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ABSTRACT: Security attributes are the premise and foundation for implementing Attribute-Based Access Control
(ABAC) mechanisms. However, when dealing with massive volumes of unstructured text big data resources, the
current attribute management methods based on manual extraction face several issues, such as high costs for
attribute extraction, long processing times, unstable accuracy, and poor scalability. To address these problems, this
paper proposes an attribute mining technology for access control institutions based on hybrid capsule networks.
This technology leverages transfer learning ideas, utilizing Bidirectional Encoder Representations from Transformers
(BERT) pre-trained language models to achieve vectorization of unstructured text data resources. Furthermore, we have
designed a novel end-to-end parallel hybrid network structure, where the parallel networks handle global and local
information features of the text that they excel at, respectively. By employing techniques such as attention mechanisms,
capsule networks, and dynamic routing, effective mining of security attributes for access control resources has been
achieved. Finally, we evaluated the performance level of the proposed attribute mining method for access control
institutions through experiments on the medical referral text resource dataset. The experimental results show that,
compared with baseline algorithms, our method adopts a parallel network structure that can better balance global
and local feature information, resulting in improved overall performance. Specifically, it achieves a comprehensive
performance enhancement of 2.06% to 8.18% in the F1 score metric. Therefore, this technology can effectively provide
attribute support for access control of unstructured text big data resources.

KEYWORDS: Access control; ABAC model; attribute mining; capsule network; deep learning

1 Introduction
In recent years, the rapidly evolving big data technology has increasingly attracted widespread attention

from all sectors of society. While big data provides significant convenience for production and daily life, it also
brings substantial data security risks. Effectively ensuring the security and controllability of big data resources
has become a prerequisite for big data sharing and its applications [1]. As one of the core technologies for
data security management, access control technology [2,3] can prevent data resources from being accessed
and used without authorization by managing user permissions, thereby achieving secure protection of big
data resources. Among these, the Attribute-Based Access Control (ABAC) mechanism [4], which uses
attributes as fundamental elements of access control, can flexibly determine whether to grant users related
access permissions based on the set of attributes possessed by entities. Compared with traditional access
control mechanisms such as Discretionary Access Control (DAC), Mandatory Access Control (MAC),
and Role-Based Access Control (RBAC) [5], ABAC offers advantages such as strong semantic expression
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capability, high policy flexibility, and efficient permission decision-making, making it suitable for addressing
fine-grained access control and large-scale dynamic authorization issues in big data environments.

Access control attributes are the foundation of the ABAC [6] (Attribute-Based Access Control) mech-
anism, including subject attributes, resource attributes, action attributes, and environmental attributes.
Existing attribute management methods based on expert knowledge can effectively manage subject
attributes, action attributes, and environmental attributes, which have relatively limited scales. However, for
unstructured big data resources [7,8] characterized by large data volumes, rapid dynamic generation, and
diverse data types, it is challenging for security experts to achieve the labeling and management of massive
resource attributes. There is an urgent need to realize automated mining of access control attributes to provide
effective attribute support for implementing attribute-based access control over vast resources [9].

Institutional attributes are a type of resource attribute information used to describe the management
and application institutions to which unstructured text resources belong. During the implementation phase
of access control, institutional attributes can impose spatial constraints on the access control behavior of data
resources, making them an important category of access control resource attributes. In access control policies,
institutional attributes can be utilized to authorize and control user access behaviors. For example, entities
that initiate access requests can access data resources belonging to corresponding institutions. Therefore,
tagging object resources with institutional attributes holds significant value for access control. Given that
text data represents a typical form of unstructured data resources, this paper focuses on the problem of
mining institutional attributes from unstructured text data resources. It transforms the issue of mining
institutional attributes into a multi-institutional attribute tagging problem, aiming to accurately describe
the institutions to which unstructured text resources belong and incorporate the institutional attribute
information of resources into the process of implementing access control. This approach aims to provide
institutional attribute support for efficient and fine-grained access control.

The main contributions of this paper include: transforming the problem of mining institutional
attributes from unstructured text data resources into a natural language processing problem; proposing
an institutional attribute mining method for access control based on hybrid capsule networks, named
ATT_BiLSTM_Capsule_Net; designing a novel end-to-end parallel neural network structure capable of
integrating both global and local feature information of text resources; leveraging transfer learning concepts
to utilize BERT pre-trained language models for the vectorization of unstructured text data resources; and
employing techniques such as attention mechanisms, capsule networks, and dynamic routing to achieve
effective mining of institutional attributes for access control. Experimental results show that, in terms
of institutional attribute mining, compared with existing benchmark methods, our approach achieves
a comprehensive performance improvement ranging from 2.06% to 8.18% in the F1 score metric. This
indicates that the proposed method can provide effective auxiliary intelligent decision support for attribute
management in big data access control.

