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ABSTRACT: To explore atomic-level phenomena in the Cu-Ni-Sn alloy, a second nearest-neighbor modified
embedded-atom method (2NN MEAM) potential has been developed for the Cu-Ni-Sn system, building upon the work
of other researchers. This potential demonstrates remarkable accuracy in predicting the lattice constant, with a relative
error of less than 0.5% when compared to density functional theory (DFT) results, and it achieves a 10% relative error
in the enthalpy of formation compared to experimental data, marking substantial advancements over prior models.
The bulk modulus is predicted with a relative error of 8% compared to DFT. Notably, the potential effectively simulates
the processes of melting and solidification of Cu-15Ni-8Sn, with a simulated melting point that closely aligns with the
experimental value, within a 7.5% margin. This serves as a foundation for establishing a 2NN MEAM potential for a
flawless Cu-Ni-Sn system and its microalloying systems.
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1 Introduction
Cu-Ni-Sn alloys have garnered significant attention due to their non-toxicity, low cost, and superior

mechanical properties [1–5], among these, Cu-15Ni-8Sn alloys are particularly notable for their excep-
tional high strength and elastic modulus, with applications in electronic parts, maritime engineering, and
aerospace [6,7]. However, the low melting point of Sn (504.89 K) compared to Ni (1726 K) and Cu (1356.4 K)
leads to severe macroscopic segregation during solidification, which can weaken the alloy’s properties and
limit its applications [8]. To mitigate segregation, it is essential to study the macro-segregation behaviors and
mechanisms in detail, which requires the study of the atomic behaviors between different elements during
the crystallization process, both through experiments and atomistic simulations. But conducting accurate
and specific experiments is difficult due to the need for real-time, high-resolution, and high-temperature
atomic measurements. Regarding this situation, the atomistic simulation study can provide an efficient and
powerful method to study atomic behaviors.

Among the various atomic simulation methods, density functional theory (DFT) based on first-
principle calculations can accurately predict atomic behaviors and material properties [9]. However, DFT is
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computationally intensive and only suitable for small-scale atomic simulations (hundreds of atoms), making
it impractical for large-scale simulations such as those involving solidification processes. In contrast, the
Molecular Dynamics (MD) method is effective for simulating large-scale atomic systems and predicting
their properties [10,11]. MD simulations based on the second nearest-neighbor modified embedded-atom
method (2NN MEAM) potentials [12–15] have been successfully applied to various systems, including Mg-
Zn-Ca [16], FeCo [17], NiTi [18], Cu-Ni [19], Cu-Sn [20–22], Ni-Sn [20], Cu [21], Ni [23], and Sn [24], among
others. These simulations have reasonably predicted the fundamental behaviors of materials. However, no
reports exist on the development of a 2NN MEAM potential for the Cu-Ni-Sn system.

In this work, we developed a 2NN MEAM interatomic potential for the Cu-Ni-Sn ternary system based
on existing unary and binary interatomic parameters. First, the accuracy of this potential was verified by
DFT. Subsequently, the potential was used to simulate the melting process and XRD patterns of Cu-15Ni-8Sn,
and the results were compared with experimental data to evaluate the rationality of the potential parameters.

2 Methods

2.1 Potential Formalism
The MEAM formalism has been comprehensively and formally explained in previous articles [25–30].

In the modified 2NN MEAM [31,32] formula, the second nearest-neighbor interaction is considered, which
is affected by the adjustment of the screening parameter, making the many-body screening (Si j) less serious.
The total energy of each atom is computed using Eq. (1) [33].

Eu (R) = F (ρ0(R)) + Z1

2
∅(R) +

Z2Si j

2
∅(aR) , (1)

where Z1 and Z2 are the atom numbers of the first and second nearest-neighbors, respectively. a denotes the
ratio of the distance between the second and first nearest-neighbor atoms.

The basic idea for the screening is that if atom k exceeds the Cmax defined ellipse, it is considered to
have no influence on the interaction between atoms i and j. If atom k is within a Cmin defined ellipse, it is
considered to completely shield the interaction between atoms i and j. If atom k is within Cmax and Cmin ,
then the screening effect varies gradually, as shown in Fig. 1. According to the relative distances among the
three atoms (i, j, and k), the values of the parameters C,Cmin , and Cmax are calculated.

