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ABSTRACT: The design and development of solar dryers are crucial in regions with abundant solar energy, such as
Bhopal, India, where seasonal variations significantly impact the efficiency of drying processes. The paper is focused
on employing a comprehensive mathematical model to predict the dryer’s performance in drying the materials such
as banana slices. To enhance this model, Hyper Tuned Swarm Optimization with Gradient Tree (HT_SOGT) was
utilized to accurately predict and determine the optimal size of the dryer dimensions considering various mathematical
calculations for material drying. The predictive model considered the influence of seasonal fluctuations, ensuring an
efficient drying process with an objective function to optimize the drying time of an average of 7 hrs throughout the
year. Across all recorded ambient temperatures (ranging from 16.985○C to 31.4○C), the outlet temperature of the solar
dryer is consistently higher, ranging from 39.085○C to 66.2○C. The results show that the optimized dryer design, based
on HT_SOGT modelling, significantly improves drying efficiency of the materials across varying conditions, making
it suitable for sustainable applications in agriculture and food processing industries in the Bhopal region.

KEYWORDS: Solar dryer; swarm optimization algorithm; drying time; drying efficiency; irradiation; agricultural
materials

1 Introduction
The need for energy in industrial and agricultural industries has grown along with the global population.

Around 90% of the energy used worldwide by the year 2100 has to come from renewable energy sources, such
as solar energy, which is an abundant and clean energy source [1]. Also, there has been a high population
growth and food supply which are caused by agricultural food losses after harvesting and quality degradation.
Innovative processing methods have been applied to preserve the quality, extend the shelf life, and avoid
product loss in marine and agricultural products. A long-standing method for drying agricultural goods
such as potatoes, tomatoes, bananas, etc., is solar drying [2]. It was discovered that about a third of the energy
used worldwide is consumed by the food sector. In addition, the processing of food accounts for about 26%
of all greenhouse gas emissions. Because the majority of foods—roughly 34% of all goods worldwide—need
to have at least some portion of their product dried at some point during processing, drying is an energy-
intensive unit activity within this industry [3]. A clean, renewable energy source that has the potential to
replace traditional fossil fuels is the use of solar radiation for drying operations. Open sun drying (OSD)
is the term used to describe the conventional sunlight method for drying. However, since the product will
be exposed to many environmental factors (such as rain, dirt, insects, etc.), several drawbacks will affect its
quality [4].
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It is anticipated that the solar constant, or extraterrestrial total solar irradiance per unit area is measured
at one astronomical unit from the sun on a surface perpendicular to the rays [5]. This will fluctuate from 1412
W/m2 in early January to 1321 W/m2 in July due to the Earth’s changing distance from the sun. Approximately
165 petawatts (PW) of solar energy are absorbed by the Earth’s surface. This energy is reflected into space
which is about 30% of its total value, 47% is converted to low-temperature heat (water evaporation), 23%
is turned to wind energy, and 0.5% is transferred to wave kinetic energy [6,7]. Tropical regions are known
for being popular with sun drying due to the abundant solar energy available there, the ease of design and
installation, and the resulting effectiveness. With few exceptions, most countries of the developing world are
located in climatic zones receiving reasonably higher insolation than the world average figure which varies
from 1600 to 2200 kWh/m2/year [8]. The main classification of solar drying system is mentioned in Fig. 1.
According to the utilization of solar power, the drying system is classified into two groups; open sun drying
(OSD) and controlled solar drying [9].

Figure 1: Classification of the solar dryer system

The technique to be selected depends on the food, otherwise, it may lead to inadequate drying which
can potentially cause the agricultural goods to expire completely [10]. There are essentially two strategies for
drying: artificial and natural. The first process of natural drying involves subjecting the materials to direct
sunlight and wind conditions. Alongside harvesting and threshing, it is the most inexpensive and popular
method of drying crops. It has been recognized, nonetheless, that natural drying techniques have drawbacks,
including lengthy drying times, insect infestations, a tendency to lag behind industrialized agricultural
production, dependence on weather conditions, uneven drying, contamination risk, lack of temperature
control, slow drying process, and space requirements.