2 Related Work
The quality of security attribute settings directly impacts the effectiveness of access control. Currently, in

the field of access control, attribute management primarily relies on expert knowledge, and direct research on
security attribute mining specifically for access control is still relatively scarce [10,11]. This study focuses on
the issue of attribute mining for unstructured text data resources, where text keywords, topics, and categories
are all crucial information for describing and characterizing these resources. Techniques from the field of
natural language processing, such as keyword extraction and multi-label tagging, offer valuable insights and
are relevant to this research. The comparison of related methods is shown in Table 1.
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Table 1: Comparison of different methods

Methods Advantage Disadvantage
Statistical methods Simple and easy to implement, high

computational efficiency.
The relationship between words and
context information are ignored, and
the semantic understanding ability is

limited.
Graph-based

methods
The correlation between words can be

captured, which can effectively
simulate human reading habits.

The calculation complexity is high,
and the construction and weight
setting of the graph will affect the

quality of the result.
Topic modeling

methods
The potential distribution of topics can
be found in the document, providing a

deeper understanding.

It takes a lot of time and computing
resources. The results of the model are

poorly interpreted and difficult for
users to understand.

Classifier-based
methods

Use feature engineering to incorporate
more contextual information and have

greater accuracy.

It is difficult to focus on global and
local context information at the same
time, and the cost of migrating to new

domains is high.
Sequence

labeling-based
methods

For short texts and text in specific
formats, it can handle the sequential

nature of natural language well.

For longer text, performance may be
affected due to context window

restrictions.

(1) Keyword Extraction Technology Based on Natural Language Processing
Current research can be categorized into unsupervised and supervised keyword extraction techniques

based on the different methods employed. The mainstream unsupervised keyword extraction methods can
be summarized into three categories along with their respective improvements: statistical methods, graph-
based methods, and topic modeling methods. Statistical Methods [12] assess the importance of candidate
words by utilizing statistical indicators derived from text resources to extract keywords from the text. Graph-
Based Methods [13,14] transform text resources into directed or undirected language structure graphs.
By analyzing the structure of the graph, key nodes that play a crucial role are identified and treated as
keywords of the text. Topic Modeling Methods [15,16] construct probabilistic language models representing
the relationship between texts and topics, as well as between topics and keywords, using probabilistic
methods to infer keywords. Unsupervised methods do not require the construction of annotated text
training datasets or the training of extraction models. They can obtain keywords within texts by ranking
candidate words, featuring strong generalization capabilities and versatility. However, these methods suffer
from issues such as poor extraction performance and instability. On the other hand, supervised methods
primarily transform the keyword extraction problem into binary classification problems or text annotation
problems in machine learning. These methods require model training based on corpora annotated by
humans, utilizing trained machine learning models to extract keywords from new text resources. Commonly
used supervised extraction techniques leverage Support Vector Machine (SVM) algorithms [17], Neural
Network algorithms [18], and others to achieve keyword extraction. Supervised methods mainly follow
two development directions: one direction is to convert keyword extraction into a binary classification
problem determining whether candidate words are keywords; the other direction involves constructing text
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annotation models, using natural language processing techniques such as sequence labeling [19,20] to achieve
keyword extraction.

(2) Multi-Label Tagging Technology Based on Natural Language Processing
With the development and popularization of deep learning, deep learning technologies have been

widely applied to research in the field of multi-label tagging. Kim et al. [21] initially applied Convolutional
Neural Networks (CNN) models to text classification, directly using convolutional networks for sentence-
level text, but using convolutional networks alone for text classification lacks analysis of the temporal
characteristics of text. Peng et al. [22] introduced hierarchical classification awareness mechanisms into the
network to explore the cross-layer semantic associations in text. Due to the temporal nature of text resources,
using Recurrent Neural Network (RNN) networks for text classification is more straightforward and simpler;
however, in practical research, the performance of single RNN networks was found not to be as successful
as expected [23]. With the development of technologies such as capsule networks, sequence autoencoder
initialization, and embedding perturbation information in neural networks [24,25], network models have
been able to achieve better classification and tagging performance. Additionally, self-attention networks [26]
without any convolutional or recurrent models have also been successfully applied to multi-label tagging.
Since the convolution operators of CNNs are represented by weighted sums at the lower level, it becomes
difficult to express the features of complex objects as they move to higher layers. The drawback of this
approach is that it does not consider the hierarchical relationships between local features. CNN networks can
overcome these drawbacks by utilizing pooling, which reduces the computational complexity of convolution
operations and captures the invariance of local features. However, pooling operations can also lose feature
information about spatial relationships and may misclassify objects based on their orientation or scale.
Subsequently, capsule networks [27,28] were proposed to address the inherent issues of CNN networks by
learning to recognize the presence of visual entities and encoding their attributes as vectors of local invariants.
Using capsule networks can effectively extract local features rich in linguistic information. However, due
to the strong correlation of contextual information in text resources, using a single capsule network lacks
observation and extraction of global features, limiting further performance improvements.

