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ABSTRACT: With the advancements in parameter-efficient transfer learning techniques, it has become feasible
to leverage large pre-trained language models for downstream tasks under low-cost and low-resource conditions.
However, applying this technique to multimodal knowledge transfer introduces a significant challenge: ensuring
alignment across modalities while minimizing the number of additional parameters required for downstream task
adaptation. This paper introduces UniTrans, a framework aimed at facilitating efficient knowledge transfer across
multiple modalities. UniTrans leverages Vector-based Cross-modal Random Matrix Adaptation to enable fine-tuning
with minimal parameter overhead. To further enhance modality alignment, we introduce two key components: the
Multimodal Consistency Alignment Module and the Query-Augmentation Side Network, specifically optimized for
scenarios with extremely limited trainable parameters. Extensive evaluations on various cross-modal downstream tasks
demonstrate that our approach surpasses state-of-the-art methods while using just 5% of their trainable parameters.
Additionally, it achieves superior performance compared to fully fine-tuned models on certain benchmarks.

KEYWORDS: Parameter-efficient transfer learning; multimodal alignment; image captioning; image-text retrieval;
visual question answering

1 Introduction
The current paradigm in artificial intelligence has shifted from developing domain-specific models to

pretraining large models on extensive datasets, followed by fine-tuning for downstream tasks [1]. This shift
has led to the development of several prominent large pre-trained models, such as LLaMA [2], SAM [3] and
BLIP [4]. However, as the number of parameters in foundational pre-trained models continues to grow (such
as the 175B parameters in GPT-3 [5]), the computational and storage resources required for full-parameter
fine-tuning have increased significantly. Consequently, it has become crucial to identify methods that strike
an effective balance between cost efficiency and fine-tuning performance.

Transfer learning has effectively addressed the challenge of applying knowledge from one task to
another related task, enhancing learning efficiency and generalization ability [6,7]. In particular, parameter-
efficient transfer learning has attracted particular attention, as it enables knowledge transfer by adding only
a small number of additional training parameters, thereby drastically reducing computational and storage
requirements [8–10]. Current mainstream efficient-parameter transfer methods can be primarily categorized
into prompt tuning, adapter tuning, and selective tuning. These methods either freeze the backbone and fine-
tune only the added extra parameters or select a small subset of parameters from the backbone for training.

Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2025.059745
https://www.techscience.com/doi/10.32604/cmc.2025.059745
mailto:pengchengcasit@163.com


220 Comput Mater Contin. 2025;83(1)

This approach significantly reduces computational costs while achieving performance comparable to full
fine-tuning. This method has demonstrated substantial success in both natural language processing and
computer vision. Recently, there has been growing interest in multimodal foundational models. However,
many of these studies either target only a single downstream task, neglecting the diverse range of tasks in
multimodal models [11,12], or they directly add learnable parameters using unimodal models’ parameter-
efficient fine-tuning methods ignoring the alignment between different modalities [13]. Alternatively, some
introduce excessive redundant parameters [14]. These approaches fail to solve the core problem in parameter-
efficient fine-tuning for multimodal models: achieving downstream knowledge transfer with minimal
additional parameters while ensuring proper alignment between modalities.

To address this issue, we design a novel and effective framework, UniTrans, to facilitate cross-modal
knowledge transfer. Although efficient parameter transfer learning techniques, which involve adding extra
parameters, have been widely applied in natural language processing and computer vision, there is still a lack
of sufficient exploration in the multimodal domain. Based on extensive experiments, we propose vector-
based cross-modal random matrix adaptation (VCRA), which leverages Low-Rank Adaptation (LoRA) to
decompose low-rank matrices into learnable scaling vectors and shared low-rank random matrices. VCRA
employs a pair of random matrices for weight sharing, allowing fine-grained information between the image
and text modalities to interact, thereby enhancing the visual-language modality representation.

Furthermore, during the fine-tuning process of multimodal base models on downstream tasks, the
originally aligned image and text features may become disrupted, causing them to shift within their respective
feature domains. To address this, we design the multimodal consistency alignment module (MCAM) and
the query-augmentation side network (QASN), which serve as regularizers for feature alignment during
the fine-tuning process. MCAM, from a contrastive learning perspective, constrains the similarity ranking
consistency between image-text pairs by designing a simple yet effective loss function without introducing
additional parameters. At the same time, we observe that when the fusion network of a multimodal model has
too many layers, query information loss occurs, which impacts the fusion and alignment between modalities.
To resolve this, we propose the lightweight QASN, which adaptively supplements query information at
various layers of the fusion network through a side-network approach, preventing matching errors between
images and text caused by information loss. Finally, we evaluate our method on multiple cross-modal
benchmarks, and the results show that our approach requires only 5% of the training parameters compared
to state-of-the-art methods, significantly reducing training costs while outperforming traditional methods.
Additionally, when compared to full-parameter training methods, our approach achieves comparable or even
better performance (Fig. 1).