Hence, the context of large-scale mechanization and the disadvantages of natural drying stimulated
the development of artificial drying, which employs artificial devices with heat supply for material drying
regardless of the ambient conditions [11]. AI helps to optimize the design of solar dryers developed in
Computational Fluid Dynamics (CFD) since it improves their performance and efficiency and automates
them. AI systems, or artificial intelligence, use predictive modeling to evaluate weather data and forecast
levels of solar radiation with a high enough degree of precision to enable improved planning and real-time
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drying process fine-tuning [12]. Examining factors that expose important essential qualities in the areas of
moisture content, temperature distributions, and airflow, aids in optimizing the design and helps identify the
best feasible configurations. AI-powered automation systems may maintain an eye on and control important
variables like drying time, moisture ratio (MR), drying rate (DR), temperature, and airflow.

Consequently, less labor is required, and the drying process is more consistent [13]. AI methods such
as Artifical Neural Network (ANN), Support Vector Machine (SVM), Deep Neural Network (DNN), etc.,
could assist with energy efficiency by reducing waste energy use and optimizing the amount of solar radiation
that is accessible. It will also make it possible to adapt optimal material selection and structural designs best
suited to increase solar input and retain heat [14]. Its smooth drying conditions allow it to retain consistent
and uniform product quality. Even better, it can identify problems and forecast when maintenance will be
needed, extending the solar dryers’ lifespan and reliability. AI typically enhances the sun drying process,
making it safer, more efficient, and condition-adaptive, a literature describing the key benfits is mentioned
in Table 1.

Table 1: AI-Enhanced solar food drying systems

Ref. No. Design Material Efficiency and
drying time

Techniques AI models

[15] Solar food drying
system

Solar drying
system for

foods

51.8%–15.9% CFD, Machine
Learning (ANN,
SVM), Drying

Kinetics Models

SVM algorithm
(RMSE 0.01), ANN,

drying kinetics
models

[16] Three indirect
solar drying
technologies

(conventional,
sand, limestone)

Solar dryer for
tomatoes

52.52% (sand),
12.57%

(limestone), 22 h
(limestone)