From the above analysis, it can be seen that the research on mining security attributes of unstructured
text data is still in the exploratory stage, but advancements can be promoted by drawing on natural language
processing technologies. In existing similar studies, unsupervised methods only consider structural features,
leading to poor overall extraction performance. Supervised methods, on the other hand, require large
amounts of manually annotated corpora for training, which presents shortcomings such as poor robustness
and weak scalability. Moreover, the current techniques extract semantic information that is not directly
related to access control. Further research is needed to explore how to combine the specific needs of access
control for unstructured text data, targeting the mining and optimization of security attributes.

3 Institution Attribute Mining Model

3.1 Task Description
The Attribute-Based Access Control (ABAC) model is an access control method based on attributes,

controlling users’ access to resources through the management of these attributes. As shown in Fig. 1,
the entire lifecycle of attribute management in the ABAC model consists of six stages: attribute defini-
tion, attribute assignment, attribute evaluation, attribute authorization, attribute revocation, and attribute
auditing. Together, these stages ensure that users’ access to resources is effectively controlled and managed.
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Figure 1: Full lifecycle management of access control attributes

Attribute Definition: This stage is primarily responsible for defining and describing access control
attributes. Attributes are used to represent the characteristics of entities such as users, resources, and
environments, including user identity, resource type, affiliated institution, and access time, among others.
Attribute definition includes specifying the name, type, and value range of the attribute.

Attribute Assignment: This stage is responsible for assigning attribute values to entities such as users,
resources, and environments. Attribute assignment can be performed automatically based on predefined
rules, user requests, or external data sources.

Attribute Evaluation: This stage evaluates whether the assigned attribute values for users, resources,
etc., are appropriate according to access control security requirements.

Attribute Authorization: Based on the results of attribute evaluation, this stage assigns the correspond-
ing attributes to users and grants access permissions. Attribute authorization can be carried out automatically
based on predefined policies, user requests, or external data sources.

Attribute Revocation: This stage is responsible for revoking access permissions that users have already
obtained. Attribute revocation can be performed automatically based on user requests, administrator actions,
or external data sources. For example, when a user leaves the organization or changes positions, their original
attributes can be revoked.

Attribute Auditing: This stage records and tracks users’ access activities to resources. Attribute auditing
helps organizations understand the actual usage of resources by users, facilitating security analysis and
incident investigations.

The focus of this paper on the mining of institutional attributes primarily centers on stages 1©, 2©,
and 3© depicted in Fig. 1: defining institutional attributes, assigning institutional attributes to resources,
and evaluating the effectiveness of attribute assignments. The problem of mining institutional attributes is
defined as follows: Let R = {r1, r2, . . ., rn} be a set of n unstructured text resources that require access control
protection. Each resource ri ∈ R should have a unique corresponding institutional attribute AI . The goal of
institutional attribute mining is:

(1) To define a set of candidate institutional attributes ICi = {ici,1, ici,2, . . ., ici,k} for all resources.
(2) To find a transformation function T, which maps the unstructured text resource R to the corresponding

institutional attribute AI in the candidate institutional attribute set ICi.
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3.2 Network Model Architecture
This paper adopts the ATT_BiLSTM_Capsule_Net combined network model to address the issue of

mining institutional attributes of unstructured text resources. As shown in Fig. 2, the model comprises three
layers: the input layer, the joint processing layer, and the fusion output layer. The input layer leverages the
concept of transfer learning, converting input text resources into word vectors as feature outputs through the
Bidirectional Encoder Representations from Transformers (BERT) pre-trained language model. The output
features are then fed into the ATT_BiLSTM layer and the Capsule_Net layer for parallel computation and
analysis. In the ATT_BiLSTM layer, features first pass through a SpatialDropout1D layer to prevent overfitting
of the network model. Subsequently, an Attention mechanism layer is established, followed by a Bidirectional
Long Short-Term Memory (BiLSTM) layer to acquire and mine the global semantic relationships and
feature information within the text resources, producing the corresponding feature processing result FPR1.
Meanwhile, in the Capsule_Net layer, parallel feature calculation is performed, starting with a Conv1D layer
to obtain the contextual relationships of text resources within the receptive field, followed by a GatedConv
unit to activate local effective features. The Capsule layer then computes the local feature information of
text resources using dynamic routing mechanisms, generating the feature processing result FPR2. Finally,
the fusion output layer concatenates the output results FPR1 and FPR2 from the ATT_BiLSTM layer and the
Capsule_Net layer, achieving a mixed feature fusion of global and local information of the text resources to
be mined. The fused features are input into a fully connected network (Dense), and the Softmax function
is used to obtain the institutional attribute information corresponding to the resource, thus realizing the
mining of institutional attributes of unstructured text resources in the context of access control applications.
Below, we will separately introduce each sub-network and the overall process of combining sub-networks
for parallel analysis and learning.