In summary, our contributions can be summarized as follows:

1) We propose a lightweight and effective framework, UniTrans, for efficient cross-modal parameter
knowledge transfer. The framework consists of VCRA and two modules, MCAM and QASN, designed
to enhance modality alignment during the fine-tuning process.

2) Based on Low-Rank Adaptation, we design a more suitable adapter for multimodal models, VCRA,
which facilitates modality interaction and modality-specific adaptation through shared random matri-
ces and learnable scaling vectors.

3) We design two modules, MCAM and QASN, to constrain modality alignment, further improving the
performance of multimodal downstream tasks.

4) We conduct experiments on multiple multimodal benchmarks. The results show that our method
reduces the trainable parameters to 5% compared to state-of-the-art method without sacrificing
performance, and it significantly outperforms traditional methods. These benchmark test results are of
significant importance for future research.



Comput Mater Contin. 2025;83(1) 221

VQAv2

Test-dev

FLICKR30K

FLICKR30K(I→T) Recall@1

Te
st

-s
td

FL
IC

KR
30

K(
T→

I) 
R

ec
al

l@
1

Figure 1: Performance comparison between image-text retrieval (left) and VQA (right) tasks. The size of the bubble
represents the number of trainable parameters. Our UniTrans has achieved competitive performance in both tasks

2 Related Work

2.1 Vision-Language Models
In recent years, increasing efforts have focused on applying Vision-Language Models (VLMs) pre-

trained with large-scale image-text pairs to downstream tasks [15,16]. Unlike pre-trained large language
models [5,17,18], VLMs typically extract multimodal features through separate text and image encoders, and
then align these features using fusion mechanisms such as contrastive learning [15], transformer modules [4],
Q-Former [19], or MLP [20]. The fused features are applied to multimodal downstream tasks. BLIP integrates
both an encoder and a decoder, enabling support for both multimodal alignment and multimodal generation
tasks within a single foundational model. This paper explores efficient parameter transfer methods tailored
for multimodal models based on the BLIP framework.

2.2 Parameter-Efficient Transfer Learning
Cross-modal alignment refers to establishing correspondences between information from different

modalities, enabling machines to recognize and understand the same or related information across vari-
ous modalities. Current cross-modal alignment methods can be broadly categorized into attention-based
alignment [21–23], large cross-modal model-based alignment [24,25], parameter-free interaction-based
alignment [26–28], and structure-based alignment [29]. However, these methods are typically applied
during the model training process. As the number of model parameters grows, the pre-training and fine-
tuning paradigm has become predominant, highlighting the need for inter-modal alignment mechanisms
specifically designed for the fine-tuning process. Based on this, we have designed Query-Augmentation Side
Network and Multimodal Consistency Alignment Module, which can serve as regularizers for fine-grained
cross-modal alignment during the fine-tuning process.

As the number of parameters in foundational pre-trained models continues to grow, the cost of full-
parameter fine-tuning for downstream tasks has become increasingly prohibitive, drawing more attention
from the engineering community to parameter-efficient transfer learning. This approach facilitates knowl-
edge transfer in downstream tasks by adding a small number of additional parameters and can be broadly
categorized into the following types: prompt tuning [10,30,31], adapter tuning [9,8,32,33], and selective
tuning [34,35]. While these methods have achieved significant success in the field of natural language
processing (NLP), they remain underexplored in the multimodal domain. Existing work either applies these
methods to multimodal models without accounting for the alignment between different modalities or focuses
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solely on a single downstream task. A recent study, UniAdapter [14], pioneered parameter-efficient transfer
learning for multimodal models but introduced excessive redundant parameters. In contrast, our proposed
method, UniTrans, reduces the number of parameters by an order of magnitude, while delivering comparable
or even superior performance across multiple downstream tasks.

2.3 Low-Rank Adaptation (LoRA)
Low-Rank Adaptation is a type of parameter-efficient transfer learning that involves adapter fine-tuning.

Unlike methods that add adapters, LoRA approximates weight changes through low-rank matrices during
fine-tuning, allowing it to merge seamlessly with pre-trained weights during inference without introducing
extra computational overhead. This significantly reduces the computational and storage resources required
for tuning, providing an innovative solution for large pre-trained models. Base on this, AdaLoRA [36] uses
Singular Value Decomposition (SVD) decomposition during fine-tuning to selectively remove insignificant
singular values, dynamically adjusting the rank of the low-rank matrix for more efficient updates. Tied-
LoRA [37] further reduces trainable parameters by using weight tying. Dora [38] enhances LoRA’s learning
ability and training stability by decomposing pre-trained weights into magnitude and direction. FedPara [39]
improves fine-tuning efficiency by introducing Hadamard product reparameterization weights into the low-
rank matrix, breaking the low-rank limitation.

