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ABSTRACT: To address the problem that existing studies lack analysis of the relationship between attack-defense
game behaviors and situation evolution from the game perspective after constructing an attack-defense model, this
paper proposes a network attack-defense game model (ADGM). Firstly, based on the assumption of incomplete
information between the two sides of the game, the ADGM model is established, and methods of payoff quantification,
equilibrium solution, and determination of strategy confrontation results are presented. Then, drawing on infectious
disease dynamics, the network attack-defense situation is defined based on the density of nodes in various security
states, and the transition paths of network node security states are analyzed. Finally, the network zero-day virus
attack-defense behaviors are analyzed, and comparative experiments on the attack-defense evolution trends under
the scenarios of different strategy combinations, interference methods, and initial numbers are conducted using the
NetLogo simulation tool. The experimental results indicate that this model can effectively analyze the evolution of
the macro-level network attack-defense situation from the micro-level attack-defense behaviors. For instance, in the
strategy selection experiment, when the attack success rate decreases from 0.49 to 0.29, the network destruction rate
drops by 11.3%, in the active defense experiment, when the interference coefficient is reduced from 1 to 0.7, the network
destruction rate decreases by 7%, and in the initial node number experiment, when the number of initially infected
nodes increases from 10 to 30, the network destruction rate rises by 3%.
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1 Introduction
With the development of 5G networks, the number of Internet of Things (IoT) devices has increased

dramatically, leading to more complex, intelligent, and diverse network security threats and attack methods.
Traditional passive defense technologies are no longer able to meet the ever-changing network security needs,
so there is an urgent need for technologies that can effectively characterize network attack-defense behaviors,
accurately predict the evolution trends of network attack-defense situations, and implement active defense.
The characteristics of the network attack-defense confrontation process, such as objective opposition,
strategy dependence, and non-cooperative relationships, align with the features of game theory [1]. Game
theory is considered to be one of the fundamental theories in the discipline of cyberspace security, and can
provide an effective way to study network security issues [2]. Therefore, constructing network attack-defense
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behavior models based on game theory enables an in-depth analysis of the evolution of network attack-
defense situations, effectively enhancing the capability to prevent security threats and improving defense
efficiency [3].

In network security research, game theory models provide a systematic framework for analyzing and
optimizing the selection of attack-defense strategies. According to the degree of completeness of the behavior
and gain information grasped by both attackers and defenders, it can be categorized into complete and
incomplete information game models [4]. The degree of completeness of information refers to the fact that
the attack and defense parties clearly understand all the strategies that the other side may adopt at each
stage, and accurately know the benefits of different behaviors or combinations of strategies. In a complete
information game model, all participants have complete knowledge of all information. For example, Sun
et al. [5] addressed the issue of selecting defense strategies for multi-path combination attacks in network
attack and defense, established a non-zero-sum game model based on complete information, optimized
the computation method for the gain, and proposed the selection method of the optimal defense strategy.
To assess the security status of large-scale cloud networks, Chowdhary et al. [6] constructed a two-player
zero-sum Markov game model, which can enhance network security defense capabilities by identifying the
attacker’s optimal strategy and forcing the attacker to adopt sub-optimal strategies. Wang et al. [7] addressed
the issue of security risk assessment for military information networks and proposed a network security risk
assessment method based on complete information game. The method quantified the gains of attack-defense
strategies in terms of network security features and provided recommendations for selecting optimal defense
strategies on the basis of risk assessment.

In an incomplete information game model, at least one party cannot have certain key information,
which can result in information asymmetry. Liu et al. [8] addressed the issue that existing network research
focuses on only one of the attack-defense parties, making it difficult to accurately describe and represent
the network attack-defense dynamics. They proposed an incomplete information attack-defense game
model, and elucidated the temporal evolution of the network attack-defense situations through simulation
experiments in various scenarios. However, relying solely on the quantity of a certain type does not intuitively
reflect the network attack-defense situation. Yi et al. [9] established an attack-defense tree model for false
data injection attacks using economic indicators and attack metrics, calculated the expected gains for both
attackers and defenders, and determined the optimal defense strategy through equilibrium analysis. Yan
et al. [10] addressed the problem of allocating limited defense resources in complex information-physical
power systems to cope with false data injection attacks. They developed an incomplete information zero-
sum game model, used the state offset caused by false data injection attacks to quantify the attack-defense
gains, and provided the optimal defense resource allocation method through simulation results. However,
the unequal gains of both sides were ignored in the gain quantification process. Gao et al. [11] addressed the
lack of in-depth analysis of dynamic continuous interactions between multiple attackers and defenders in
future wireless networks. They constructed an interaction model based on a differential game, introduced the
paralysis threshold, derived the equilibrium strategy using optimal control theory combined with Hamilton’s
function, and proposed an optimal decision-making algorithm. However, the model relies on numerous
fixed parameters, making it suitable only for short-term attack-defense scenarios. To solve the problem
that existing deception resource selection methods based on game theory cannot simulate continuous
dynamic attack and defense behaviors when modeling, He et al. [12] constructed a deception resource choice
method based on differential game and Deep Q-network (DQN). The method constructed the node state
evolution process based on the infectious disease susceptible-infected-removed (SIR) model by analyzing
the attacks and defense strategies, giving the main function of the attacks and defenses, and solving the
optimal deception resource strategy by the DQN algorithm. However, the DQN algorithm has the problem
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of overestimation when calculating the Q-value. Aiming at the problem that complex network defense
strategies do not fully consider the attack and defense characteristics and the existing algorithms are difficult
to adapt to a variety of complex networks, Zhang et al. [13] constructed a potential differential game model
for network attack-defense, analyzed node state evolution, quantified attack-defense payoff, and enhanced
defense effectiveness, but still faces the challenges of high computational cost and poor scalability. Tang
et al. [14] addressed the problem of complex and variable attack behaviors and dynamic changes of the
network structure in the network environment. They constructed a Stackelberg hypergame model to describe
the conflict in cyberspace, and derived the game evolution by hierarchical multi-intelligence reinforcement
learning to form a dynamic and autonomous defense strategy. Their model can effectively respond to the
attacks and reasonably allocate resources, but the game model is constructed based on rational assumptions,
which makes it fail to fully reflect the real network attack and defense confrontation environment fully. He
et al. [15] tackled the problem that existing deception decision models based on game theory ignore the
optimal defense timing. They proposed a deception timing method based on the FlipIt game and Proximal
Policy Optimization (PPO). By incorporating discount factors and transfer probabilities, the single-stage
FlipIt game was extended to a multi-stage version, designed payoff functions, and the optimal deception
timing strategy was solved using the PPO algorithm. However, the model is poorly adapted and migrated,
and the scope of application is relatively narrow.