Figure 1: The screening schematic diagram of the three cases for the ternary system. In this diagram, the symbols i, j,
and k correspond to Cu, Ni, and Sn, respectively



Comput Mater Contin. 2025;83(1) 67

For each atom, the total energy value Eu (R) can be calculated via the zero-temperature universal
equation of state developed by Rose et al. [27]. The equation is written as below:

Eu (R) = −Ec(1 + a∗ + da∗3)e−a∗ , (2)

where d represents an adjustable parameter,

a∗ = α( R
re
− 1), (3)

α = (9BΩ
re
)

1
2

. (4)

In Eqs. (2)–(4), the cohesive energy Ec is measured and expressed in the unit of eV/atom; the re ,
denoting equilibrium nearest-neighbor distance, is expressed in å; the bulk modulus B is measured in
1012 dyne/cm2, and Ω represent the atomic volume.

2.2 Development of the Cu-Ni-Sn Ternary 2NN MEAM Potentials
The 2NN MEAM potential for ternary system is derived from the unary and binary potentials,

incorporating three C(i−k− j)
min and three C(i−k− j)

max ternary parameters. In this paper, the 2NN MEAM potential
for Cu-Ni-Sn is established by using the existing parameters of the unary and binary potentials, as shown
in Tables 1 and 2, respectively.

Table 1: 2NN MEAM potential parameter sets for the Cu, Ni, and Sn unary systems [20]

Element Ec re B Å β(0) β(1) β(2) β(3) t(1) t(2) t(3) Cmin Cmax d
Cu 3.54 2.555 1.2818 0.73 2.54 2.24 1.48 0.14 1.46 1.88 1.20 0.21 1.29 0.10
Ni 4.45 2.490 1.8759 0.94 2.56 1.50 6.00 1.50 3.10 1.80 4.36 0.81 2.80 0.05
Sn 3.05 3.480 0.6088 1.05 5.50 5.10 4.50 4.30 1.30 3.60 −0.90 1.29 4.43 0.02

Table 2: 2NN MEAM potential parameter sets for the Cu-Ni [19], Cu-Sn and Ni-Sn [20] binary systems

Cu-Ni Cu-Sn Ni-Sn
Reference L12 CuNi3 CsCl type

CuSn
L12 Ni3Sn

Ec 4.2225 3.2450 4.2920
re 2.507 2.920 2.7764
B 1.727 0.8011 1.7271

C(X−Y−X)
min 1.00 0.27 0.30

C(Y−X−Y)
min 1.00 0.17 2.27

C(X−X−Y)
min 1.21 0.07 0.51

C(X−Y−Y)
min 1.00 0.14 0.66

C(X−Y−X)
max 2.80 1.93 1.68

C(Y−X−Y)
max 2.80 1.15 2.61

C(X−X−Y)
max 2.80 2.36 1.56

(Continued)
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Table 2 (continued)

Cu-Ni Cu-Sn Ni-Sn

C(X−Y−Y)
max 2.80 3.41 1.78

d 0.06 0.06 0.03
ρX

0 ∶ ρY
0 1:1 1:1 1.17:0.7

For the parameters C(i−k− j)
min/max , if two elements (i and j) exhibit a degree of similarity to a third element

(k), it is assumed that the screening degree of screening by k (or j) atom to the interaction between i and j
(or k) atoms [C(i−k− j)

min/max or C(i− j−k)
min/max ] is the average between those to the i-k [C(i−k−k)

min/max ] and i − j [C(i− j− j)
min/max ]

interactions. This assumption has been used in the establishment of 2NN MEAM potentials for ternary
systems and can accurately predict the basic material properties of alloys such as Mg-Al/Zn-Ga [12], Fe-
Ti/Nb-C/N [34,35], V-Pd-Y [36], Fe-Cr-Ni [37] and Na-M-Sn (M=Cu, Mn, Ni) [20] systems. Therefore, to
develop the Cu-Ni-Sn system, it is assumed that Cu, Ni, and Sn with FCC structure are relatively similar,
and then ternary parameters C(i−k− j)

min/max can be determined automatically based on the potential parameters
of the binary system, as shown in Table 3.