Techno-economic
analysis, absorber
plate temperatures

ANN (R2
= 0.9917),

cross-validation,
machine learning
surrogate models

[17] Different Solar
dryer

configurations

Agricultural
Products

Better efficiency Multiple Traditionsl thermal
reservoirs

[18] Solar irradiance
prediction using

DNN models

Solar
irradiance in

India

Coefficient of
determination: R2

= 70% to 73%

DNN models for
daily solar
irradiance
prediction

DNN models,
Feature importance

via XGBoost

[19] Novel solar drying
system with
redesigned
chamber

Solar dryer for
in-shell
peanuts

DR: 0.0051E-01
gw/gdm/min, hc:
1.5727 W/m2 ○C

CFD simulation,
Random Tree, and

Quintic Models
for MR and DR

prediction

ANN, Random Tree
Model (R2

=

0.9972) for MR,
Quintic Model (R2

= 0.8551) for DR
[20] Mixed-mode

dryer with PVT
collector

– 33.20% thermal
efficiency

CFD simulation,
thermal and fluid

analysis

ANN for predicting
drying conditions,
different hidden

layer configurations
[21] IR-assisted

continuous-flow
hybrid solar dryer

Hybrid solar
dryer for

stevia leaves

Not specified IR-assisted
drying, multiple

air velocities, and
temperatures

ANN (R2
= 0.9995),

ANFIS (R2
=

0.9936), Midilli
model for MR

prediction

In view of the recent advancement in Artificial Intelligence, an inverse artificial neural network (ANNi)
with genetic algorithm (GA) optimization was used to evaluate the hybrid design of an active indirect sun
dryer for plantain and taro. This model is exceptionally efficient; in its 4.3-s calculation time, it produced
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a highly precise velocity forecast with only 0.83% error [17]. The DNN, on the other hand, was able to
predict the irradiance of the sun with respectable R2 values between 70% and 73%. An innovative solar
dryer that features a modified peanut drying chamber outperformed the conventional tunnel drier in terms
of drying performance in terms of peanuts. The best model was found to be the Random Tree followed
by the ensemble model with an R2 of 0.9972 for the MR predictions [19]. Finally, infrared-assisted hybrid
solar dryers were tested on stevia leaves; in this scenario, it was discovered the ANN model delivered the
greatest value regarding the accuracy in terms of moisture ratio prediction with a coefficient of determination
R2 = 0.9995, which is again symbolic of AI’s potential to enhance solar drying technologies [21]. The study
conducted on Infrared-Assisted Air Impingement Dryer for Apple drying explored the use of a Multi-
Objective Genetic Algorithm (MOGA) in hybridization with Back-Propagation Artificial Neural Network
(BP-ANN) which resulted in an exergy efficiency of 62.23% [22]. A Genetic Algorithm-Optimized Artificial
Neural Network (GA-ANN) has also been brought to use for predicting the irradiation levels of Algeria
for studying the drying characteristics in that region. GA-ANN achieved an R2 of 0.9005 [23]. For the
Solar-Biomass Hybrid Greenhouse Dryer Elitist Non-Dominated Sorting Genetic Algorithm (NSGA-II)
was applied to maximize exergy efficiency and optimize drying air temperature. The solar-biomass mode
achieved the highest exergy efficiency (80.21% ± 14.26%) in this algorithm. Genetic Algorithms rely on
crossover and mutation operations to explore the solution space, which can be relatively slow to converge.
HT_SOGT combines swarm optimization with a Gradient Tree component, which leverages predictive
adjustments to guide the optimization process more effectively From all the literature, it can be concluded
that the dryer efficiency and drying time (DT) are highly dependent on the environmental conditions and
sun’s exposure at a certain region where the setup is installed. The dryer input parameters are chosen from
the work [24] which are then analyzed for the input conditions of the Bhopal region. Fig. 2 depicts the
temperature variation of the region [25].

Figure 2: Temperature variation of Bhopal throughout the year

Traditional optimization approaches (e.g., genetic algorithms (GA) [26], particle swarm optimization)
are commonly applied in dryer design, but they often lack the predictive accuracy and adaptability needed
for real-world applications having a common model designed that will focus on optimizing the geometrical
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dimensions of the dryer, they are rather focused on optimizing the process by controlling the airflow and
temperature on an existing design [27,28]. By applying HT_SOGT, this research introduces a novel approach
that combines swarm optimization with gradient tree learning, leading to superior accuracy in predicting
optimal dryer dimensions. This innovative approach could be a significant advancement in the field, as it
allows for both the exploration and exploitation of parameter spaces, resulting in more efficient and reliable
designs suitable for different input conditions.

The irradiation for the Bhopal region as mentioned in Fig. 3 is evaluated by calculating the solar
declination angle (δ) for ζ = 23.450 inclination of solar collector as per the latitude of this region, which is
formulated as:

δd = 23.450 × sin(3600 × (N − 81)
365

) (1)

Figure 3: Irradiation levels of the Bhopal, M.P, India

N is the mean day of the months which are taken as 17 January, 16 February, 16 March, 15 April, 16 May,
17 June, 17 July, 16 August, 15 September, October, 14 November & 10 December. The sunset hour angle is
calculated as:

ha = cos−1 (− tan ζ × tan δd) (2)

The ha Sunset hour angle in degree is the angle when the sun sets and helps calculate the total amount
of solar radiation received during the entire daylight period. The irradiation level is then evaluated as Ib in
W/m2.

Ib = 3600 × 24
π

Isc [1.0 + 0.033 cos(360n
365
)] (cos ζ cos δd cos ha) (3)

Isc is defined as the solar constant which is 1361 W/m2. This research work aims to predict the optimum
drying parameters of the solar dryer that is intended to achieve better drying efficiency (ηdr) throughout the
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year according to the environmental conditions of the Bhopal region using artificial intelligence (AI) based
optimization algorithm. The suggested geometry is compared against the previous design for DT and ηdr .
Mathematical evaluations have been used to generate the data set for optimization under varying irradiation
levels, different collector areas, and variable chimney dimensions.

After carefully considering the parameters of the experimental region, the dryer specifications described
have been selected as the optimum design that is to be developed according to Bhopal environmental
condition. Since the changes in the environmental factors can change the drying efficiency of the dryer, prior
estimation of the performance of the dryer is done by mathematical modeling. After this, the optimum size
of the effective drying area is predicted making use of hyper-tuned swarm optimization with gradient tree
(HT_SOGT) predictive modeling.