In summary, the analysis and optimization of attack-defense strategies based on game theory models
demonstrate that each method can provide theoretical guidance for selecting defense strategies. However,
existing methods also have certain limitations. Although the complete information game model is simple to
construct, easy to reason and analyze, and simple to calculate and solve, in real-world network attack-defense
confrontations, both parties find it difficult to fully understand each other’s information. The game model
based on incomplete information takes into account the incomplete information mastery of both attack-
defense parties, making them more aligned with real-world network attack-defense processes, but it cannot
effectively analyze the relationship between attack-defense behaviors and situation evolution.

Therefore, this paper considers the decision-making behavior of network attack-defense nodes as
logically simultaneous decisions, establishes an incomplete information static attack-defense game model,
and defines the network attack-defense situation by drawing on infectious disease dynamics theory. Through
network zero-day virus attack-defense game experiments, we study the evolution trend of network attack-
defense situations under different scenarios. The main contributions are as follows:

• A network attack-defense model is constructed based on incomplete information static game theory,
proposing methods for payoff quantification, game equilibrium solution, and determination of strategy
confrontation results, which aligns with the information incompleteness in real-world network attack-
defense scenarios better.

• Drawing on the theory of infectious disease dynamics, the network attack-defense situation is defined
through the density of network nodes, and the five state transition paths of network nodes are analyzed,
which helps to explain the evolution of the network attack-defense situation from the perspective of
attack-defense behaviors.

• Using the improved SIR model, a simulation model for a network attack-defense game is constructed.
It simulated the temporal evolution of network attack-defense situations under different strategy
combinations, interference methods, and initial numbers, and proposes recommendations to enhance
network defense effectiveness.

The remainder of this paper is organized as follows. Section 2 provides the method of revenue
quantification, game equilibrium solution, and determination of strategy confrontation results. Section 3
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describes the network attack-defense situation definition and evolution analysis. Section 4 presents the setup
of the simulation experiments and the analysis of the results. Section 5 concludes this paper.

2 Construction of Network Attack-Defense Game Model
This section describes the construction of the game model used to analyze the evolutionary trend

of the network attack-defense situation, which is divided into three main parts: game model definition,
game equilibrium solution, and the method for determining attack-defense strategy confrontation results.
Before the discussion, in order to facilitate the description, Table 1 lists some of the relevant symbols used in
this paper.

Table 1: Symbols explanation

Symbols Explanation
N Game player space
S Strategy space
θ Type space

x (t) Network attack and defense situation at time t
T Time
P Probability space
β Interference coefficient
U Payoff function

AC Attack cost
DC Defense cost
SLC System loss cost
SPE System protection earnings

η Defense strategy effectiveness
AL Attack lethality
RI Resource importance

SAD Security attribute damage
Q Strategy strength
p Attack success rate

2.1 Game Model Definition
In network attack-defense scenarios, the attackers and defenders have completely opposing objectives,

resulting in a distinct game structure. This antagonistic relationship makes it difficult for both sides
to fully grasp each other’s action strategy information, resulting in both attackers and defenders being
constrained by limited rationality. In this environment, the attacker’s attack strategies, attack revenues, and
other key information are not visible to the defender. The defender can only analyze the system’s potential
vulnerabilities, speculate on the attacker’s possible behaviors, and choose the optimal defense strategy on
this basis. Therefore, to effectively construct attack-defense game model, it is generally assumed that both
the attacker and the defender are constrained by factors such as capabilities, resources, and preferences. The
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attack-defense strategies are limited, and both parties aim to maximize their payoffs through appropriate
strategy combinations.

Definition 1. The network attack-defense game model (ADGM) can be represented as an eight-tuple,
ADGM = (N , S , θ , x (t) , T , P, β, U).

(1) N = (NA, ND) is the game player space, where NA denotes the attacker, and ND denotes the defender.
(2) S = (AS , DS) is the game strategy space, where AS = {ASi ∣i = 1, 2, 3, . . . , m} denotes the optional

strategy set of the attacker and DS = {DS j ∣ j = 1, 2, 3, . . . , n} denotes the optional strategy set of the defender,
and 1 ≤ (m, n) ≤ +∞.

(3) θ = (θA, θD) is the type space, where θA denotes the type of the attacker, and θD denotes the type
of defender.