Although Low-Rank Adaptation (LoRA) and its variants significantly reduce the computational cost
of fine-tuning large pre-trained language models, their potential in multimodal fine-tuning remains largely
unexplored. Our work investigates the application of LoRA in multimodal parameter-efficient transfer
learning. By introducing trainable scaling vectors and cross-modal shared low-rank weight matrices, we
achieve efficient knowledge transfer with minimal trainable parameters, while ensuring effective feature
alignment between modalities.

3 Methodology
In this section, we first describe the framework of the multimodal foundational model we aim to

fine-tune and the Low-Rank Adaptation (LoRA) [8]. We then introduce our parameter-efficient transfer
learning method for multimodal models, UniTrans. This includes Vector-based Cross-modal Random
Matrix Adaptation (VCRA), modality alignment design, as well as the Query-Augmentation Side Network
(QASN) and Multimodal Consistency Alignment Module (MCAM).

3.1 Preliminary
3.1.1 Vision-Language Framework

We use BLIP as the backbone of our frozen pre-trained model. BLIP features a multimodal hybrid
encoder-decoder structure (MED), unifying image-text matching and generation tasks. It employs a Vision
Transformer (ViT) [40] as the image encoder and BERT [18] as the text encoder, with different components
activated depending on the downstream multimodal task. For image-text matching tasks, cross-attention
is added to the text encoder to fuse image and text features, and a special token [Encode] is prepended
to the input text. For generation tasks, a [Decoder] token is inserted at the beginning of the input text,
and the bidirectional self-attention layers are replaced with causal self-attention to generate captions for the
given image.
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3.1.2 Low-Rank Adaptation (LoRA)
LoRA utilizes low-rank matrices to approximate the weight changes during fine-tuning, effectively

reducing the number of required parameters. Formally, for a pre-trained weight matrix W0 ∈ R(m×n), the
weight update can be constrained as a low-rank matrix decomposition, as shown in Eq. (2). During fine-
tuning, the original weights W0 remain frozen, and only the low-rank matrices are updated via gradient
descent. Due to the low-rank nature, the dimension r is typically small, making the size of the low-rank
matrices significantly smaller than that of the original parameter matrix, where A ∈ R(r×n) and B ∈ R(m×r),
and r ≪min(m, n). While LoRA offers an effective solution for efficient parameter transfer, it has not been
further explored in the context of multimodal models.

3.2 Vector-Based Cross-Modal Random Matrix Adaptation (VCRA)
For pre-trained multimodal models, performing full fine-tuning on downstream tasks with small-

scale datasets not only wastes computational resources but also risks knowledge forgetting and disrupting
the feature alignment space. Therefore, we introduce additional trainable parameters to minimize or
limit changes to the original parameters as much as possible. The model parameters updated through
backpropagation using the fine-tuning data D:

∇W = ∇ΔW =
∂L (D; W0 + ΔW)

∂ΔW
(1)

LoRA adapts the weight space of the entire network by fine-tuning a matrix product of two low-rank
matrices. However, directly applying LoRA to multimodal models yields unsatisfactory results due to the
lack of interaction between modalities. To address this, we decompose the matrix into two low-rank matrices
and two scaling vector as the projection, share knowledge across these matrices between modalities, and
then apply projections to adapt the weight matrices of each layer for each modality.

Formally, compared to LoRA, VCRA not only decomposes the trainable weights into a pair of low-rank
matrices A and B, but also introduces two trainable scaling vectors:

h =W0x + ΔWx =W0x + BAx (2)
h =W0x + ΔWx =W0x + Λb BΛa Ax (3)

where trainable scaling vectors represented as diagonal matrices Λa and Λb . These vectors effectively scale
or deactivate specific rows and columns of the random matrices. The random matrices A ∈ R(r×d) and B ∈
R(d×r) in VCRA are shared across visual, textual and cross-modal modalities, where d and r represent the
input and bottleneck dimensions, respectively. This sharing mechanism not only reduces the number of
parameters significantly but also enhances cross-modal interaction:

VCRA(xM) =W0xM + s ⋅ ΛM
b BΛM

a AxM (4)

where s represents the learnable scaling factor, M ∈ {V , T , C}, V denotes the visual modality, T denotes
textual modality and C is cross-modal modality. Although we use shared random matrices for cross-modal
information transfer, learning modality-specific knowledge is crucial for improving the transferability of
multimodal models. Therefore, we apply modality-specific scaling vectors ΛM

a and ΛM
b to the visual, text

encoders and feature fusion network with cross-attention layer, ensuring adaptability to each modality.
Compared to Lora, VeRA shares low rank matrices between different modalities and transformer layers

and uses scaled vectors to adapt weight updates, greatly reducing the number of trainable parameters.
Formally speaking, we use dmodel to denote the dimension of finetuned layers and Ntuned to represent the
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number of these layers. The number of trainable parameters for VCRA can be expressed as Θ = 2 × dmodel ×
r + Ntuned × (dmodel + r), contrasting with LoRA’s Θ = 2 × Ntuned × dmodel × r, when we apply petl to the FFN
of each layer. Specifically, for the lowest rank (i.e., r = 1), trainable parameters of VCRA is about half of LoRA.
However, as r insceases, the growth of LoRA trainable parameters is much faster than VCRA.

3.3 Modality Alignment Design
Besides VCRA, UniTrans also includes two additional modules, Query-Augmentation Side Network

(QASN) and Multimodal Consistency Alignment Module (MCAM), to further enhance cross-modal
alignment and multimodal fusion.

3.3.1 Query-Augmentation Side Network (QASN)
In the process of fine-tuning multimodal models, a factor that hinders modal alignment is that the

multimodality fusion network is deep, which can lead to the loss of query information. To solve this problem,
we designed a query information augmentation pipeline that runs parallel to the fusion network for adapted
feature aggregation and information supplement.

Formally, as shown in Fig. 2, given the multimodality fusion branch network consists of N transformer
blocks, the forward process can be expressed as xF = bN(bN−1(...b1(xT , xV), xV), xV), where bN represents
the N-th transformer block, xV and xT represent the image features and the text features, respectively, and
xF represents the fusion features. We apply VCRA to aggregate the fusion information from fusion branch
network. Denote wi = Λb BΛa A as the weight matrix accounting for the i-th block, with A and B are the
shared random matrices, and Λa and Λa are the scaling vectors. The query-augmentation side network
gradually collects information from each block:

hi+1 = hi + xF
i wi (5)

where hi+1 is the output of the h-th layer of QASN. At the same time, we will supplement the query
information flowing in QSAN back into the fusion network:

xF
i+1 = bi(xF

i , xV) + f (hi+1) (6)

We did not take the query representation h as the residual of the fusion representation xF , but instead
train an information filter to explicitly model the contribution of supplementary query information. Our
filter design is simple and effective, and can be represented as f (x) = σ(α ⊙ x + β). Here, α and β represent
learnable parameter matrices, which are initialized to 1 and 0, respectively. Finally, the filtered information
is processed through the activation function σ . As a result, multimodality fusion branch network with
supplementary query information is more conducive to transfer knowledge for downstream tasks.

3.3.2 Multimodal Consistency Alignment Module (MCAM)
In addition to using unsupervised contrastive learning during pre-training, BLIP also employs it

during downstream task fine-tuning. As we know, with sufficient training samples, the contrastive loss
function effectively brings positive pairs closer and pushes negative pairs farther apart. However, the scale of
downstream task fine-tuning datasets is typically limited, which allows individual noisy samples to interfere
with the feature representation process, potentially disrupting the previously aligned feature space. To
address this issue, we introduce MCAM (Fig. 3), which captures fine-grained relationships between samples
through rank consistency, mitigating the impact of noisy samples.
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Figure 2: Illustration of Vector-Based Cross-Modal Random Matrix Adaptation (shown above) and Query-
Augmentation Side Network (shown below). VCRA achieves modal interaction through sharing low rank matrices and
introduces trainable scaling vectors to adapt to weight updates of various modalities and layers. QASN enhances the
fusion between modalities by adaptively supplementing query information in the fusion network

Figure 3: Illustration of Multimodal Consistency Alignment Module, it enhances fine-grained alignment between
modalities by matching the similarity ranking consistency between image-text pairs in the contrastive learning process
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Using contrastive learning loss to align image and text features lacks modeling the degree of repulsion
for negative samples. For example, pushing an picture of a dog ’equally’ away from the descriptions ”cat”,
”tiger”, and ”house” can lead to the loss of fine-grained similarity information between the image and text
and affecting feature alignment. We introduce the Multimodal Consistency Alignment Module to solve this
problem by matching the consistency of similarity rankings between image-text pairs.