2 Mathematical Approach for Solar Dryer Design Considerations
The solar dryer system is composed of a solar air collector and a drying chamber, each with distinct

specifications designed for optimal drying efficiency whose dimensional parameters are taken by [24] and
represented by Fig. 4. The solar air collector is set at an inclination angle of 23.03 degrees, utilizing an absorber
made from iron with a matte black finish for maximum heat absorption. The absorber has a thickness of
0.2 cm, and the glass cover, which spans an area of 0.57 m2, has a thickness of 0.4 cm. The rear of the collector
is insulated with 4 cm thick polystyrene, enclosed by two wooden plates, covering a total insulation area of
0.858 m2 to minimize heat loss. The lux meter of accuracy ±3% has been used with a temperature sensor
of −200○C to 1300○C range for noting the inlet and outlet reading. For measuring the mass, a weighing scale
of up to 10 kg has been used.

Figure 4: Chamber dimension details for banana drying
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The drying chamber is made of wood and measures 50 cm in width, 60 cm in depth, and 100 cm in
height. It contains four trays made of iron mesh, with 20 cm spacing between each tray to allow for adequate
air circulation during the drying process. The chamber is ventilated by two PVC chimneys, each with a
diameter of 10 cm and a height of 30 cm, facilitating efficient airflow. As per the references studied the
standard range for the final moisture content of the dried banana chips is between 15% to 30% which will
ensure durability of products while maintaining the nutritional content of the final product. The design has
a drying surface area for a single tray which is the product of the chamber’s width and depth because all four
trays are anticipated to completely use the drying chamber’s cross-sectional area and because the material
spreads throughout each tray’s whole surface. The per-tray drying area is represented as ap in m2 in having
length lp taken as 50 cm and breadth bp taken as 60 cm. Since each tray adds to the overall drying capacity,
the total drying surface area denoted as at is therefore four times larger than the area of a single tray.

ap = lp × bp = 50 × 60 cm2 = 3000
10, 000

cm2 = 0.3 m2 (4)

at = 4 × ap = 4 × 0.3m2 = 1.2m2 (5)
dr = k × at × ΔT (6)

dt =
Mi −M f

dr
= DT (7)

ηd =
mw × h f g

ac × Ib × dt
(8)

The dryer efficiency (ηd) mentioned in the paper is typically calculated using Eq. (8). The ac is the
collector area of the dryer designed which is 0.57 m2, Ib is the available irradiation on the collector surface in
W/m2, mw mass of the water removed from the banana slices in kg, ΔT represents the change in temperature
inside the dryer at ○C and k is the drying coefficient of the dryer. h f g latent heat of vaporization of water
2.45 × 106 J/kg.

The bananas have dimensions of similar slices with a thickness of L = 4 ± 1 mm and a diameter of
D = [3.5; 4] ± 0.2 cm. According to the study, the initial mass of the banana slices being dried was 549.76 g,
and after the drying process, the final mass was reduced to 138.41 g the mass of the water being removed was
411.35 g. The mw is used as 0.41135 kg.

The steps of working involved in designing a dryer with optimized parameters have been shown in Fig. 5.
Bhopal region experiences significant climatic variability throughout the year, with a marked reduction
in solar dryer efficiency during the rainy season. Therefore, the dryer dimensions must be optimized to
ensure reliable performance during periods of low solar radiation while maximizing efficiency during peak
solar availability in the summer months. This adaptive design approach accounts for seasonal fluctuations,
enabling the dryer to operate effectively under diverse environmental conditions. Therefore, a model is
designed to specifically identify the accurate dryer dimensions for such conditions taking input from the
irradiation levels, and temperature variations of the region. The methodology helps design an efficient dryer
from scratch by leveraging AI to predict the most effective dimensions and parameters. The approach is
highly scalable, enabling users to adapt the methodology to any geographical location with available climatic
and product data.
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Figure 5: Process flow diagram of the model designing