(4) x (t) is the network attack-defense situation at time t. This paper uses the density of security
state nodes to characterize the network attack-defense situations, please see Definition 8 in Section 3 for
detailed analysis.

(5) T denotes time. The network attack-defense games are dynamic and continuous adversarial
processes that require modeling and analysis from a temporal perspective.

(6) P = (PA, PD) is the probability space of the players, where PA denotes the attacker probability space,
and PD denotes the defender probability space.

(7) β is the interference coefficient. The defender can adopt an active defense approach to interfere with
attacker’s actions and reduce their success rates.

(8) U = (UA, UD) is the game payoff function, where UA represents the attacker payoffs, and UD
represents the defender payoffs.

2.2 Game Equilibrium Solution
The quantification of attack-defense payoffs is the fundamental basis for equilibrium calculation and

inference analysis in game models. To more accurately show the advantages and disadvantages of attack-
defense strategies, this paper redefines the quantification of attack cost, defense cost, system loss cost, system
protection earnings, and defense strategy effectiveness from the perspective of both attackers and defenders
on the basis of existing research [16,17].

Definition 2. Attack cost (AC) refers to the expenses incurred by the attacker in carrying out an attack
during the attack-defense process. This includes the cost of creating and deploying zero-day viruses, as well
as the penalty incurred when the defender detects the attack.

Definition 3. Defense cost (DC) refers to the expenses incurred by the defender to implement defensive
actions for resource protection. This includes the cost of implementing zero-day virus defense strategies and
the losses caused by increased system overhead due to taking defensive actions.

Definition 4. System loss cost (SLC) is influenced by the combination of attack-defense strategies,
denoted as SLC (ASi , DS j), which represents the loss incurred by the target system when the defense strategy
selection DS j fails to stop the attack strategy ASi .

Definition 5. System protection earnings (SPE) are influenced by the combination of attack-defense
strategies, denoted as SPE (ASi , DS j), which represents the protection of target system resources when the
defense strategy selection DS j effectively blocks the attack strategy ASi .

Definition 6. Defense strategy effectiveness η (ASi , DS j) refers to the effectiveness of defense strat-
egy DS j for countering attack strategy ASi during the attack and defense process, and it satisfies
η (ASi , DS j) ∈ [0, 1].
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System loss cost SLC (ASi , DS j) and system protection earnings SPE (ASi , DS j) are usually described
by attack lethality (AL), resource importance (RI), security attribute damage (SAD), and defense strategy
effectiveness η (ASi , DS j), the calculation method is given by Eq. (1).

⎧⎪⎪⎨⎪⎪⎩

SLC (ASi , DS j) = (1 − η (ASi , DS j)) ∗ AL ∗ RI ∗ SAD

SPE (ASi , DS j) = η (ASi , DS j) ∗ AL ∗ RI ∗ SAD
(1)

Due to the different implementation costs of the attack-defense strategies, the payoff UA (ASi , DS j) and
UD (ASi , DS j)under different combinations of attack-defense strategies (ASi , DS j) are calculated by Eq. (2).

⎧⎪⎪⎨⎪⎪⎩

UA (ASi , DS j) = SLC (ASi , DS j) − AC (ASi)
UD (ASi , DS j) = SPE (ASi , DS j) − DC (DS j)

(2)

ADGM is an incomplete information static game with Bayesian Nash equilibrium, whose existence
theorem and proof can be found in the literature [18]. When solving the equilibrium of incomplete
information games, the Harsanyi transformation is used to introduce a virtual player, “Nature,” converting
the problem into an equilibrium-solving task for a complete but imperfect information game. For the
convenience of reasoning and analysis, we assume that the attacker has two types θA = {θA1 , θA2}, with
corresponding probabilities PAi = {PA1 , PA2}, where PA1 + PA2 = 1, and each type has attack strategies of
different strengths, θA1 = {AS1 , AS2} and θA2 = {AS3, AS4}. Similarly, we assume that the defender has two
types θD = {θD1 , θD2}, with corresponding probabilities PD j = {PD1 , PD2}, where PD1 + PD2 = 1, and each
type has attack strategies of different strengths, θD1 = {DS1 , DS2} and θD2 = {DS3, DS4}. The incomplete
information static Bayesian game tree obtained by Harsanyi transformation twice is shown in Fig. 1.

Figure 1: Incomplete information static Bayesian game tree

At time t, the attacker’s payoff is denoted as UA (AS (t) , DS (t)) (abbreviated as UA (t)). Due to the
incomplete information static game, the attacker does not know the exact type of the defender, so the
attacker’s payoff UA (t) needs to account for the probability PD j of the defender’s various types, as well as the
probability PAi of the attacker’s various types. For each combination of defense type θD j and attack type θAi ,
the payoff is UA (ASi , DS j) (where ASi is the attack strategy under the attack type θAi and DS j is the defense
strategy under the defense type θD j). By weighting the payoffs of all possible combinations according to their
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probabilities, the attacker’s payoff can be represented by Eq. (3).

UA (t) =
m
∑
i=1

n
∑
j=1

PAi ∗ PD j ∗UA (ASi , DS j)

= ∑
θ A

PAi ∗ PD j ∗UA (ASi , DS j)
(3)

Similarly, at time t, the defender’s payoff is denoted as UD (AS (t) , DS (t)) (abbreviated as UD (t)) as
shown in Eq. (4).