Figure 2: ATT_BiLSTM_Capsule_Net model

3.3 Input Layer
In the input layer, we use the BERT (Bidirectional Encoder Representations from Transformers) pre-

trained language model [29], developed by Google, to perform vectorization of the input unstructured
text resources, serving as the input for subsequent models. The BERT model shifts the extensive word
vectorization operations traditionally performed in downstream specific Natural Language Processing (NLP)
tasks to the pre-trained language model. Based on the concept of transfer learning, the pre-trained language
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model, trained on massive text resources across various domains, is applied to solve the problem of mining
institutional attributes of unstructured text resources for access control. This approach effectively avoids the
issue of insufficient specific training data in particular NLP tasks, enhancing the generalization capability
of word vector models. It adequately describes the representation features at the character, word, and
sentence levels.

As shown in Fig. 3, the structural characteristics of different language models highlight that the BERT
model trains word vectors using bidirectional transformer technology. Compared with other language model
structures, the BERT model integrates the advantages of models such as OpenAI GPT and ELMo [30],
capable of establishing contextual dependencies from both sides simultaneously. It also features deeper
training layers and better training parallelism, demonstrating excellent performance in various NLP tasks.

Figure 3: Structure of different language models

The process of vectorizing unstructured text resources using the BERT model is illustrated in Fig. 4.
Token Embeddings are used to represent word vectors, which can be either word vectors or character
vectors when processing Chinese text resources. To achieve fine-grained text representation, this paper
uses character vectors to describe the resources. The classification (CLS) marker is the first character of
the text resource, used to denote the beginning of the text resource. The separator (SEP) marker is used
to indicate the end and segmentation of sentences within the text resource. Segment Embeddings are used
to distinguish information from different sentences. Position Embeddings are used to learn and obtain
positional information of characters and words within the text. For a given text resource, after summing these
three parts of embeddings, the final text-level vector representation of the input text resource is obtained.



1502 Comput Mater Contin. 2025;83(1)

[CLS] my dog is cute [SEP] he likes play ##ing [SEP]

EA EA EA EA EA EA EB EB EB EB EB

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

E[CLS] Emy Edog Eis Ecute E[SEP] Ehe Elikes Eplay E##ing E[SEP]

Input

Token
Embeddings

Segment
Embeddings

Position
Embeddings

Figure 4: Input and output of BERT model

3.4 Joint Processing Layer
(1) ATT_BiLSTM Layer
Receiving the word vector features of text resources output from the input layer, this layer outputs

the feature processing result FPR1. First, the attention weights between different word vector features are
calculated, using the following method:

ei = tanh (wi ⋅ hi + bi) (1)

αi =
exp (ei)

n
∑
i=1

exp (ei)
(2)

here, hi is the i-th hidden state input to the attention mechanism, wi is the weight coefficient, and bi is the bias.
ai is the attention weight corresponding to hi. According to the attention weight vector α ∈ RL , a weighted
calculation of h is performed to obtain the output s after the attention mechanism, calculated as follows:

s =
t
∑
i=1

αi hi (3)

Considering the contextual relevance of words in text resources, a word may be associated with both
its preceding and succeeding words. Therefore, the BiLSTM network is introduced, linking two Long Short-
Term Memory (LSTM) with opposite temporal directions into the same network output, allowing the model
to capture both historical and future information. Each LSTM structural unit in a BiLSTM includes four
components: the input gate i, forget gate f, output gate o, and cell state c, with the calculation methods as
follows:

i(t) = σ (Wi x(t) + ui h(t−1) + bi)
f(t) = σ (Wf x(t) + u f h(t−1) + b f )
o(t) = σ (Wox(t) + uo h(t−1) + bo)
g(t) = tanh (Wg x(t) + ug h(t−1) + bg)
c(t) = f(t) ⊗ c(t−1) + i(t) ⊗ g(t)

h(t) = ot ⊗ tanh (ct)

(4)
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here, i(t), f (t), o(t) and c(t) represent the values of the input gate, forget gate, output gate, and cell state at time
t, respectively. x(t) represents the input word vector at time t, and h(t) represents the hidden layer vector at
time t. σ denotes the sigmoid activation function, while W and b are the weight matrix and bias vector,
respectively. hforward and hbackward are the hidden layer vectors output by the structural units of the forward
LSTM and backward LSTM in the BiLSTM, respectively.

