helicopters.

The above three datasets are all used for frame extraction of video sequences, with a frame extraction
interval of 10. Additionally, data augmentation was applied to all three datasets using three methods:
cropping, concatenation, and rotation. The total number of images used in the experiment is 15,124 images
from the Anti-UAV Test-dev Dataset, 10,725 images from the Multi-sensor Drone Detection Dataset, and
9944 images from the Infrared Dim-small Aircraft Detection Dataset. The movements of uavs in the dataset
exhibit considerable diversity, with their trajectories dispersed throughout the entire field of view. Fig. 5
presents statistical data on the scale distribution of drones across the three datasets, calculated from the width
and height of the images. For the training, validation, and test sets, data samples were randomly selected
from the raw data to ensure that the scale distributions remained consistent across all sets.

Figure 5: The scale distribution of the three datasets used in the experiment

The datasets used for evaluation are diverse and representative of real-world scenarios, including the
Anti-UAV Test-dev Dataset, the Multi-sensor Drone Detection Dataset, and the Infrared Dim-small Aircraft
Detection Dataset. These datasets not only cover a wide range of environmental conditions and drone
movements but also feature a variety of scales, trajectories, and potential false positives, such as birds
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and airplanes. The proposed method is rigorously tested against these models and datasets to ensure its
robustness, scalability, and adaptability across different scenarios. The inclusion of models ranging from
traditional CNN-based architectures to modern hybrid approaches provides a holistic benchmark.

4.2 Implementation Details
a) Uncertainty network: In the experiment, the uncertainty network is initially trained with a learning

rate of 0.01 for a total of 20 epochs. Following the training phase, the model performs multiple segmentation
predictions to obtain 50 Monte Carlo samples. From these samples, an uncertainty map and a priority map
are derived for each image. The prior map is utilized as a prior label to compute the prior loss, while the
uncertainty map serves as a guide for refining the segmentation network during training.

b) Segmentation network: To train the segmentation network, the proposed model is optimized using
the SGD optimizer. Across all datasets, the learning rate is set to an initial value of 0.001, with a weight decay
parameter of 1e-4. The training process employs a batch size of 8 and spans 20 epochs. The implementation is
conducted within the PyTorch framework and utilizes an NVIDIA A100 GPU for computational efficiency.

c) Comparative methods: We evaluates effectiveness of the proposed method and superiority using
a comprehensive set of seven benchmark models, which are widely recognized in semantic segmen-
tation tasks. The models include DeepLabv3 [34], a state-of-the-art architecture known for its atrous
spatial pyramid pooling; U-Net [35], a classical encoder-decoder model frequently used in medical and
environmental image segmentation; SegNet [24], which emphasizes efficient upsampling for semantic
segmentation; BiSeNetv2 [36], designed for real-time applications with a focus on balancing accuracy and
speed; HRNet [37], known for maintaining high-resolution representations throughout the network; and
DDRNet [38], a dual-resolution network that integrates multi-scale features effectively. Additionally, the
Transformer-CNN hybrid model [15] is employed, combining the strengths of convolutional neural networks
and transformers for capturing both local and global dependencies.

d) Evaluation metrics: In this paper, the infrared UAV target detection task is formulated as a semantic
segmentation problem to effectively delineate drone targets from the background. To rigorously evaluate the
performance of the proposed method, the experiments utilize two widely recognized evaluation metrics:
Intersection over Union (IoU) and Normalized Intersection over Union (nIoU). IoU measures the overlap
between the predicted segmentation and the ground truth, providing a robust assessment of segmentation
accuracy. Meanwhile, nIoU normalizes the IoU score to account for imbalances in class distribution, ensuring
a fair evaluation of the performance of model, especially in datasets where drone targets occupy significantly
smaller portions of the image compared to the background.

4.3 Results and Analysis on the Anti-UAV Test-Dev Dataset
1) Quantitative comparison: Table 1 summarizes the infrared UAV detection accuracy of seven models

on the Anti-UAV Test-dev Dataset. Leveraging uncertainty quantification for segmentation training, the
proposed uncertainty-guided training model surpasses the base model, with most models achieving optimal
IoU and nIoU values in infrared UAV detection. For datasets like Anti-UAV, which are small and realistic,
uncertainty-guided training effectively captures deep multi-scale and high-resolution features while focusing
on global and local high-uncertainty regions, leading to improved detection performance and reduced false
alarm rates. However, models like SegNet and BiSeNetv2, relying on ImageNet-pretrained classification
backbones, tend to prioritize objects with ImageNet-like distributions over the Anti-UAV data, limiting
their performance. Additionally, uncertainty-guided training provides minimal benefit in improving their
detection accuracy. The Transformer-CNN model, while balancing missed detection and false alarm rates
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through its self-attention mechanism, faces challenges with uncertainty-guided training due to its higher
complexity, which hinders performance gains.