UD (t) =
m
∑
i=1

n
∑
j=1

PAi ∗ PD j ∗UD (ASi , DS j)

= ∑
θ D

PAi ∗ PD j ∗UD (ASi , DS j)
(4)

Let U∗A (t) and U∗D (t) be the Bayesian Nash equilibrium solutions of the ADGM, which satisfy Eq. (5).

⎧⎪⎪⎨⎪⎪⎩

U∗A (t) =max∑{P (DS j ∣ASi)UA [(AS (t) , DS∗ (t)) ; ASi , DS j]}
U∗D (t) =max∑{P (ASi ∣DS j)UD [(DS (t) , AS∗ (t)) ; DS j , ASi]}

(5)

where U∗A (t) denotes the maximum payoff for the attacker when choosing the optimal strategy AS∗ (t)
under the given defense strategy DS (t). P (DS j ∣ASi) denotes the conditional probability that the defender
chooses strategy DS j when the attacker chooses strategy ASi . UA [(AS (t) , DS∗ (t)) ; ASi , DS j] denotes the
attacker’s payoff when the attacker chooses strategy AS (t) and the defender chooses the optimal strategy
DS∗ (t). U∗D (t) denotes the maximum payoff for the defender when choosing the optimal strategy DS∗ (t)
under the given attack strategy AS (t). P (ASi ∣DS j) denotes the conditional probability that the attacker
chooses strategy ASi when the defender chooses strategy DS j . UD [(DS (t) , AS∗ (t)) ; DS j , ASi] denotes the
defender’s payoff when the defender chooses strategy DS (t) and the attacker chooses the optimal strategy
AS∗ (t).

Eqs. (3)–(5) are combined to form a system of equations, and the Bayesian Nash equilibrium of
the ADGM can be solved using the linear programming method. The equilibrium solution represents
the optimal strategy for each party, where no unilateral change in strategy by either party will increase
their payoff.

2.3 Determination of Network Attack-Defense Strategy Confrontation Results

Definition 7. The strategy strength Q = (QA, QD) indicates the magnitude of a strategy’s capability,
where QA represents the attacker’s strategy strength and QD represents the defender’s strategy strength, which
is mainly used to determine the results of attack-defense game.

Referring to the common vulnerability scoring system [19], strategy types are categorized based on the
strength of attack-defense strategies. According to the attacker’s strategy strength, they are classified into two
categories, i.e., strong attack and weak attack, denoted as θA = {θAH , θAL}, where QAH and QAL denote the
strategy strength values of the strong and weak attacks, respectively. If the attacker adopts a mixed strategy at
time t, with the selection probabilities PAH and PALof strong and weak attacks, respectively, the probability
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of choosing the mixed strategy is denoted as PA (t) = {PAH , PAL}. The expected value method is used to
calculate the strategy strength QA (t) of the attacker, as shown in Eq. (6).

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

QA (t) = PAH ∗ QAH + PAL ∗ QAL

PAH + PAL = 1
QAH , QAL ∈ [0, 1]

(6)

Considering that the defender typically use active defense strategies to disrupt attackers’ actions and
reduce their success rates. When the interference coefficient β is introduced, the attacker’s strategy strength
is shown in Eq. (7).

Q∗A (t) = β ∗ QA (t) (7)

Based on the defender’s strategy strength, their strategy type are classified into two categories, i.e., strong
defense and weak defense, denoted as θD = {θDH , θDL}, where QDH and QDL denote the strategy strength
values of the strong and weak defense, respectively. If the defender adopts mixed strategy at time t, with the
selection probabilities PDH and PDL of strong and weak defenses respectively, the probability of choosing
the mixed strategy is denoted as PD (t) = {PDH , PDL}. The expected value method is used to calculate the
strategy strength QD (t) of the defender, as shown in Eq. (8).

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

QD (t) = PDH ∗ QDH + PDL ∗ QDL

PDH + PDL = 1
QDH , QDL ∈ [0, 1]

(8)

Definition 8. The attack success rate p denotes the value where the attacker’s strategy strength is higher
than the defender’s strategy strength, as shown in Eq. (9).

p = {
Q∗A (t) − QD (t) , Q∗A (t) > QD (t)
0, Q∗A (t) < QD (t)

(9)

3 Network Attack-Defense Situation Definition and Evolution Analysis
Emergence is a natural attribute of network security. Qu et al. [20] pointed out that epidemic models

and agent-based simulations are effective methods for studying the emergence of network security. The SIR
model is a classic infectious disease model, which is mainly used to analyze the propagation patterns of
infectious diseases within a population. The main reason why the infectious disease model is suitable for
modeling network attacks is the similarities between the two in terms of propagation characteristics and state
transitions. (1) In terms of propagation characteristics, infectious diseases spread through inter-individual
contact or other means, whereas network attacks spread through the network via connections between nodes,
and infected nodes can become new sources of propagation and continue to trigger spread. (2) In terms of
state transitions, infectious individuals undergo a process from susceptibility to infection to recovery, while
network nodes undergo a process from susceptibility (vulnerable nodes) to infection to immunity. These
similarities enable the infectious disease model to effectively simulate network attack-defense behaviors,
predict the spread of attacks, and provide an important reference for the development of network attack
prevention and control strategies. While Markov chains and stochastic processes can describe the state
transfer of a system, they often fail to reflect the complexity and diversity behind the transfer. In contrast, the
susceptible-infected-removal-damaged (SIRD) model portrays the security state evolution of network nodes
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more comprehensively by introducing multiple security state nodes (e.g., susceptible, infected, removal, and
damaged states) and their transfer paths. For example, in a case of an attack on an enterprise network, some
employees initially clicked on a malicious link in a phishing email (corresponding to a susceptible state
node contacting the source of the infection), which resulted in some of the computers within the enterprise
entering the infected state. As the attack continued, the enterprise security team deployed firewalls and
intrusion detection systems (corresponding to the defense policy), and some of the infected nodes were
quarantined or repaired and transferred to the immune state. However, some new attacks (e.g., zero-day
vulnerability attacks) cause repaired nodes to be infected again (similar to removal state nodes changing
back to susceptible state due to virus mutation), and some nodes with failed defense suffer data leakage or
system corruption (enter the damaged state). The above modeling approach not only better fits the complex
dynamics of actual network attack and defense scenarios, but also more accurately predicts the scope and
trend of attack propagation. The SIR model, Markov chains, and stochastic process comparison are presented
in Table 2.