3 Geometry Optimization and Prediction Modelling
Artificial Intelligence (AI) methods offer significant advantages in predicting the optimal dimensions

of a dryer for various drying processes. Predicting these dimensions involves understanding complex, non-
linear relationships between the physical properties of the product to be dried, environmental conditions
(temperature, humidity), and operational constraints (airflow, drying rate). Traditional methods of calculat-
ing dryer dimensions often rely on empirical formulas or trial-and-error, but AI methods, including machine
learning (ML) and optimization techniques, allow for more precise, data-driven predictions that are adaptive
to changes in input conditions. The Gradient Tree Boosting model predicts the drying time by learning
complex relationships between temperature, effective drying area, efficiency, collector area, irradiation level,
number of trays in the dryer chimney height, and drying time. The PSO algorithm fine-tunes the GTB
model’s hyperparameters, such as the number of trees, learning rate, and tree depth, to minimize the error
in predicting drying time.

The objective of the PSO-GTB hybrid is to find the set of hyperparameters that minimizes the prediction
error for drying time while accounting for complex environmental interactions. For optimizing dryer
performance, an initial grid search is useful to set ranges for key parameters in both the swarm optimization
and gradient tree components. Once ranges are established, random search allows for faster, more targeted
tuning by randomly sampling values within the selected hyperparameter ranges.

A differentiable loss function is minimized through gradient descent in the function space.

n̂t
i = n̂(t−1)

i + α.treet(xi) (9)

The gradient tree descent algorithm produces the variable n̂t
i for tth iteration when the sample of

the dryer parameters is xi . The variable α is the learning rate of the decision tree model where treet(xi)
represents the tth tree output for sample xi . The objective function (Of) typically consists of a loss function
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and a regularization term to prevent overfitting in the algorithm:

O f =
m
∑
i=1

L (ni , n̂i) +
T
∑
t=1

ε(treet) (10)

dr = k (AT , at) .(Mi (t) −Meq) (11)

ε (treet) represents the regularization term to prevent overfitting in the O f . The L (ni , n̂i) is the loss
function in the learning method, also represented as:

L (ni , n̂i) =
1
2
(ni − n̂i)2 (12)

The tree-building method involves residual building represented as r(t)
i for any sample i.

r(t)
i = −

∂L(ni , n̂(t−1)
i )

∂n̂(t−1)
i

(13)

x(t+1)
i = x(t)

i + v(t+1)
i (14)

where the hyperparameters of particle i at step tth iteration is represented by x(t)
i = [α(t)

i , T(t)
i , d(t)

max , i , n(t)
min , i ]

and v(t+1)
i is the particle velocity at (t+1) of particle i.

v(t+1)
i = ω.v(t)

i + c1 .r1 . (p(t)
i − x(t)

i ) + c2.r2(g(t) − x(t)
i ) (15)

ω of the equation, c1, c2 learning coefficients of the swarm intelligence, r1, r2 are the degree of
randomization, where the p(t)

i best particle position and g(t) is the global best position of the swarm
intelligence. The fitness function for the optimization of the solar dryer is defined as:

Fit = 1
n

m
∑
i=1
(ni − n̂i(xi))2 (16)

Fig. 6 shows the diversity of the swarm (standard deviation of particle positions) over time. Swarm
diversity measures how spread out the particles are in the search space. High diversity means that particles
are spread across a wide area, promoting exploration. Low diversity suggests that the particles are converging,
focusing on a specific region of the search space. HT_SOGT uses swarm optimization which has a compu-
tational complexity of O (N.I) where N is defined as the population size, and I is the number of iterations.
The addition of a gradient tree model increases complexity but adds predictive accuracy, helping to fine-tune
solutions more effectively. However, the Gradient Boosting Machine operates with a complexity of O (D.
NlogN), where D is the depth of the trees. In combination with swarm optimization, the computational cost
increases but is controlled due to the efficiency of swarm algorithms in reducing solution space exploration
over successive generations. By leveraging swarm-based exploration with gradient tree adjustments, it
avoids exhaustive search processes, making it relatively more computationally efficient for high-dimensional
parameter spaces. The HT_SOGT model benefits from parallel processing capabilities, especially in swarm
optimization stages where population members can evaluate solutions independently. This allows runtime
reductions when implemented on multi-core processors, GPU clusters, or cloud computing environments.
The HT_SOGT model achieves convergence within 150 iterations. HT_SOGT minimizes computational
costs while maintaining high optimization performance, making it a competitive choice among numerical
methods in the field.
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Figure 6: Hyper-tuned swarm optimization with gradient tree (HT_SOGT) algorithm for optimized dryer design
prediction