Formally, for a mini-batch of image-text pairs denoted as (xV , xT), where xV represents the image and
xT represents the corresponding text, image and text are processed through the visual encoder f (⋅) and text
encoder g(⋅), respectively, to obtain modality-specific representations. BLIP uses LITC as the contrastive loss:

LITC = −
N
∑
i=1

log eϕ( f (x V
i ), g(x T

i ))/τ1

∑N
j=1 eϕ( f (x V

i ), g(x T
j ))/τ1

−
N
∑
i=1

log eϕ(g(x T
i ), f (x V

i ))/τ1

∑N
j=1 eϕ(g(x T

i ), f (x V
j ))/τ1

(7)

ϕ( f (xV), g(xT)) = f (xV)⊺g(xT)
∥ f (xV)∥ ⋅ ∥g(xT)∥ (8)

where τ1 is a temperature hyperparameter. While LITC is effective at distinguishing between positive
and negative image-text pairs, it does not consider differences between highly relevant and moderately
relevant pairs. Our proposed multimodal consistency alignment module introduces ranking information
to capture fine-grained image-text relationships, enhancing modality representation and strengthening
cross-modal alignment.

Specifically, for a given image-text pair within a mini-batch (xV
i , xT

i ), we can obtain a list S(xV
i ) =

{ϕ( f (xV
i ), g(xT

j ))}N
j=1 that represents the cosine similarity between the image xV

i and all texts in the batch,
as well as a list S(xT

i ) = {ϕ(g(xT
i ), f (xV

j ))}N
j=1 that represents the cosine similarity between the text xT

i
and all images in the batch. We aim for the corresponding elements in S(xV

i ) and S(xT
i ) to have the same

ranking positions. This allows us to capture the fine-grained ranking information between the image and
various negative text samples, as well as between the text and different negative image samples. We achieve
ranking consistency by minimizing the the Jensen-Shannon (JS) divergence of the two top one probability
distributions:

LITR =
N
∑
i=1

JS(̃Sτ1(xV
i )∣∣̃Sτ1(xT

i ))

= 1
2

N
∑
i=1
(S̃τ1(xV

i ) log( 2S̃τ1(xV
i )

S̃τ1(xV
i ) + S̃τ1(xT

i )
) (9)

+ S̃τ1(xT
i ) log( 2S̃τ1(xT

i )
S̃τ1(xV

i ) + S̃τ1(xT
i )
))

where S̃τ1(xV
i ) = so f tmax(S(xV

i )/τ) and S̃τ1(xT
i ) = so f tmax(S(xT

i )/τ) represent the top-one probability
distributions of S(xV

i ) and S(xT
i ), respectively, and τ is a hyperparameter. The final loss function is:

Lall = LITC + LITR (10)
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4 Experiments

4.1 Implementation Details
We apply BLIP-base as our vision-language backbone for Image Caption, Image-Text Retrieval and

VQA downstream tasks. During the fine-tuning process, the parameters of the backbone model are kept
frozen. The experiments were implemented using PyTorch on 8 ×NVIDIA 3090 GPU. As shown in Table 1,
we present the training details for UniTrans. We applied VCRA to the projection of query, key and value
in Attention layer, and the scaling vectors of key projection share parameters with value projection. At the
start of fine-tuning, we initialize the random matrices A and B with random values drawn from a normal
distribution, while vector Λa is initialized to 1 and vector Λb is initialized to 0. For the query information
filters in QASN (components α and β), are initialized to 1 and 0, respectively. For the textual data in video
datasets, we performed simple preprocessing steps, such as truncating words that exceed the maximum
sentence length.

Table 1: Setting hyperparameters for fine-tuning training of multimodal downstream tasks

Config Image captioning Image-text retrieval Visual question answering

COCO (caption) MSCOCO Flickr DiDemo VQAv2 MSRVTT-QA
learning rate 1e−5 1e−5 1e−4 1e−5 2e−5 2e−5

batch size 128 128 128 32 128 64
epochs 6 5 6 10 10 10

training input 384 384 384 8 × 224 384 8 × 224
inference input 384 384 384 16 × 224 384 16 × 224

4.2 Baselines & Datasets & Evaluation Metrics
We evaluate UniTrans across six benchmarks, covering three cross-modal tasks: Image Captioning,

Image-Text Retrieval, and VQA. For the image captioning task, we use the COCO-Caption [41] dataset with
the COCO Caption Karpathy split as the test set, employing BLEU@4 and CIDEr as evaluation metrics.
BLEU measures the n-gram precision between the generated and reference captions, while CIDEr evaluates
the similarity between candidate and reference captions by calculating the cosine similarity of their TF-
IDF vectors. For the image-text retrieval task, we use the MSCOCO [41], Flickr30K [42], and Didemo
datasets [43], with Recall at K (R@K) as evaluation metrics. R@K aims to calculate the ratio of queries that
successfully retrieve the ground truth as one of the first K results. For the VQA task, we use the VQAv2 [44]
and MSRVTT-QA [45] datasets, with the evaluation results obtained from the official validation platforms
provided by the datasets.