Table 3: 2NN MEAM potential parameter sets for the three C(i−k− j)
min and three C(i−k− j)

max ternary parameters

Parameter Selected value Procedure for determination

C(Cu−Sn−Ni)
min 0.47 [0.5(CCu−Sn−Sn

min )
1
2 + 0.5(CCu−Ni−Ni

min )
1
2 ]

2

C(Sn−Cu−Ni)
min 0.47 [0.5(CSn−Cu−Cu

min )
1
2 + 0.5(CSn−Ni−Ni

min )
1
2 ]

2

C(Ni−Sn−Cu)
min 0.82 [0.5(CNi−Sn−Sn

min )
1
2 + 0.5(CNi−Cu−Cu

min )
1
2 ]

2

C(Cu−Sn−Ni)
max 3.10 [0.5(CCu−Sn−Sn

max )
1
2 + 0.5(CCu−Ni−Ni

max )
1
2 ]

2

C(Cu−Ni−Sn)
max 3.10 [0.5(CCu−Ni−Ni

max )
1
2 + 0.5(CCu−Sn−Sn

max )
1
2 ]

2

C(Ni−Sn−Cu)
max 3.10 [0.5(CNi−Sn−Sn

max )
1
2 + 0.5(CNi−Cu−Cu

max )
1
2 ]

2

2.3 Calculation Procedures
To validate the potential, the fundamental material properties of different Cu-Ni-Sn compounds

computed by MD and DFT were compared. Furthermore, the MD simulation of melting and solidification
process of the Cu-15Ni-8Sn alloy was compared with the experimental data to confirm the potential’s
applicability. The simulations included energy minimization, equilibration steps (10 ps at 300 K), and
heating/cooling steps (heating rate of 1 K/ps from 300 K to 2500 K and cooling rates of 1 K/ps back to
300 K, respectively). Large-scale atomic/molecular massively parallel simulator (LAMMPS) [38] is used for
MD simulations, and the potentials used in the calculations are the ones established in this paper. The velocity
Verlet algorithm was employed to unify Newton’s equations of motion. The timestep used was 1 fs. The
simulations were performed in the NVT ensemble (constant number of particles, constant volume, constant
temperature). The atom types and phase structures were identified using the OVITO software [39]. The
Vienna Ab initio Simulation Package (VASP) [40–42] was used to the calculate DFT, which were based on
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the Projector Augmented-Wave (PAW) method [43], and the improved Perdew-Burke-Ernzerhof (PBE) [44]
gradient was used to estimate the exchange-correlation function. The energy cutoff (Ecut) for plane-wave
basis set was at 400 eV. Dense k-point meshes in the first Brillouin zone with a Monkhorst-Pack scheme were
employed, with a sample of 8*8*8 for each structure mentioned above.

2.4 Experimental Procedures
Cu-15Ni-8Sn alloy was obtained using vacuum induction melting using high-purity electrolytic copper

(99.99 wt.%), electrolytic Ni (99.99 wt.%), and industrial pure Sn (99.99 wt.%). As indicated by the
pseudo-binary phase diagram (Fig. 2) of the Cu-15Ni-8Sn alloy [45], the alloy exhibits a melting point of
approximately 1400 K. The precise chemical composition is detailed in Table 4.

Figure 2: Pseudo-binary phase diagram of Cu-Ni-Sn (at the isopleth of 15 wt.% Ni) alloy

Table 4: Chemical compositions of the Cu-15Ni-8Sn alloy (wt.%)

Measured composition Ni Sn Cu
Cu-15Ni-8Sn 15.49 8.52 Balance

Test samples were extracted from the ingot center. The metallographic sample surfaces were polished
suing abrasive SiC papers and subsequently etched with a solution composed of 95 mL C2H5OH, 5 mL HCl,
5 g FeCl3 to reveal the microstructure under scanning electron microscopy (SEM). The materials’ phase
structure was characterized using XRD analytical, utilizing Cu-Ka radiation within the 20○ to 100○ (2θ) range
at a scan rate of 10○/min. The resultant data were processed utilizing JADE software.
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3 Results and Discussion

3.1 Cu-Ni-Sn Ternary System Property Parameters and Contrast with DFT
To verify e the reliability of the established ternary potential parameters, the property parameters (lattice

constant, bulk modulus, and enthalpy of formation) for the compounds Cu2NiSn and CuNi2Sn in Cu-Ni-Sn
alloys were calculated by MD and compared to the DFT calculation results. Fig. 3 displays all the computed
fitted E-V curves, where all data points are compatible with the third-order Birch-Murnaghan equation of
state (EOS, as shown in Eq. (5)) [46,47].