Table 1: Quantitatively compare the IoU and nIoU values of different methods on the Anti-UAV Test-dev Datasets. UQ
indicates the use of the uncertainty quantification method proposed in this article to guide network training, with the
best results displayed in bold

Model Optimizer Methods Baseline Baseline+UQ
Deeplabv3 Adam IoU 57.34 60.58

nIoU 62.45 64.21
Unet RMSprop IoU 59.55 63.89

nIoU 61.23 65.27
SegNet SGD IoU 54.62 55.35

nIoU 52.55 53.28
BiSeNet v2 Adam IoU 52.33 53.79

nIoU 54.66 54.71
HRNet Adam IoU 58.64 58.67

nIoU 57.42 58.58
DDRNet Adam IoU 56.53 59.88

nIoU 57.22 60.33
Transformer-CNN Adam IoU 56.21 55.84

nIoU 58.34 59.22

2) Visual comparison: Fig. 6 illustrates detection results from seven models on the Anti-UAV dataset.
The limited feature representation of SegNet and BiSeNet v2 leads to a higher omission rate, visually reflected
in fewer detected pixels compared to the reference label. In contrast, the other four models achieve improved
detection through uncertainty-guided training, aligning with the quantitative results in Table 1. Notably, the
proposed method enhances segmentation performance, particularly for closely connected objects. However,
SegNet and BiSeNet v2 still exhibit issues like adhesion or pixel loss in their visual outputs.

Figure 6: Visualization results of various methods in the Anti-UAV Test-dev Dataset
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4.4 Results and Analysis on the Infrared Dim-Small Aircraft Detection Dataset
Table 2 presents the quantitative detection performance on the Infrared Dim-Small Aircraft Detection

Dataset, with corresponding visualizations in Fig. 7. The results show a clear performance improvement due
to the application of the proposed uncertainty quantification method during model training. By integrating
uncertainty maps into the training process, most models outperform the base model in detecting infrared
small aircraft, achieving notable gains in IoU and nIoU, which confirms the effectiveness of this approach in
enhancing detection accuracy. However, it is noteworthy that not all models benefit equally from uncertainty-
guided training, as the performance of DDRNet remains limited on this dataset.

Table 2: Quantitatively compare the IoU and nIoU values of different methods on the Infrared Dim-small Aircraft
Detection Dataset. UQ indicates the use of the uncertainty quantification method proposed in this article to guide
network training, with the best results displayed in bold

Model Optimizer Methods Baseline Baseline+UQ
Deeplabv3 Adam IoU 45.22 47.96

nIoU 41.21 45.33
Unet RMSprop IoU 42.14 47.74

nIoU 45.60 48.11
SegNet SGD IoU 33.57 32.95

nIoU 34.12 34.31
BiSeNet v2 Adam IoU 41.35 42.37

nIoU 40.18 43.55
HRNet Adam IoU 40.08 45.20

nIoU 45.88 49.66
DDRNet Adam IoU 47.69 44.55

nIoU 46.10 44.25
Transformer-CNN Adam IoU 46.33 48.90

nIoU 45.64 47.31

Figure 7: Visual examples of detection results using various methods on the Infrared Dim-Small Aircraft Detection
Dataset
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The uncertainty guided training method shows distinct advantages on the Infrared Dim-Small Air-
craft Detection Dataset with its limited and realistic data. It effectively captures deep multi-scale and
high-resolution features while prioritizing regions of high global and local uncertainty. This approach
enhances model generalization and robustness, improves detection performance, and significantly lowers
the false detection rate, enabling more accurate identification of small aircraft targets in complex infrared
image environments.

4.5 Analysis of Data Volume
This section evaluates whether the proposed method overly depends on dataset size using the Multi-

sensor Drone Detection Dataset. Two sub-experiments are conducted: first, 5000 high-quality images are
manually selected for training, and second, a subset of 500 images is randomly chosen from these to create
a smaller sample dataset. The final detection output is defined as the minimum bounding rectangle of the
optimal segmentation result, with IoU and nIoU used as quantitative metrics for comparison.