4.3 Results
4.3.1 Performance Comparisons on Cross-modal Tasks

Tables 2 and 3 show the performances of UniTrans for image-text retrieval task on Flickr30K and
MSCOCO. As shown, UniTrans achieves performance comparable to UniAdapter with only 0.2M parame-
ters on both Flickr30K and MSCOCO, even outperforming it on certain metrics. Additionally, our method’s
performance is very close to that of fully fine-tuning the BLIP backbone while exceeding previous fully
fine-tuned methods.
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Table 2: Results on flickr

Method # Tunable Text retrieval Image retrieval

R@1 R@5 R@10 R@1 R@5 R@10
Full fine-tuning

UNITER [46] 330M 87.3 98.0 99.2 75.6 94.1 96.8
UNIMO [47] 330M 89.4 98.9 99.8 78.0 94.2 97.1
ALIGN [48] 820M 95.3 99.8 100.0 84.9 97.4 98.6
ALBEF [49] 210M 95.9 99.8 100.0 85.6 97.5 98.9

BLIP [4] 223M 97.3 99.9 100.0 87.3 97.6 98.9

Frozen backbone

LoRA (r = 32) 10.6M 96.2 99.7 99.8 85.8 97.1 98.4
UniAdapter (r = 128) 4.8M 97.1 100.0 100.0 86.5 97.4 98.8
UniAdapter (r = 512) 19.0M 97.1 99.9 100.0 86.4 97.4 98.9

UniTrans (ours, r = 64) 0.2M 97.2 100.0 100.0 86.4 97.4 98.8

Note: Bold represents optimal performance.

Table 3: Results on MSCOCO

Method # Tunable Text retrieval Image retrieval

R@1 R@5 R@10 R@1 R@5 R@10
Full fine-tuning

Unicoder-VL [24] – 62.3 87.1 92.8 46.7 76.0 85.3
OSCAR [50] 330M 70.0 91.1 95.5 54.0 80.8 88.5
ALIGN [48] 820M 77.0 93.5 96.9 59.9 83.3 89.8
ALBEF [49] 210M 77.6 94.3 97.2 60.7 84.3 90.5

BLIP [4] 223M 81.9 95.4 97.8 64.3 85.7 91.5

Frozen backbone

LoRA (r = 32) 10.6M 80.0 94.1 97.2 62.1 84.4 90.6
UniAdapter (r = 128) 4.8M 79.8 94.2 97.5 62.3 84.5 90.8
UniAdapter (r = 512) 19.0M 80.1 94.6 97.4 62.6 84.6 90.9

UniTrans (ours, r = 64) 0.2M 79.7 94.2 97.4 62.2 84.4 90.5

Note: Bold represents optimal performance.

Unlike image-text retrieval, the VQA task requires multimodal generation capabilities. Therefore, in
addition to the encoder, a decoder is necessary for text generation. Due to the structural differences between
the encoder and decoder, we did not share the random matrices parameters, resulting in a slight increase
in trainable parameters. However, the total parameter count remains significantly lower than the baseline.
According to Table 4, our method outperforms all fine-tuning methods, demonstrating that our approach is
well-suited for multimodal generation tasks.
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Table 4: Results on VQAv2

Method # Tunable VQAv2

Test-dev Test-std
Full fine-tuning

VL-T5/BART [51] 165M – 71.30
SOHO [52] 155M 73.25 73.47

OSCAR [50] 330M 73.61 73.82
UNITER [46] 330M 73.82 74.03
ALBEF [49] 266M 75.84 76.04

BLIP [4] 337M 77.44 77.48

Frozen backbone

LoRA (r = 32) – – –
UniAdapter (r = 128) 4.8M 73.72 73.71
UniAdapter (r = 512) 19.0M 75.44 75.56

UniTrans (ours, r = 64) 0.3M 77.68 77.77

Note: Bold represents optimal performance.

Table 5 shows the performance of our method on the Image Captioning task using the COCO caption
dataset. The results indicate that UniTrans outperforms the baseline and is only slightly below the fully fine-
tuned BLIP method. As shown in Table 6, our UniTrans also outperforms the baseline on video datasets.