E(V) = E0 +
9V0B0

16

⎧⎪⎪⎨⎪⎪⎩

⎡⎢⎢⎢⎣
(V0

V
)

2
3

− 1
⎤⎥⎥⎥⎦

3

B
′

0 +
⎡⎢⎢⎢⎣
(V0

V
)

2
3

− 1
⎤⎥⎥⎥⎦

2 ⎡⎢⎢⎢⎣
6 − 4(V0

V
)

2
3 ⎤⎥⎥⎥⎦

⎫⎪⎪⎬⎪⎪⎭
, (5)

where E0 is the total energy per unit cell at zero pressure, B0 and B
′

0 represent bulk modulus and the
first-order pressure derivatives of bulk modulus, respectively. V0 and V represent the reference volume and
deformation volume, respectively.

Figure 3: The E-V curves of different Cu-Ni-Sn intermetallic compounds were calculated by DFT and MD. (a) The
Cu2NiSn by DFT calculation, (b) The Cu2NiSn by MD calculation, (c) The CuNi2Sn by DFT calculation, and (d) The
CuNi2Sn by MD calculation
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The results of the property parameters of Cu-Ni-Sn ternary compounds calculated by DFT and MD
are shown in Table 5. The lattice constants and bulk modulus calculated by MD are consistent with those
calculated by DFT. This indicates that the potential parameter can effectively reproduce the atomic simulation
of the ternary system, thereby confirming the feasibility of this parameter.

Table 5: The property parameters (the lattice constant a (Å), the enthalpy of formation △Ef (eV/atom), the bulk V
(Å3/atom), and the bulk modulus B (1012 dyne/cm2)) of Cu-Ni-Sn intermetallic compounds were calculated by using
2NN MEAM potential, and the comparation with those calculated by DFT

Compound Structure Property DFT 2NN MEAM Relative error
Cu2NiSn Fm3m a 5.994902 5.997783 0.048%

△Ef −0.03025 −0.03799 25.59%
V 13.46562 13.48504 0.14%
B 0.96203 0.83486 13.22%

CuNi2Sn Fm3m a 6.615983 6.232149 5.80%
△Ef −0.089395 −0.183445 105.15%

V 18.09936 15.12842 16.41%
B 0.62639 0.85578 36.59%

3.2 Comparison of Simulation and Experimental Results of the Melting and Solidification Processes of
Cu-15Ni-8Sn Alloy
The melting and solidification behaviors of the Cu-15Ni-8Sn alloy were investigated via molecular

dynamics (MD) simulations, utilizing the established potential to determine the simulated melting point,
XRD patterns, and Sn segregation during solidification. To facilitate the statistical analysis of Sn fractions
at grain boundaries, a random substitution atom model based on a symmetric grain boundary structure
was constructed. The atomic model, depicted in Fig. 4a, comprises 5760 atoms, of which 273 are Sn atoms.
The structural model is illustrated in Fig. 4b, where the white regions represent the grain boundaries. The
system was initially equilibrated at a temperature of 300 K and a pressure of 0 bar, subsequently heated to
2500 K, and then cooled back to 300 K. The grain boundary region is defined based on the atomic coordinates
and the Voronoi tessellation method. Atoms with a high number of Voronoi faces (typically more than 7)
were identified as grain boundary atoms. Simulated snapshots capturing the structural evolution during the
solidification process are presented in Fig. 4c and d.