In each iteration i, the PSO algorithm searches for the optimal effective drying area that minimizes
drying time, given the temperature conditions as shown in Fig. 7. The variability in the global best position
indicates that the algorithm is dynamically adjusting the drying area at , trying different configurations
as described in Table 2. This adjustment is necessary because the ideal drying area likely depends on the
temperature ΔT . For example, at higher temperatures, the drying rate may increase, and the area can be
reduced while maintaining the desired drying speed. Conversely, lower temperatures might require a larger
area to maintain the drying efficiency. The variations in diversity suggest that the algorithm is alternating
between periods of exploration and exploitation. When the diversity is high, the algorithm explores many
different configurations, perhaps testing the effects of large changes in drying area or temperature. When
diversity decreases, the algorithm focuses on fine-tuning around a promising solution. The dryer parameters
suggest shall have the at in the range of 1.35 to 1.5 m2 with the number of trays 3. Considering the fact that an
increase in the area would involve extra purchase of the material, the further the testing is performed using
1.35 m2 as it would involve economic benefits.
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Figure 7: Algorithm flow and iteration steps for dryer dimension prediction

Table 2: Algorithm Predicted parameters for the dryer design

Month Initial DT (h) DT with predicted
parameters (h)

Initial efficiency (%) Improved efficiency (%)

Jan 9.12 8.11 12.88 14.47
Feb 8.61 7.74 13.63 15.48
Mar 7.34 6.52 15.83 18.08
Apr 5.92 5.26 19.96 22.37
May 5.79 5.15 20.89 22.94
Jun 5.92 5.26 19.5 21.49
Jul 5.74 5.11 19.29 21.78

Aug 6.87 6.11 16.39 18.58
Sep 6.97 6.19 15.99 18.1
Oct 7.19 6.39 15.56 17.54
Nov 8.11 7.21 13.83 15.56
Dec 8.69 7.73 12.9 14.56

The ambient temperature in Bhopal ranges from 16.985○C to 31.4○C, covering the typical seasonal
fluctuations in the area. During colder months, such as in winter when the ambient temperature is around
17○C–21○C, the dryer with the predicted drying area of 1.35 m2 manages to raise the temperature inside
the drying chamber to 39○C–44.5○C as shown in Fig. 8. During the peak summer months, with ambient
temperatures reaching 31.4○C, the solar dryer achieves its highest efficiency, with outlet temperatures
rising to 66.2○C with the proposed drying area. This demonstrates the system’s effectiveness during the
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hottest months, ensuring rapid and efficient drying processes. Even in slightly cooler late summer periods,
with ambient temperatures around 27○C–28○C, the dryer maintains high performance, reaching outlet
temperatures around 62○C–63○C.

Figure 8: Temperature difference across the inlet and outlet of the dryer

During the winter months (January, February, and December), the dryer with the predicted drying area
of 1.35 m2 exhibits its slowest drying times and lowest efficiency as shown in Fig. 9. In January, the drying
time is 9.12 h with an efficiency of 12.88%, while in February and December, drying times are 8.61 and 8.69 h,
respectively, with efficiency hovering around 13%. Even after optimizing the drying area to 1.35 m2, drying
times remain relatively slow (7.73–8.11 h), though efficiency improves slightly to 14%–15%. As temperatures
rise in March, April, and May, the performance of the dryer improves significantly. In March, the drying
time drops to 7.34 h with 15.83% efficiency, and further to 5.92 h in April and 5.79 h in May. Efficiency also
peaks in these months, reaching over 20%. After optimization, drying times improve even more, dropping
to around 5.15–6.52 h, while efficiency increases to over 22%, especially in April and May. June and July have
the fastest drying times before optimization, both close to 5.74–5.92 h, with efficiency at around 19%. The
optimized area reduces drying times further to approximately 5.11–5.26 h, and efficiency improves to over
21%. The drying times remain relatively slow (7.73–8.11 h) in the cold months of Dec to Jan, though efficiency
improves slightly to 14%–15%.