Table 5: Results on the Image Captioning dataset COCO Caption, where B@4 represents BLEU@4 and C denotes
CIDEr

Method # Pre-train COCO caption karpathy test

B@4 C
Full fine-tuning

Enc-Dec [53] 15M – 110.9
VinVL [54] 5.7M 38.2 129.3

LEMON [55] 200M 40.3 133.3
BLIP [4] 14M 38.6 129.7
BLIP [4] 129M 39.7 133.3

Frozen backbone

LoRA (r = 64) 129M 38.88 131.5
UniAdapter (r = 128) 129M 39.0 132.1

UnTrans (ours, r = 64) 129M 39.2 132.3

Note: Bold represents optimal performance.
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Table 6: Results on the video-text retrieval dataset DiDemo and the video visual question answering dataset
MSRVTT-QA

Method # Tunable DiDemo Method # Tunable MSRVTT-QA

R@1 R@5 R@10 Test acc
Full fine-tuning

CLIPBERT [56] 135M 20.4 48.0 60.8 CLIPBERT [56] 135M 37.4
Frozen in Time [57] 180M 34.6 65.0 74.7 CoMVT [58] – 39.5

ALPRO [59] 245M 35.9 67.5 78.8 ALPRO [59] 245M 42.1
VIOLET [60] 306M 32.6 62.8 74.7 Just-Ask [61] 200M 41.5

All-in-one [62] 110M 32.7 61.4 73.5 VIOLET [60] 306M 43.9
CLIP4Clip [63] 124M 42.8 68.5 79.2 MERLOT [64] 233M 43.1

Frozen backbone

LoRA (r = 32) 10.6M 50.9 75.3 82.4 – – –
UniAdapter (r = 128) 4.8M 49.0 75.5 83.3 UniAdapter (r = 128) 4.8M 44.2
UniAdapter (r = 512) 19.0M 52.1 77.3 85.2 UniAdapter (r = 512) 19.0M 44.7

UniTrans (ours, r = 64) 0.2M 52.4 77.3 85.3 UniTrans (ours, r = 64) 0.3M 44.8

Note: Bold represents optimal performance.

From the comparative experimental results on multimodal benchmarks, it can be observed that
Unitrans achieves competitive performance while reducing the trainable parameters of LoRA to just 5%.
This is attributable to two main factors. First, we leverage VeRA to share a low-rank random matrix across
modalities and employ scaling vectors to adapt weight updates. This shared mechanism reduces the number
of large random matrices involved in training, effectively decreasing parameter size while enhancing inter-
modal information exchange. Second, QASN adaptively supplements query information within the fusion
network, and MCAM regularizes fine-grained image-text alignment during fine-tuning through contrastive
learning loss, strengthening multimodal alignment. In comparison, UniAdapter enables modality interaction
during fine-tuning by employing a shared MLP in the adapter. However, it lacks information sharing across
layers, and the MLP itself involves a considerable number of trainable parameters, particularly as the rank
r increases. Based on this, we extend the concept of UniAdapter to Low-Rank Adaptation and further
optimize it by introducing QASN and MCAM to facilitate multimodal alignment during fine-tuning. As
a result, we achieve performance comparable to UniAdapter while significantly reducing the number of
trainable parameters.

4.3.2 Training Efficiency and Storage Cost
As shown in Table 7, we present the training time and GPU memory costs for the three tasks: Image

Captioning, Image-Text Retrieval, and Visual Question Answering. We consider the training time and
storage cost of fully fine-tuning BLIP as one unit. From the table, it can be observed that our UniTrans
outperforms both fully fine-tuned BLIP and UniAdapter in terms of training time and GPU memory cost.

Table 7: Comparison of training time and GPU memory usage

Method #Tunable Image captioning #Tunable Image-text retrieval #Tunable VQA

Time Memory Time Memory Time Memory
Full fine-tuning 213M 1.00 1.00 223M 1.00 1.00 337M 1.00 1.00

UniAdapter (r = 512) 19.0M 0.83 0.81 19.0M 0.88 0.86 19.0M 0.93 0.80

(Continued)
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Table 7 (continued)

Method #Tunable Image captioning #Tunable Image-text retrieval #Tunable VQA

Time Memory Time Memory Time Memory
UniAdapter (r = 128) 4.8M 0.81 0.77 4.8M 0.86 0.82 4.8M 0.92 0.72

UniTrans (r = 128) 0.36M 0.81 0.77 0.36M 0.86 0.81 0.46M 0.89 0.71
UniTrans (r = 64) 0.26M 0.80 0.75 0.26M 0.83 0.79 0.35M 0.89 0.68

Note: Bold represents optimal performance.

4.3.3 The Impact of Rank on UniTrans
We also explored the impact of rank size on UniTrans. As shown in Fig. 4a,b, experiments conducted on

Flickr30K indicate that as the rank increases, performance of cross-modal downstream fine-tuning improves.
However, when the rank reaches a certain threshold, the performance gains slow down or even slightly
decrease. This may be due to the rank increase making the random matrix too large, introducing redundant
parameters and leading to overfitting. As shown in Fig. 4c, as the rank R increases, the growth in parameters
for our UniTrans is significantly slower compared to LoRA and UniAdapter, demonstrating the superiority
of our method.