In the previous experiments, a longitudinal comparison between datasets was conducted. As shown
in Table 2, the Infrared Dim-Small Aircraft Detection Dataset exhibited lower IoU and nIoU values compared
to the Anti-UAV dataset. This is attributed to its lower resolution of 256× 256, which limits feature distinction
and contextual representation. Additionally, the reference labels of Anti-UAV dataset align more closely with
actual objects, enhancing detection accuracy.

Furthermore, a comparison of data volumes was performed, with the Multi-sensor Drone Detection
Dataset having a 10:1 ratio of large to small samples. Despite only a 2% improvement in overall IoU and nIoU,
the proposed uncertainty quantification method remains effective. Results from the smaller dataset also
demonstrate strong performance, highlighting its practical applicability.

The visualization of detection results for the comparison methods is presented in Fig. 8, with the
quantitative detection performance on the Multi-sensor Drone Detection Dataset summarized in Table 3.
The proposed method continues to enhance network segmentation performance. However, complex back-
grounds, object variations, and limited image quality have led to a decline in detection performance
across all models. Notably, SegNet demonstrates particularly poor results on underfitting samples in the
small-sample dataset.

Figure 8: Visualization examples of detection results using various methods on small-scale samples selected from
Multi-sensor Drone Detection Dataset
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Table 3: Quantitatively compare the IoU and nIoU values of different methods on small-scale samples selected from
Multi-sensor Drone Detection Dataset. UQ indicates the use of the uncertainty quantification method proposed in this
article to guide network training, with the best results displayed in bold

Model Optimizer Methods Baseline Baseline+UQ
Deeplabv3 Adam IoU 38.97 40.63

nIoU 40.23 41.12
Unet RMSprop IoU 40.15 41.26

nIoU 39.65 41.42
SegNet SGD IoU 32.33 31.79

nIoU 30.22 29.55
BiSeNet v2 Adam IoU 41.21 41.89

nIoU 39.63 41.32
HRNet Adam IoU 40.81 42.34

nIoU 40.27 41.35
DDRNet Adam IoU 40.87 41.26

nIoU 39.78 40.26
Transformer-CNN Adam IoU 40.32 41.25

nIoU 39.83 40.20

4.6 Ablation Study
This section details the ablation experiments conducted on three infrared UAV target datasets to assess

the effectiveness of the proposed uncertainty-guided training approach. The analysis focuses on evaluating
how the number of segmentation slices utilized for uncertainty quantification influences model performance.
Additionally, the contribution of the uncertainty guiding encoder to overall detection accuracy is systemat-
ically examined. To ensure experimental consistency, U-Net is employed across all experiments and trained
using the uncertainty bootstrapping technique, with identical parameter configurations applied throughout.

1)Comparative Analysis of Detection Performance with Varying Numbers of Segmentations Guided
Training: Table 4 presents a comparison of IoU and nIoU values for U-Net trained with different numbers
of segmentations guided. The results indicate that the optimal performance, in terms of both IoU and nIoU,
is consistently achieved across all three datasets when N = 50. This analysis highlights the effectiveness of
segmentation slice uncertainty bootstrap training in enhancing model performance. Notably, this approach
significantly mitigates the loss of fine details in small targets and addresses challenges associated with weak
feature representation, thereby improving overall detection accuracy.

2)Evaluation of the Contribution of the Uncertainty Guiding Encoder: The impact of incorporating
the Uncertainty Guiding Encoder (UGE) is analyzed by comparing IoU and nIoU values across two
configurations, as summarized in Table 5. The results reveal that the inclusion of the UGE module (U-
Net + UGE) consistently enhances model performance on all three datasets. This analysis underscores the
effectiveness of the proposed uncertainty guiding encoder. It highlights the critical role of this module in
improving feature extraction and enabling efficient fusion of uncertainty maps, thereby demonstrating its
importance in the uncertainty bootstrap framework.
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Table 4: Effects of uncertainty guided training on U-Net using different numbers of segmentation. The best results are
shown in bold