Table 2: Model comparison

Model SIR model Markov chains Stochastic process
State change portrayal Graphical depiction of

state transfers for better
intuition

Describing state
transfers in terms of a

probability matrix is less
intuitive

Describing state
transfers in terms of

random variables is not
intuitive

Attack propagation
path representation

Clearly show the path of
attack proliferation

Difficulty in presenting
clear details of the attack

path

Difficulty in accurately
representing attack
propagation paths

Accuracy of long-term
trend forecasts

Relatively high Ordinary Relatively low

The SIR model has been used to some extent in the area of cybersecurity research. For example, Wang
et al. [21] constructed a “Two-go and One-live” type virus propagation model based on the susceptible-
infected-removed-susceptible (SIRS) information diffusion model, analyzed the stability of equilibrium
points by applying the Routh-Hurwitz stability criterion, and provided countermeasure suggestions to
enhance network defense capabilities. Liu et al. [22] established a susceptible-exposed-infected-removal
(SEIR) propagation model with mutant viruses based on the infectious disease model. By determining the
optimal control variable pair for the repair rates of infected and mutant nodes, the optimal control strategy
was proposed. Tang et al. [23] proposed a susceptible-latent-breaking-recovered-susceptible (SLBRS) virus
propagation model for scale-free network topology features based on the infectious disease model and gave
the optimal control strategy by analyzing the global stability under virus-free equilibrium.

During the confrontation process, the attacker attempts to expand the attack range by deploying the
attack strategy to more nodes, and the defender attempts to protect the normal service of network nodes by
deploying defense strategies to more nodes. From the emergence perspective, micro-level network attack-
defense game behaviors cause changes in network node states, thereby influencing the evolution of network
attack-defense situations at the macro-level. In a network system composed of numerous nodes, attack-
defense confrontations primarily cause two changes. (1) The security state of individual network nodes
changes continuously. (2) The number of network nodes in different security states undergoes ongoing
dynamic changes. According to the mechanism of action of network viruses, the zero-day virus propagation
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process consists of four stages, i.e., susceptibility, virus propagation, virus repair, and damage. Therefore,
based on the SIR model, the damaged state is introduced to propose the SIRD model, which defines four
types of network node states, i.e., susceptible state S, infected state I, removal state R, and damaged state D.

S: The network node has not deployed any attack-defense strategies, and normal users have control over
the node. S (t) denotes the count of susceptible state nodes at time t.

I: The attacker has deployed an attack strategy at this node and has control over it, which corresponds
to NA in the ADGM. I (t) denotes the count of infected state nodes at time t.

R: The defender has deployed a defense strategy at this node and has control over it, which corresponds
to ND in the ADGM. R (t) denotes the count of removal state nodes at time t.

D: All defense strategies fail, and the infected nodes lose their normal service function. D (t) denotes
the count of damaged state nodes at time t.

In network attack-defense research, it is generally assumed that the studied network system is fixed, with
a constant number of nodes denoted as N. The network attack and defense games can cause node security
state transitions and dynamic changes in the number of different types of nodes, but regardless of how the
network nodes transition and change, the total number of nodes in the four types of security status at the
time t remains constant, as shown in Eq. (10).

S (t) + I (t) + R (t) + D (t) = N (10)

Network node density refers to the proportion of a certain type of node to the total number of nodes.
The higher the density of network nodes, the more dominant that type of node is in network attack-defense
confrontations. The density of different types of nodes reflects their distribution in the network system at a
specific moment, characterizing the network attack-defense situation.

Definition 9. The network attack-defense situation at time t is composed of four types of network node
densities x (t) = (ρS , ρI , ρR , ρD), which is represented by Eq. (11).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρS (t) =
S (t)

N

ρI (t) =
I (t)

N

ρR (t) =
R (t)

N

ρD (t) =
D (t)

N
ρS (t) + ρI (t) + ρR (t) + ρD (t) = 1

(11)

The network nodes in different states are regarded as intelligent agents, respectively, and the phe-
nomenon of network attack-defense situation evolution at the macro level is analyzed through the micro
level network attack-defense game behaviors. In the zero-day virus attack-defense situation simulation, the
node’s behavior rules are set based on the real network attack-defense scenarios, aiming to simulate the node’s
state changes under the effect of attack-defense strategies. Due to the game behaviors between attackers and
defenders, the SIRD model has five node security state transition paths, as shown in Fig. 2.
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Figure 2: Node security state transition path

S → I: The susceptible state S node comes in contact with the infected state I node and the average
strategy strength of the attacker is higher than that of the defender, the network node cannot resist the attack.

I → R: According to the strategic cost of attack and defense game, if the defender can afford the defense
cost, the node will transition from an infected state to a removal state.