The dryer geometrical predictions are being made considering the climatic conditions such as temper-
ature, and solar radiation that influence the drying time in the Bhopal region whose benefits are highlighted
in Table 3. The AI model has the flexibility to change these parameters according to a different location which
can then serve as an input to the HT_SOGT model. This reliability in design will ensure optimized dryer
systems tailored to local requirements. Since it predicts the best design, this data-driven approach minimizes
initial costs, speeds up deployment, and provides long-term stability, making it an attractive choice for both
large-scale facilities and smaller operations.



Comput Mater Contin. 2025;83(1) 857

Figure 9: Dryer change in drying time and efficiency with predicted dryer dimensions

Table 3: Comparative assessment of Our work with previous references

Parameters/
References

[29] [30] [31] Our work

Solar dryer type Greenhouse solar
dryer (GSD)

Indirect solar dryer
forced-flow type

Indirect Solar
Dryer with Forced

Ventilation

Indirect Solar
dryer, natural draft

Material Mint Food Material Plantain and taro Banana Slices
Model used Radial Bias

Function (RBF) a
type of ANN

ANN ANN_GA
(Genetic

Algorithm)

HT_SOGT

Parameters
taken as input
to the model

Ambient air
temperature,
ambient air

humidity, and solar
radiation

Climatic
conditions,

temperatures,
airflow rate

Solar radiation,
ambient

temperature,
relative humidity,
wind velocity, fan

voltage

Solar radiation,
ambient

temperature, input,
and output solar

dryer temperature

Geographical
inputs

considered

Climatic
conditions of five

sunny days in
September–

October 2021 and
May 2022

Irradiation and
temperature inputs

for a 10-day
duration are
considered

Per day recording
of data with a

15-min interval

Considering the
change in climatic

factors across
different months of

the year

(Continued)
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Table 3 (continued)

Parameters/
References

[29] [30] [31] Our work

Output Prediction of
temperature and

mass of dried mint

Prediction of the
temperature inside

the chamber

Prediction of
drying velocity

According to
variable climatic

factors
experienced

throughout the
year, optimum

dryer area
prediction

Area of research Iran Mexico Mexico Bhopal, India
Novel approach

in our work
The study predicts optimal geometric parameters for a solar dryer, tailored to
accommodate the dynamic seasonal variations characteristic of a location like

Bhopal, ensuring consistent and efficient performance throughout the year.

The model was studied to have better performance in the static set of parameters derived from initial
conditions, without adapting in real-time to dynamic changes in environmental or operational conditions.
This can limit the model’s efficiency and responsiveness during unexpected changes. This model also requires
extensive data for training and tuning, particularly during the initial setup phase. Using machine learning
techniques like unsupervised learning can help the model learn effectively from limited data, making it more
adaptable to new settings with minimal retraining for real-time adaptability and will provide prediction
accurately. This multi-objective function derivation can be focused on the later stages to further enhance the
prediction capability of the HT_SOGT model for dryer dimensions.

4 Conclusion
The efficient operation of dryers at variable input conditions throughout the year is crucial in the food

processing industry for improving efficiency and reducing operational costs. In order to achieve this, the
geometrical design of the dryer to be installed at a location can be primarily subjected to optimization
algorithms to predict the most efficient and reliable dimensions that are most suited for the geographical
conditions of that area. The work has used the predictive method of Hyper Tuned Swarm Optimization with
Gradient Tree (HT_SOGT) modeling having fast convergence and the optimal size for the effective drying
area has been predicted to be 1.35 m2 for maximum efficiency across seasonal variations in the Bhopal region,
India, while considering an economic solution. The prediction constraint was given to achieve optimized
dryer dimensions that are targeted to achieve a drying time of approximately 7 h throughout the year. The
predicted geometry improved the efficiency of the dryer to 21% from the 19% in the previous geometry during
all the seasons of the year. The designed AI model can minutely study the environmental aspects of a region
and suggest an optimized dryer design that will operate efficiently under such circumstances therefore this
model can be used to predict industrial dryer specifications suitable for pharmaceutical drying processes
where precision is critical or textile drying other than food processing industries.
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