Concatenating hforward and hbackward yields the output of the BiLSTM at time t, calculated as follows:

Ct = concat (h f orw ard , hbackw ard) (5)

here, hforward and hbackward correspond to the contextual information in two directions of the unstructured
text resource, respectively.

(2) Capsule_Net Layer
Receiving the word vector features of text resources output from the input layer, this layer outputs the

feature processing result FPR2. First, one-dimensional standard convolution calculations are performed on
the word vector features of text resources. This layer extracts N-gram features at different positions in the
sentence through various convolutional filters. The calculation method is as follows:

a(l)
j = f (u(l)

j ) = f
⎛
⎝∑i∈N j

a(l−1)
j ∗ K(l)

i , j + b(l)
j
⎞
⎠

(6)

here, Nj is the set of input mappings, K(l)
i , j is the convolution kernel used to connect the i-th input feature map

and the j-th output feature map, b(l)
j is the bias term of the j-th feature map, and f is the activation function.

Gated Linear Units (GLUs) can effectively reduce the occurrence of gradient vanishing phenomena
while preserving the non-linear computational capabilities of the computational units. GLUs introduce a
gating mechanism in convolutional calculations to control which features can be activated. Compared to
pooling operations, GLUs do not lose spatial information. The calculation method is as follows:

g (X) = (X ∗W + b) ⊗ σ (X ∗ V + c) (7)

The Capsule Network differs from Convolutional Neural Networks (CNNs) in its output form. While the
output of a CNN is a scalar, the output of a Capsule Network is a vector. Capsule Networks can better handle
the ambiguity of different types of data, enabling simultaneous recognition of various text structural patterns,
such as the positional information of words and their syntactic structures. Therefore, we introduce Capsule
Networks to handle the task of mining institutional attributes, extracting local features rich in contextual
linguistic information.

As shown in Fig. 5, in Capsule Networks, the squashing compression function is used as the network’s
activation function to compress vectors. This maintains the direction of the vector input while scaling the
length of the input vector to between (0, 1). The non-linear squashing function can be viewed as a method
for compressing and redistributing the input vector, with the calculation method as follows:

v j = squash (s j) =
s j

∥s j∥
⋅
∥s j∥

2

1 + ∥s j∥
2 (8)

here, vj is the output vector of the j-th capsule, and sj is the total input vector.
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Figure 5: Dynamic routing mechanism

The Capsule Network calculates the coupling coefficients between capsules in different layers through
the Dynamic Routing mechanism, which is akin to performing clustering calculations on input feature
vectors, thereby undergoing a process of feature selection. According to the dynamic routing mechanism,
when clustering features, the more similar features there are for a certain feature, the stronger that feature
category is considered to be. This effectively diminishes outlier features and selects features with strong
expression capabilities. The detailed calculation method is as follows:

ci j =
exp (bi j)
∑k exp (bi k)

(9)

here, cij is the coupling coefficient between capsules in different layers, representing the corresponding
weight between lower-level capsules and higher-level capsules. bij is the connection weight between capsule
i and capsule j, determined by the similarity between the capsules, used to predict the output vector of the
upper capsule.

The total input vector sj for all capsules is the weighted sum of all prediction vectors from the lower
capsule layer, calculated as follows:

û j∣i =Wi jui

s j = ∑
i

ci jû j∣i
(10)

here, û j∣i is the prediction vector from the lower capsule, Wi j is the weight matrix, and ui is the output vector
of the upper capsule.

The bi j, as the connection weight between capsule i and capsule j, is used to update the coupling
coefficient cij. During the dynamic routing iterative calculation process, bi j will be continuously updated.
The calculation method is as follows:

v j = squash (s j)
bi j = bi j + û j∣i ⋅ v j

(11)

The number of capsules and the number of dynamic routing iterations are two crucial parameters in
capsule networks, and their selection has a critical impact on model performance. The number of capsules
directly determines the number of feature dimensions or abstract concepts that the model can learn. A greater
number of capsules means the model can capture more complex patterns and structures, which is highly
beneficial for handling text classification tasks with rich semantic information. However, as the number
of capsules increases, so does the computational complexity of the model. Each capsule contains a set of
neurons used to represent different aspects of specific attributes, meaning that more capsules lead to higher
computational costs. If there are too many capsules without sufficient training data to support such extensive
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feature learning, it may result in overfitting. In this case, the model might perform well on the training set
but exhibit poor generalization on unseen data. Typically, cross-validation and other experimental methods
are needed to find an optimal number of capsules that ensures good model performance without excessively
increasing computational burden. It is generally recommended to start with 5 to 25 capsules and experiment
to find the best configuration.