R → S: In the process of propagation of zero-day virus, it will continuously mutate, causing the removal
nodes to lose the ability of immunity to the mutated virus, and α represents the conversion rate from a
removal state to a susceptible state.

I → D: According to the strategy cost of the attack-defense game, if the defender cannot afford the
defense strategy’s cost, nodes transition from an infected state to a damaged state.

D → S: Due to some core computers being controlled, the service performance of the entire network
will be degraded, and the operation and maintenance personnel will renovate some damaged nodes, and γ
represents the recovery rate from the damaged state to the susceptible state.

4 Simulation Analysis of Network Zero-Day Virus Attack-Defense Cases

4.1 Analysis of Network Zero-Day Virus Attack-Defense Behavior
The zero-day virus is one of the frequently appearing forms of network attacks in recent years, with

significant impacts including WannaCry, Bash Shellshock, Log4Shell, and Spring4Shell. The zero-day viruses
first use common viruses such as Trojans and worms to hide malicious code for illegal activities and implant
it into the target host. Then, they exploit zero-day vulnerabilities to self-replicate and spread to other
target hosts. Once a host is infected, attackers can remotely execute malicious code, steal or destroy data,
and even take full control of the system. Unlike traditional viruses, zero-day viruses exhibit diverse types,
rapid mutation rates, complex propagation mechanisms, strong concealment, and high destructiveness. If
defense measures are not updated promptly, it is difficult to defend against them effectively. Therefore,
preventing zero-day viruses requires efforts from both technical and management aspects, defense measures
include real-time patch updates, vulnerability fixes, strengthening authentication and audit processes, and
establishing comprehensive emergency response plans. This paper takes zero-day viruses as an example,
constructs the ADGM, and analyzes network attack-defense behaviors.

In the zero-day virus game model, the participants are the zero-day virus attacker NA and the network
security defender ND . The attackers are divided into two types θA = (θAH , θAL), representing strong
attack types and weak attack types. There are various types of zero-day viruses, each with different attack
capabilities. For example, remote code execution (RCE) can execute malicious code on the target host and
gain full control of the system. Memory exploitation (ME) uses buffer overflow vulnerabilities in memory
to execute malicious code, bypass security mechanisms, and gain system permissions. Cross-site scripting
(XSS) attacks steal user sessions by injecting malicious scripts, but cannot directly control the server. Cross-
site request forgery (CSRF) performs unauthorized operations by forging legitimate user requests, but cannot
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directly execute malicious code. This paper considers RCE and ME as strong attack types, and XSS and CSRF
as weak attack types. The defenders are divided into two types θD = (θDH , θDL), representing strong defense
types and weak defense types. Anomaly detection (AD) can promptly identify and respond to anomalies.
Updating patches (UP) can fix known vulnerabilities and reduce the attack surface. Real-time software
updates (RTSU) are effective only against known vulnerabilities and cannot detect zero-day vulnerabilities.
Deleting useless accounts (DUA) can reduce potential attack entry points. This paper considers AD and UP
as strong defense types, and RTSU and DUA as weak defense types. Referring to the classification method
of reference [24], the attack strategy is divided into AS = {AS1 , AS2, AS3, AS4} and the defense strategy is
divided into DS = {DS1 , DS2, DS3, DS4}. The relevant attributes of the attack-defense strategies for zero-day
virus are presented in Tables 3 and 4.

Table 3: Attack strategy attribute description

Action Attack action AL AC Attack strength Strategy type Strategy strength
AS1 RCE 10 200 0.94 θAH 0.92AS2 ME 10 165 0.90
AS3 XSS 9 110 0.56 θAL 0.52AS4 CSRF 9 75 0.48

Table 4: Defense strategy attribute description

Action Defense action DC Defense strength Strategy type Strategy strength
DS1 AD 300 0.72 θDH 0.71DS2 UP 220 0.70
DS3 RTSU 170 0.24 θDL 0.21DS4 DUA 120 0.18

Based on the zero-day virus attack-defense practice, the importance of the resources attacked by
(AS1 , AS2, AS3 and AS4) is in the order of (6, 5, 4, 4) and the safety attribute damage is (30, 30, 25, 25),
respectively. According to the China National Vulnerability Database of Information Security (CNNVD),
the effectiveness of the defense strategy η (ASi , DS j) is listed as shown in Eq. (12).

η (ASi , DS j) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AS1 AS2 AS3 AS4
DS1 0.35 0.4 0.7 0.9
DS2 0.25 0.3 0.6 0.8
DS3 0.15 0.2 0.4 0.6
DS4 0.1 0.1 0.3 0.5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(12)

Based on historical data and regression analysis, combined with the experience of security experts,
the defense payoff UD (ASi , DS j) and attack payoff UA (ASi , DS j) under different combinations of attack-
defense strategies (ASi , DS j) are calculated using Eqs. (1) and (2), as shown in Table 5.
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Table 5: Attack-defense payoff under different strategy combinations

Attack-defense strategy AS1 AS2 AS3 AS4

DS1 (330, 1060) (360, 825) (487, 227) (510, 75)
DS2 (230, 1240) (275, 990) (455, 340) (500, 105)
DS3 (100, 1330) (160, 1155) (280, 565) (370, 285)
DS4 (60, 1420) (90, 1320) (217, 677) (330, 375)