No. Baseline N segmentations AUTD IDADD MSDD

IoU nIoU IoU nIoU IoU nIoU
1 U-Net 0 59.55 61.23 42.14 45.60 40.15 39.65
2 U-Net 30 59.66 61.45 43.56 45.62 40.58 41.05
3 U-Net 40 60.12 62.98 45.87 46.87 41.02 41.28
4 U-Net 50 63.89 65.27 47.74 48.11 41.26 41.42
5 U-Net 60 63.07 64.86 46.82 47.86 41.25 41.38

Table 5: Effects of incorporating the uncertainty guiding encoder on uncertainty map processing in U-Net. The best
results are shown in bold

No. Baseline UGE AUTD IDADD MSDD

IoU nIoU IoU nIoU IoU nIoU
1 U-Net ✓ 63.89 65.27 47.74 48.11 41.26 41.42
2 U-Net 60.03 61.09 42.20 45.67 40.28 39.87

4.7 Generalization Analysis
This section highlights the evaluation of the generalization capability of the proposed method, lever-

aging the Anti-UAV Test-dev Dataset as the benchmark. To comprehensively assess performance, two
prominent models, U2-Net [39] and Swin-Unet [40], were employed, trained using the proposed uncertainty
quantification based approach. A subset of 2000 images was selected for test, allowing for a detailed
comparison of the generalization abilities of models under varying training data conditions. As shown
in Table 6, the experimental results demonstrate a clear performance improvement for models trained
on 8000 samples compared to those trained on only 4000 samples. This observation underscores the
effectiveness of incorporating uncertainty-guided training, as the additional data enables the models to better
capture intricate patterns in the dataset and adapt to diverse scenarios.

Table 6: Quantitative comparison of model performance with varying training data volumes. Bold values indicate the
best results. UQ represents uncertainty-guided training

Model Train/Num Test/Num IoU nIoU
U2-Net AUTD/4000 AUTD/2000 47.23 48.56

U2-Net + UQ AUTD/4000 AUTD/2000 51.56 49.47
U2-Net AUTD/8000 AUTD/2000 52.67 54.12

U2-Net + UQ AUTD/8000 AUTD/2000 63.56 67.28
Swin-Unet AUTD/4000 AUTD/2000 49.24 48.57

Swin-Unet + UQ AUTD/4000 AUTD/2000 52.78 53.64
Swin-Unet AUTD/8000 AUTD/2000 55.89 56.47

Swin-Unet + UQ AUTD/8000 AUTD/2000 68.21 66.89
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The results also highlight the robustness of the proposed approach in handling the challenges associated
with small target sizes, noise, and complex backgrounds, which are common in infrared UAV detection.
By leveraging the uncertainty bootstrapping method, the models exhibit enhanced learning of nuanced
features, resulting in significantly improved detection accuracy. Metrics IoU and nIoU demonstrate notable
gains, further validating the ability of method to generalize across varying data distributions. Moreover, the
experiments reveal the scalability of the uncertainty-guided framework, as the performance gap between
models trained on 4000 and 8000 samples indicates that the method effectively utilizes additional data to
refine predictions and reduce errors.

5 Conclusion
In this study, we propose an innovative method for infrared UAV target detection designed to address

the limitations of traditional detection techniques in long-range and noise-prone environments. Specifically,
the challenge of identifying small UAV targets, which are often obscured by complex backgrounds and
difficult to distinguish using standard imaging systems, is redefined as a semantic segmentation prob-
lem. To enhance detection performance, our approach integrates uncertainty quantification, enabling the
effective differentiation of target features while accounting for uncertainties present in both the target and
background. The proposed method employs a three-stage UAV segmentation framework. First, Bayesian
convolutional neural networks are utilized to perform initial image segmentation and generate uncertainty
estimates. These outputs are subsequently refined through uncertainty quantification techniques, resulting
in more accurate segmentation maps that enhance target saliency. Experimental results demonstrate the
superiority of this approach, with significant improvements observed in key metrics such as Intersection
over Union (IoU) and normalized IoU (nIoU), especially in challenging infrared UAV detection scenarios.
This research highlights the potential of uncertainty-guided frameworks to overcome the inherent difficulties
in detecting small, complex targets in infrared imagery. Future work could explore the integration of
more advanced network architectures with uncertainty modeling to further improve detection accuracy
under increasingly demanding conditions. Additionally, the real-time application of this framework and
its adaptation to other detection tasks offer promising avenues for advancing UAV detection systems in
dynamic, real-world environments.
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