Dynamic routing is a key mechanism in capsule networks that determines the connection weights
between lower-level and higher-level capsules. More iterations of dynamic routing can make information
transmission more accurate because each iteration updates these weights, allowing the model to better
match the relationship between input data and target outputs. However, too many iterations can prolong the
training time and may not necessarily lead to significant performance improvements. In some cases, excessive
iterations can cause the model to get stuck in local optima, negatively impacting the final classification results.
An appropriate number of iterations helps enhance the stability of the model, avoiding misclassification due
to insufficient information transmission. Too few iterations may prevent the model from fully learning the
complex structure of the input data. It is usually advised to start with 4 to 8 iterations, which is often a
reasonable range. Based on this, the number of iterations can be adjusted according to the requirements of
the actual task and available computational resources. During the training process, it is important to closely
monitor the model’s performance, including metrics such as training error, validation error, and convergence
speed. If the model converges well and performs satisfactorily with fewer iterations, there is no need to
increase the number of iterations; conversely, if the model converges slowly or shows signs of underfitting,
it may be worth considering an increase in the number of iterations.

3.5 Output Layer
This layer fuses the feature processing results FPR1 and FPR2 obtained from the joint processing layer.

Specifically, the operation involves concatenating FPR2 to FPR1 to obtain the fused feature FF. The calculation
method is as follows:

FF = FPR1⊕ FPR2 (12)

here, ⊕ denotes the concatenation operation.
Subsequently, the fused feature FF is input into a fully connected layer (Dense) to obtain the output

f, and then the Softmax function is applied to get the result S(f ), which calculates the probability that the
institutional attribute of the input text data resource is k. The Softmax calculation method is as follows:

Sk ( f ) = exp ( f )
∑K exp ( f ) (13)

here, K represents the total number of categories, and Sk ( f ) is the probability that the institutional attribute
is k.

4 Experiment and Analysis

4.1 Data Sets and Experimental Environments
To verify the effectiveness of the institutional attribute mining method proposed in this paper, we

conducted simulation experiments based on a medical triage department text resource dataset [31], aiming
to mine the institutional attribute information corresponding to unstructured text resources. This dataset
covers institutional attribute information from 15 hospital departments, comprising a total of 10,072 unstruc-
tured text resources. Detailed descriptions of the dataset are provided in Table 2. By randomly splitting the
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dataset, we obtained a training dataset consisting of 8057 (80%) data entries and a testing dataset consisting of
2015 (20%) data entries. This dataset is representative for validating our method. This is because the selected
dataset encompasses a wide variety of medical text data resources, which are representative in terms of
linguistic style, terminology usage, and content complexity. Additionally, the scale of the dataset is sufficient
to evaluate experimental performance, allowing it to capture both common patterns and anomalies within
the medical field. The distribution of samples across different categories in the dataset is well-balanced,
avoiding the issue of class imbalance and ensuring the quality and reliability of the data. For various real-
world unstructured text resources outside the medical domain, the model’s processing approach is exactly
the same. During the experiment, the word vector dimension used in the input layer was 3072, employing
the BERT pre-trained language model. The categorical cross-entropy was used as the loss function, and the
Adam optimizer was utilized as the model training optimizer, with the optimizer’s learning rate set to 1 ×
10−3 to minimize the total Loss value during training. The experimental software and hardware environment
is as follows: the operating system is Win10 64-bit, CPU is Intel(R) Core(TM) i7-4710MQ @ 2.5 GHz, GPU
is GeForce GTX 850M, memory size is 16 GB, Python version is 3.6, Tensorflow version is 1.14.0, and Keras
version is 2.1.3. We designed two experiments to evaluate and compare the performance of institutional
attribute mining: one compares the performance of different hyperparameters, and the other compares the
performance with benchmark methods.

Table 2: Data set description

Institutional
attribute

Number of
resources

Institutional
attribute

Number of
resources

Institutional
attribute

Number of
resources

Pediatrics
department

1231 Gastrology
department

882 Neurology
department

863

Dermatology
department

750 Orthopedics
department

736 Obstetrics and
gynecology
department

730

Cardiovascular
medicine

department

653 Breast Surgery
department

631 Ophthalmology
department

625

Stomatology
department

607 Endocrinology
department

539 Hepatological
surgery

department

491

Urinary surgery
department

477 Rheumatology
and

immunology
department

436 Hematology
department

421

4.2 Performance Comparison of Models with Different Hyperparameters
The purpose of the performance comparison experiment of models with different hyperparameters is to

verify the effectiveness of the proposed method for mining institutional attributes, specifically whether it can
correctly identify the institutional attribute information corresponding to unstructured text resources, and
to examine the impact of different hyperparameters on the model’s learning performance. The experimental
results are shown in Fig. 6a–f. The experiments separately validated and compared the effects of batch size
(the amount of data input per training session), the number of units in the BiLSTM structure, the number
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of routings in the Capsule Network structure, the number of capsules in the Capsule Network structure,
the kernel size in the Convolutional structure, and the number of filters in the Convolutional structure
on model performance. We evaluated the experimental performance from four dimensions: Accuracy,
Precision, Recall, and F1-Measure.