The average potential energy—temperature curve (as shown in Fig. 5a) indicates that the potential
energy of the Cu-15Ni-8Sn alloy undergoes significant changes at ~1140 K during the heating stage and at
~1850 K during the cooling stage The molecular dynamics simulations were conducted with a heating rate
of 1 K/ps and a cooling rate of 0.5 K/ps. Furthermore, it suggests that at low temperatures, the configuration
during heating stage has a higher energy than that during cooling stage. This finding highlights that the
initial configuration during heating possess higher energy, whereas the configuration during cooling process
is characterized by lower energy. These observations provide crucial insights into the phase transition and
structural evolution of the Cu-15Ni-8Sn alloy, aligning well with the fundamental physical processes of
thermal activation, structural rearrangement, and solidification.
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Figure 4: (a) atomic model of the Cu-15Ni-8Sn alloys at initial; (b) structural model of the Cu-15Ni-8Sn alloys at initial;
(c) simulation snapshot at 1140 K during solidification; (d) simulation snapshot at 1092 K during solidification

Figure 5: (a) The 2NN MEAM potential was employed to simulate the temperature-dependent variation of potential
energy for the Cu-15Ni-8Sn alloy. (b) XRD of Cu-15Ni-8Sn alloy samples cast Experiment and MD simulation

Based on Eq. (6) [48–51], the simulated melting point of the Cu-15Ni-8Sn alloy is approximately
1538 K, which corresponds to a maximum deviation of about 9.8% from the melting point reported in Fig. 2
(approximately 1400 K). Fig. 5b presents the XRD results, which demonstrate a strong correlation between
the simulated and experimental data, thereby validating the accuracy and reliability of the simulation
approach.

Tm = TH + TC − 2
√

TH ∗ TC , (6)

where Tm represents the simulated melting point, whereas TH and TC refer to the temperature at which there
is a sudden change in potential energy during superheating and supercooling, respectively.
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An investigation was conducted on the relationship between temperature and the Sn proportions at
grain boundary during the solidification, and the proportion of Sn at the grain boundaries was recorded
every 1000 steps, as shown in Fig. 6. Among them, the proportion of Sn atoms in the grain boundary tends to
increase with temperature decreasing and increases sharply at 1140 K. It is evident that Sn enrichment occurs
at grain boundaries during the solidification.

Figure 6: The proportion of Sn at grain boundaries during solidification for the Cu-15Ni-8Sn alloy

The microstructure of the as-cast Cu-15Ni-8Sn alloy is illustrated in Fig. 7a. The alloy displays a typical
dendritic structure, which is composed of three main components: a dark dendritic matrix (α-Cu), a
white irregular structure (γ-DO3), and a grey interdendritic region (coexistence of α and γ phases). The
corresponding EDS results are summarized in Table 6. The Sn content in the α-matrix is 6.41 wt.%, which
is 2.1 wt.% lower than the average value of the alloy (8.52 wt.%). In contrast, the Sn content in both the
white irregular γ phase and the lamellar γ phase is higher than the average value of the alloy. Notably, the
γ phase adopts a white irregular morphology when the Sn content exceeds a critical value of approximately
39.44 wt.%.

In summary, the established potential has good applicability for simulating the melting and solidifica-
tion processes of the Cu-15Ni-8Sn alloy. However, the differences may exist when applying other simulations,
and further optimization is still needed.
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Figure 7: Microstructure of as-cast Cu-15Ni-8Sn alloys at different magnifications: (a) 150×, (b) 1000×, (c) 3000×, and
(d) 5000×

Table 6: The EDS point findings for the respective locations shown in Fig. 7b–d

Region at.% wt.%

Cu Ni Sn Cu Ni Sn
Point A 32.1 42.9 25.0 27.11 33.46 39.44
Point B 66.9 22.5 10.6 62.24 19.33 18.42
Point C 83.8 12.7 3.5 82.10 11.49 6.41
Point D 34.1 39.6 26.3 28.46 30.53 41.01

4 Conclusion
In this study, the Cu-Ni-Sn ternary system 2NN MEAM potential was developed, and used to simulate

and calculate the relevant property parameters of the compound, the melting temperature of the Cu-15Ni-
8Sn alloy, XRD patterns, and the Sn segregation at grain boundaries. The results were consistent with the
DFT calculation and experiments, respectively. In summary, Cu-Ni-Sn ternary system 2NN MEAM potential
presented in this article demonstrates excellent applicability in simulating the melting and solidification
processes of Cu-15Ni-8Sn alloys, thereby facilitating the development of a perfect potential for the Cu-Ni-Sn
system and its microalloying systems.
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