4.2 Network Zero-Day Virus Attack and Defense Situation Simulation
The network information system consists of numerous nodes, and the attack-defense game behaviors

of a single node makes it difficult to effectively show the overall network attack-defense situation, simulation
is an effective way to solve the problem. NetLogo is an open-source multi-agent simulation tool capable of
simulating intelligent interaction behaviors among numerous nodes simultaneously. In the field of cyber-
security, there are many researches on the characteristics of virus propagation, according to the possibility
that the zero-day virus may have behavior such as mutation or user updating the system in the process of
spreading, the simulation experiment sets the transformation rate from removal node to susceptible node
α = 0.2. In order to compare with the adoption of various active defense strategies (e.g., releasing false signals,
dynamically adjusting the attack surface, etc.), the simulation experiments set the interference coefficients
β = 1 for initially not adopting any active defense strategy. In the actual network operation and maintenance,
when some of the core computers are controlled to cause network performance degradation, the operation
and maintenance personnel will take a series of measures to refurbish the damaged equipment, simulation
experiments set the recovery rate from the damaged node to the susceptible node γ = 0.03. To prevent more
subjectivity, the total number of nodes is set to N = 1000. The average node degree is set to 6 based on the
average of node connections in common enterprise network topologies. The initial number of S, I, R and D
nodes are 990, 10, 0 and 0, respectively. The initial main interface is generated as shown in Fig. 3, where blue
nodes represent the susceptible state S and red nodes represent the infected state I.

Figure 3: Initial main interface
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By setting different simulation parameters, we can dynamically simulate the evolution trend of
attack-defense situations over time in scenarios with different strategy combinations, different interference
methods, and different initial numbers. When the count of infected nodes in the network system is zero, the
count of damaged nodes cannot intuitively reflect the attack-defense situation, while the density of damaged
nodes can display attack-defense status at a specific moment. Therefore, the density of damaged nodes is
defined as the network destruction rate.

4.2.1 Simulation Experiments on the Impact of Strategy Selection on Attack-Defense Situation

Scenario 1: When the selection probabilities of attack and defense strategies are PA (t) = {0.7, 0.3}
and PD (t) = {0.2, 0.8}, respectively. The attack success rate p = 0.49 can be calculated by Eqs. (6)–(9). The
simulation results are shown in Fig. 4.

Figure 4: Evolution of the attack-defense situation when p = 0.49

Scenario 2: When the selection probabilities of attack and defense strategies are PA (t) = {0.7, 0.3}
and PD (t) = {0.6, 0.4}, respectively. The attack success rate p = 0.29 can be calculated by Eqs. (6)–(9). The
simulation results are shown in Fig. 5.

4.2.2 Simulation Experiments on the Impact of Active Defense on the Attack-Defense Situation

Scenario 3: For the comparison experiment, the attacker and defender’s strategy selection probabilities
follow the setting of Scenario 1. In this case, the defender employs a weak active defense strategy by releasing
false signals to disrupt with the attacker’s judgment, with the interference coefficient β = 0.9. The simulation
results are shown in Fig. 6.

Scenario 4: The attacker and defender’s strategy selection probabilities follow the setting of Scenario 1.
In this case, the defender opts for a strong active defense strategy, dynamically adjusting the attack surface
to reduce the success rate of the attacker, with the interference coefficient β = 0.7. The simulation results are
shown in Fig. 7.



Comput Mater Contin. 2025;83(1) 1489

Figure 5: Evolution of the attack-defense situation when p = 0.29

Figure 6: Evolution of the attack-defense situation when β = 0.9

Figure 7: Evolution of the attack-defense situation when β = 0.7
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4.2.3 Simulation Experiment on the Impact of the Initial Number of Nodes in Different States on the
Attack-Defense Situation
Scenario 5: For the control experiment, the control variable method is adopted, the attacker and

defender’s strategy selection probabilities follow the setting of Scenario 1, and the initial number of infected
state I nodes is set to 20. The simulation results are shown in Fig. 8.

Figure 8: Evolution of the attack-defense situation when I = 20

Scenario 6: The attacker and defender’s strategy selection probabilities follow the setting of Scenario 1,
and the initial number of infected state I nodes is set to 30. The simulation results are shown in Fig. 9.

Figure 9: Evolution of the attack-defense situation when I = 30

4.3 Simulation Results Analysis
By analyzing the simulation results in the different scenarios mentioned above, the following three

countermeasure suggestions to enhance network defense effectiveness can be obtained:
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(1) Strengthening the defense capabilities of individual nodes is crucial to reversing the network attack-
defense situation. Comparing the experimental results of Scenario 1 and Scenario 2, when p = 0.49, the
network destruction rate is 38.7%. When p = 0.29, the network destruction rate is 27.4%. The comparison
results show that the game between attackers and defenders depends solely on the attack success rate in
the absence of other factors interfering, as the attack success rate decreases, the network destruction rate
also decreases. Therefore, from the perspective of actual network security scenarios, network defenders
should enhance their attention to network security and improve the defense capabilities of individual nodes.
Enterprise networks usually have a complex organizational structure covering multiple departments and
business systems, with significant differences in network security requirements across departments. With this
model, the enterprise security team can divide the network into multiple security zones based on the business
importance of different departments and the distribution of network nodes, and develop personalized
defense strategies for each zone. For example, for servers and critical network equipment in core business
departments, the model can guide the deployment of intrusion detection systems, set up firewalls, regularly
update system patches, and implement strict access control policies. These measures can effectively lower the
success rate of attacks, thereby reducing overall network security risks and enhancing defense capabilities
against potential threats.