Figure 6: Performance comparison of different hyperparameters. (a) Different batch_sizes; (b) Different neuron units
in BiLSTM structure; (c) Different routes in capsule network; (d) Different capsules in capsule network; (e) Different
convolution kernel sizes; (f) Different number of filters
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Fig. 6a shows the experimental results of the effect of batch size on model performance. From the
experimental results, it can be seen that as the batch size increases, the trend of changes in the model’s
performance metrics steadily increases. This is because, with an increase in the batch size, the model can
train more effectively based on a larger amount of data. However, when the batch size grows to a certain
scale, it can lead to the training process reaching overfitting too quickly, thus affecting further improvements
in training performance. Through experimentation, it was found that a batch size of 100 yields relatively
optimal overall model performance. Fig. 6b presents the experimental results of the impact of the number
of units in the BiLSTM structure on model performance. The results show that when the number of units
is 120, the model exhibits relatively optimal overall performance, capable of sufficiently mining semantic
information from the context of the text. Thus, setting excessively high numbers of units is unnecessary,
as it can reduce the efficiency of model training. Additionally, during the experiment, it was observed that
the number of units in the BiLSTM affects the speed of convergence during training; as the number of
units increases, the training converges more slowly. Therefore, selecting excessively high numbers of units
is not necessary. Fig. 6c illustrates the experimental results of the impact of the number of routings in the
Capsule Network structure on model performance. The results indicate that when the number of routings
is 8, the model demonstrates relatively optimal overall performance. Under these conditions, the dynamic
routing mechanism can achieve better feature selection among different features, balancing the influence
of various features on the model and selecting superior features for mining institutional attributes. Fig. 6d
shows the experimental results of the impact of the number of capsules in the Capsule Network structure
on model performance. When the number of capsules is 20, the model performs best. Fig. 6e presents the
experimental results of the impact of the kernel size in the convolutional structure before the GatedConv unit
on model performance. The effect of kernel size on model performance is related to the representation form
of word vectors in text resources. Too short a kernel size will fail to effectively mine the spatial relationships
between word vectors with sequential associations, whereas too long a kernel size can lead to the loss of
spatial relationships between sequence word vectors, causing the attention to be dispersed and affecting
experimental performance. Experimental findings suggest that a kernel size of 5 can better balance the
association between words, leading to the best model performance. Fig. 6f illustrates the experimental results
of the impact of the number of filters in the convolutional structure on model performance. When the
number of filters is 64, the model performs best. An insufficient number of filters can lead to underfitting of
the institutional attribute mining model, while an excessive number of filters can cause overfitting, impacting
further enhancements in system performance.

In order to verify the independent contribution of each module in the hybrid capsule network model
constructed in this paper to the final effect, we conducted a combined ablation experiment of the BiLSTM
module, the Attention module and the Capsule module in the hybrid model. The independent contribution
of each module to the attribute mining performance of the final mechanism was verified through ablation
experiments to quantify the degree of improvement of the hybrid model on the final performance. The
results of the ablation experiment are shown in Table 3. The introduction of the attention mechanism
based on the BiLSTM module can enhance the attention to important features, thus improving the model
performance. The single capsule network and BiLSTM+Attention network have similar institution attribute
mining performance. Through the parallel architecture of the hybrid model, the physical vision of the data
feature information concerned by the two network structures is different. Different modules can focus on
the feature processing of the parts they are good at processing, and fuse the higher-order features obtained
further, so that the fused features can pay attention to the local features and global features of the text data
at the same time, and carry out a more comprehensive description of the features of the text data, so as to
further improve the mining performance of the institution attribute.
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Table 3: Results of ablation experiments

ID Choice Performance index

BiLSTM module Attention module Capsule module Accurary Precision Recall F1-Measure
1 ✓ 0.7571 0.7611 0.7561 0.7571
2 ✓ ✓ 0.7886 0.7815 0.7876 0.7826
3 ✓ 0.7864 0.7839 0.7864 0.7851
4 ✓ ✓ 0.8212 0.8204 0.8199 0.8201
5 ✓ ✓ ✓ 0.8432 0.8451 0.8365 0.8389

4.3 Performance Comparison with Baseline Methods
To compare the performance differences of various neural network models in the task of mining

institutional attributes, we selected seven commonly used neural network models as baseline comparison
models. The description information of the baseline comparison models is shown in Table 4.