Figure 4: how rank affects UniTrans. (a) and (b) show the impact of different ranks on UniTrans performance on the
Flickr30K dataset. (c) demonstrates the scalability of parameters compared to other PETL methods

4.3.4 Visualization Results
To intuitively understand the performance of UniTrans in multimodal downstream tasks, we present

detailed visualization results in Figs. 5–7. Fig. 5 shows a comparison between the captions generated by
UniTrans on the COCO Caption dataset and the ground-truth. It can be seen that UniTrans is capable of
accurately generating image captions, with key words closely matching the ground-truth. Fig. 6 demonstrates
the results of the Image-Text Retrieval task on the Flickr30K dataset, where UniTrans accurately retrieves
the corresponding image given a textual caption. We also present the results of the VQA task on the VQAv2
dataset, where UniTrans provides accurate answers. However, the responses are somewhat brief, which may
be attributed to the relatively smaller parameter size of the multimodal base model. In the future, we plan to
conduct experiments with larger-scale models.
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Figure 5: Visualization results on COCO Caption

Figure 6: Visualization results on Flickr30K
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Figure 7: Visualization results on VQAv2

4.3.5 Ablation Study
To assess the effectiveness of each module in UniTrans, we conducted ablation experiments on image-

text retrieval using the Flickr30K benchmark and the DiDemo benchmark. We compared UniTrans with
three baselines: a frozen BLIP, fully fine-tuned BLIP, and LoRA. As shown in Tables 8 and 9, when the
random matrices are not shared (‘+scaling vectors’ means only scaling vector is used, and random matrices
are shared in each transformer block of single modality), the number of trainable parameters is significantly
reduced, but the performance deteriorates. However, our proposed VCRA demonstrates clear improvements,
highlighting its contribution to modality alignment. The results also indicate that the QASN and the MCAM,
both designed to enhance modality alignment, further boost performance. Notably, the latter achieves
performance gains without introducing additional parameters.

Table 8: Results of ablation on the Flickr

Method # Tunable Text retrieval Image retrieval

R@1 R@5 R@10 R@1 R@5 R@10
Frozen 0M 86.9 98.0 99.1 78.1 94.0 97.7

Full fine-tuning 223M 97.3 99.9 100.0 87.3 97.6 98.9
LoRA (r = 32) 10.6M 96.2 99.7 99.8 85.8 97.1 98.4
+scaling vectors 0.28M 92.0 98.6 99.5 82.1 95.9 98.0

+shared random matrices 0.18M 95.3 99.6 99.9 84.4 96.7 98.4
+QASN 0.21M 96.1 99.7 100.0 85.2 96.8 98.6

+MCAM (UniTrans) 0.21M 96.5 99.8 100.0 86.0 97.2 98.8
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Table 9: Results of ablation on the DiDemo

Method # Tunable DiDemo

R@1 R@5 R@10
Linear probe 0.4M 39.7 64.6 74.9

Full fine-tuning 223M 51.3 79.1 85.7
LoRA (r = 32) 10.6M 50.9 75.3 82.4
+scaling vectors 0.28M 48.4 74.9 81.6

+shared random matrices 0.18M 49.1 76.2 83.3
+QASN 0.21M 50.6 76.5 84.0

+MCAM (UniTrans) 0.21M 51.8 77.1 85.2

5 Conclusion & Future Work
In this paper, we propose a novel paradigm for efficient cross-modal knowledge transfer, UniTrans, to

enhance modality interaction and alignment during the fine-tuning process of multimodal models. The con-
cepts of VCRA, along with the modality alignment modules QASN and MCAM, are simple and lightweight,
allowing them to be extended to different multimodal base models without altering their inherent structure,
thereby effectively adapting to various fine-grained visual-language tasks. Extensive evaluations on multiple
downstream benchmarks demonstrate that our method achieves superior performance with fewer than
1M parameters.

Moreover, UniTrans has its limitations, which provide directions for our future work. (1) UniTrans has
only been validated on the multimodal model architecture with fusion networks represented by BLIP, and has
not been tested on architectures such as the Q-Former (represented by BLIP2) or the MLP-based architecture
(represented by LLava). In the future, we will explore a wider range of multimodal model architectures. (2)
Our method has been compared to classic cross-modal tasks such as Image Captioning, Image-Text Retrieval,
and VQA, but has not yet been explored for other cross-modal tasks, such as text-to-image generation.
Moving forward, we will extend our approach to a broader set of tasks. (3) The fine-tuning datasets we used
are relatively small in scale. In the future, we plan to conduct experiments on larger-scale datasets.
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