(2) Utilizing active defense technologies can effectively reduce the network destruction rate. Comparing
the experimental results of Scenarios 1, 3, and 4, when the interference coefficient β = 1, the network
destruction rate is 38.7%. When the interference coefficient β = 0.9, the network destruction rate is 37.4%.
When the interference coefficient β = 0.7, the network destruction rate is 31.7%. The comparison results
indicate that as the interference coefficient decreases, the network destruction rate also declines. Therefore,
defenders should make comprehensive use of new active defense technologies such as mobile target defense
and mimetic defense, and increase the difficulty of attackers in identifying and attacking the target system
by deploying dynamic defense mechanisms, to effectively safeguard network security. Cloud computing
environments are characterized by dynamic allocation of resources and multi-tenant sharing. This model
helps cloud service providers optimize resource allocation by quantitatively analyzing attacker and defender
strategy strengths and their benefits. For example, in cloud computing environments, using dynamic resource
allocation and virtualization technology, a moving target defense strategy can be implemented to increase
the difficulty of locating attackers by continuously adjusting the network resource allocation and service
deployment location, thus improving the security and defense capability of the system.

(3) The initial number of infected nodes will affect the macro-level evolution trend of the network attack-
defense situation. Comparing the experimental results of Scenario 1, Scenario 5, and Scenario 6, the higher
the initial number of infected nodes, the more unfavorable the attack-defense scenarios are to the defender,
while the overall number of nodes remains the same. When the initial infected node I = 10, the network
destruction rate is 38.7%. When the initial infected node I = 20, the network destruction rate is 40.1%. When
the initial infected node I = 30, the network destruction rate is 41.7%. In the IoT environment, the large
and widely distributed number of devices, along with the complex network structure and diverse device
types, complicates the situation. If employees’ lack of security awareness (e.g., clicking on a malicious link)
leads to the initial infection of some nodes with viruses, the viruses may spread rapidly and destroy the
entire network service. Through this model, it is possible to monitor the changes in the status of network
nodes, discover the initially infected nodes in time, reduce the number of attackers from the source, and
thus effectively change the network attack-defense posture. Therefore, there is an urgent need to strengthen
the popularization of network security awareness, improve the network security skills of the whole society,
establish a sound network defense system, and focus on measures such as device authentication, encrypted
communication, and abnormal traffic monitoring to enhance overall security.
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The model and methodology of this paper are compared with the relevant references, as shown
in Table 6. The following can be seen:

(1) In terms of model assumptions, the literatures [5,6] are based on the complete information
assumption. However, in real-world network attack-defense scenarios, the information on both sides is
uncertain. This paper adopts the assumption of incomplete information, making it more aligned with the
realities of network attack-defense.

(2) In the analysis of situation evolution, the literature [8] models the attacker and defender as agents
and represents the network attack-defense situation through the number of agents. However, this method
lacks intuitive visualization. Drawing on the theory of infectious disease dynamics, this paper defines the
network attack-defense situation based on the density of network nodes in various security states, providing
a more intuitive representation of situational evolution.

(3) In terms of attack-defense experimental scenarios, the literatures [5,6,10] all use physical attack and
defense environments with a few number of nodes, strong subjectivity, and a large amount of calculation.
This paper uses the NetLogo multi-agent body simulation tool to simulate the evolutionary trend of network
attack-defense situations over time. With numerous nodes and low computational requirements, it is well-
suited for large-scale scenarios.

Table 6: Model and method comparison

References Model
assumption

Situation
evolution
analysis

Attack-defense
experiment
scenarios

Node number Situation
display
effect

[5] Complete
information

No Physical
attack-defense
environment

Few No

[6] Complete
information

No Physical
attack-defense
environment

Few No

[10] Incomplete
information

No Physical
attack-defense
environment

Few No

[8] Incomplete
information

Simple NetLogo
multi-agent
simulation

Many Non-
intuitive

This
paper

Incomplete
information

Detailed NetLogo
multi-agent
simulation

Many Intuitive

5 Conclusion
With the development of 5G networks, the frequency of cybersecurity incidents has increased, and

traditional passive defense is unable to meet the ever-changing cybersecurity needs. Modeling methods can
effectively analyze network attack-defense processes and improve network defense capabilities. However,
existing network attack-defense models lack the analysis of the relationship between micro-level attack-
defense game behaviors and macro-level network attack-defense situations from the game perspective. To
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address these issues, this paper proposes a network attack -defense game model (ADGM), proposes the
SIRD model which introduces the damage state node based on the SIR model, defines the network attack-
defense situation by the density of different security state nodes, analyzes the network node security state
transition paths by the game results which are used to analyze the network attack-defense situation evolution
phenomenon from the network attack-defense behavior level, conducts experiments on the evolution trends
of network attack-defense situations over time in different scenarios were using the NetLogo multi-agent
simulation tool, and finally provides recommendations for enhancing network defense effectiveness by
analyzing and summarizing the experimental results.

Based on the above theoretical modeling, although our method can effectively analyze the evolution
trend of network attack-defense situations, it still has the following limitations: firstly, the assumption of
static strategy space fails to adequately reflect the actual network environment; secondly, the computational
complexity of the Bayesian Nash equilibrium in large-scale network systems has not yet been effectively
addressed. To address the above limitations, future work will introduce Asynchronous Advantage Actor-
Critic (A3C) technology. A3C combines the advantages of policy gradient and value function, enabling
agents to dynamically adjust attack and defense strategies according to changes within network conditions.
Additionally, approximation algorithms and distributed computing techniques will be employed to enhance
computational efficiency by decomposing large-scale computational tasks into smaller sub-tasks that can be
processed in parallel.
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