Table 4: Baseline comparison model

Number Model name Model structure Hyperparameter setting
1 CNN model First add CNN network structure,

and then add a full connection
layer.

filters = 128,
kernel_size = 5,

dense_units = 64
2 CNN_LSTM

model
First add CNN network, then add

LSTM network.
filters = 32,

kernel_size = 3,
lstm_units = 100

3 BiLSTM model Bidirectional LSTM network
architecture.

lstm_units = 128
return_sequences =

False
4 ATT+BiLSTM

model
First add attention structure, then

add bidirectional BiLSTM network.
lstm_units = 128

return_sequences =
False

5 CNN_GRU
model

First add CNN network, then add
GRU network.

filters = 32,
kernel_size = 3,
gru_units = 100

6 BiGRU model Bidirectional GRU network
struc-ture.

gru_units = 100
return_sequences =

False
7 ATT+BiGRU

model
First Add attention structure, then

add two-way GRU network.
gru_units = 100

return_sequences =
False

From the experimental results shown in Fig. 7a–d, it can be seen that compared to the performance of
other baseline methods, the method proposed in this paper performs optimally in all four evaluation metrics.
For the problem of institutional attribute mining, a single network architecture may experience performance
degradation as the length of text resources increases due to issues such as vanishing gradients. In contrast, a
hybrid capsule network that combines attention mechanisms, BiLSTM, and capsule networks leverages the
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strengths of each component to form a powerful and flexible framework for institutional attribute mining.
This framework not only effectively captures the sequential information and structural features of text but
also possesses excellent adaptability and reasoning capabilities, making it suitable for a wide range of complex
text attribute mining tasks. Firstly, the hybrid capsule network integrates local and global feature information.
It has been specifically optimized for the domain of institutional attribute mining, enhancing representation
learning and semantic understanding while reducing boundary errors in attribute extraction. The BiLSTM
excels at capturing local context information within the text, whereas the capsule network can grasp the
overall structure of the text and the relationships between its components. By combining these two, the
model can generate richer and more comprehensive text representations, thereby improving the accuracy
of attribute mining. The attention mechanism allows the model to further highlight key content based on
the sequential information provided by the BiLSTM. The structured representation of the hybrid capsule
network aids in understanding deeper semantics of the text, such as themes, arguments, and argument
structures. Secondly, the hybrid capsule network exhibits dynamic adaptability. The combination of the
attention mechanism and the dynamic routing of the capsule network enables the model to flexibly adjust
its internal states according to the specific requirements of different tasks. For instance, when dealing
with various types of text resources, the model can automatically focus on the most appropriate features,
enhancing its flexibility and generalization ability. Lastly, the parallel network structure of the hybrid capsule
network strengthens its reasoning capability. The layered structure of the capsule network allows the model
to construct higher-level abstract concepts, which assist in performing complex reasoning. Combined with
the attention mechanism, the model can make more intelligent decisions about which parts should be
emphasized and which can be disregarded, thus improving the quality of decision-making. For text resources
with multiple layers of meaning or complex logical structures, the combined model can achieve more precise
attribute mining by capturing features at multiple levels. Therefore, this approach can achieve better overall
results in institutional attribute mining. There is a comprehensive performance improvement ranging from
2.06% to 8.18% in the F1-Measure metric compared to other methods, making it better suited to meet the
application needs of institutional attribute mining for access control.

Figure 7: (Continued)
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Figure 7: Performance comparisons with different benchmark methods. (a) Accuracy comparison of different models;
(b) Precision comparison of different models; (c) Recall comparison of different models; (d) F1-Measurecomparison of
different models

We compared the efficiency of attribute mining achieved by different benchmark methods. According
to the experimental results presented in Table 5, our proposed method takes the longest time for attribute
mining of a single text resource compared to other mining methods. This is primarily due to the more
complex network architecture and the larger number of model parameters. However, under the experimental
conditions, the average time to process a single text resource is approximately 31.2 ms, which is sufficient to
meet the real-time requirements for attribute mining.

Table 5: Baseline comparison model

Methods CNN CNN_LSTM BiLSTM ATT+BiLSTM CNN_GRU BiGRU ATT+BiGRU Our
Time (ms) 12.9 17.6 20.2 23.1 24.3 19.7 22.7 31.2

5 Conclusion
To address the challenge of automated institutional attribute mining in attribute-based access control

mechanisms, this paper proposes an access control institutional attribute mining technique based on a hybrid
capsule network. Adopting the concept of transfer learning, this technique integrates Long Short-Term
Memory (LSTM) networks, attention mechanisms, capsule networks, and dynamic routing mechanisms to
design and implement a novel end-to-end parallel hybrid network structure. This structure can incorporate
both global and local textual feature information simultaneously, providing a new solution pathway for gener-
ating institutional attributes for access control systems. Experimental results demonstrate that, compared to
baseline algorithms, our method achieves better performance on the test dataset, reducing mining errors and
enhancing the efficiency of security administrators’ attribute management. In future work, we will further
strive to improve the performance of institutional attribute mining and explore high-performance training
methods under conditions of small sample datasets.
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