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ABSTRACT: Skin cancer is themost prevalent cancer globally, primarily due to extensive exposure to Ultraviolet (UV)

radiation. Early identi�cation of skin cancer enhances the likelihood of e�ective treatment, as delays may lead to severe

tumor advancement. �is study proposes a novel hybrid deep learning strategy to address the complex issue of skin

cancer diagnosis, with an architecture that integrates a Vision Transformer, a bespoke convolutional neural network

(CNN), and an Xception module. �ey were evaluated using two benchmark datasets, HAM10000 and Skin Cancer

ISIC. On theHAM10000, themodel achieves a precision of 95.46%, an accuracy of 96.74%, a recall of 96.27%, speci�city

of 96.00% and an F1-Score of 95.86%. It obtains an accuracy of 93.19%, a precision of 93.25%, a recall of 92.80%, a

speci�city of 92.89% and an F1-Score of 93.19% on the Skin Cancer ISIC dataset. �e �ndings demonstrate that the

model that was proposed is robust and trustworthy when it comes to the classi�cation of skin lesions. In addition, the

utilization of Explainable AI techniques, such as Grad-CAM visualizations, assists in highlighting the most signi�cant

lesion areas that have an impact on the decisions that are made by the model.

KEYWORDS: Skin lesions; vision transformer; CNN; Xception; deep learning; network fusion; explainable AI; Grad-

CAM; skin cancer detection

1 Introduction

Millions of cases of skin cancer are diagnosed worldwide each year, making it one of the most common

types of cancer [1]. �e World Health Organization (WHO) estimates that over seven million instances of

non-melanoma skin cancer are diagnosed worldwide each year [2]. �e development of abnormal cells in

the epidermis, the skin’s outermost layer, because of DNA damage leading to mutations, is known as skin

cancer. �ese skin lesions could be benign or malignant. Early detection is key to e�ective treatment of skin

cancer, especially before it spreads to other parts of the skin or enters the deeper layers of the skin.

Automated skin cancer classi�cation is useful for determining the stage and kind of cancer. Both benign

lesions like ageing spots and moles can be mistakenly detected by manual detection, as well of malignant

stage. Deep learning has provided a wide role in detecting skin cancer accurately and e�ciently. For example,

Alabduljabbar et al. [3] andGomathi et al. [4] proposed a CNNbased technique over theMNISTHAM10000

dataset, which showed better accuracy and satis�ed quality metrics. More algorithms with greater accuracy

and reduced time complexity have been made possible by advances in deep learning. Optimized transfer

learning-based models were developed by Vidhyalakshmi et al. [5] to improve skin cancer detection and

Copyright © 2025�e Authors. Published by Tech Science Press.
�is work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2025.059301
https://www.techscience.com/doi/10.32604/cmc.2025.059301
mailto:robertas.damasevicius@vdu.lt


1368 Comput Mater Contin. 2025;83(1)

diagnosis. Still, greater validation accuracy is still needed because there aren’t as many images as possible

to train an e�ective model for skin cancer recognition. To get around this limitation, data augmentation is

used, and a bigger dataset is needed to build an e�cient model.

�e identi�cation of skin cancer at an early stage by automated and intelligent detection can be critical to

long-term aims in skin cancer research. Our technique aims to close signi�cant gaps in the thorough analysis

of skin cancer and its symptoms, which helps in the detection of skin cancer in its various phases as follows:

• Developing a deep learning model that can reliably and early diagnose skin cancer, extract relevant

biomarkers from dermatological images, and analyse those images with accuracy and e�ciency.

• Using deep learning methods, including ensemble models or anomaly detection algorithms, to lower

the number of false positives and false negatives in the diagnosis of skin cancer.

• Aiming to get higher validation accuracy to improve classi�cation quality.

Our objective is to identify skin lesions that are either benign or malignant with the highest degree of

precision while simultaneously providing information that is both informative and insightful. To accomplish

these goals, we propose an xCViT methodology that combines newly designed architecture of CNN and

Vision Transformers (ViTs) with the Xception architecture. We enhance the e�ciency of local feature

extraction by making modi�cations to convolutional neural networks (CNNs). Vision transformers (ViTs)

are used to capture long-term dependencies and global context. �e integration of these elements enhances

the e�ciency of the model and its ability to recognize complicated structures by combining the strengths of

both CNNs and Vision Transformers (ViTs) while avoiding their individual limitations.

To address these challenges this study introduces a novel xCViTmethodology, whichmerges the advan-

tages of CNNs and Vision Transformers (ViTs) with an Xception architecture, addressing the de�ciencies in

automated skin cancer detection, thereby improving classi�cation accuracy and diagnostic robustness.

�e primary objectives are: (1) to enhance validation accuracy and classi�cation quality, (2) to establish a

dependable and e�cientmodel for the early detection of skin cancer, and (3) to reduce false positives and false

negatives through the utilization of ensemble methods and anomaly detection algorithms. �e suggested

method’s novelty lies in the rapid integration of local feature extraction via CNNs and global contextual

comprehension using ViTs, e�ectively tackling intricate issues in picture identi�cation.�emodel’s intricate

procedures o�er excellent potential for research and clinical applications, guaranteeing enhanced diagnostic

insights and improved patient results.

2 RelatedWork

Skin cancer classi�cation is a complicated �eld for which various kinds of deep learning algorithms have

been found bene�cial. �ese techniques are summarized below.

Kavitha et al. [6] applied preprocessing methods to remove noise from the data, followed by the use

of R-CNN algorithms, which achieved an accuracy of 84.32%. �ey used three deep learning models—

ResNet152 (v2), ConvNeXtBase, and ViT Base. Islam et al. [7] proposed a fusion model referred to as the

“teacher model.”�eir study included six stages of preprocessing, and data augmentation on the HAM10000

dataset, and achieved an accuracy of 98.75% and showcased its small size, which could facilitate real-life

applications. Abdullah et al. [8] developed a model for identifying all skin lesions using the HAM10000

dataset. �eir sequential CNN outperformed other deep learning approaches, including pretrained CNN,

VGG19, ResNet50, InceptionV3, ViT over RGB, and Entropy-NDOELM.�eir model achieved a maximum

accuracy of 96.25%, representing the best results. Nasir et al. [9] proposed a novel Convolutional Spiking

Attention Module (CSAM), integrated into deep neural architectures to enhance critical features and

suppress noise-inducing elements. CSAMs were embedded within the Spiking Attention Block (SAB), and
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its performance was evaluated using InceptionResNetV2, DenseNet201, and Xception architectures for skin

lesion classi�cation, both with and without SAB integration. �e SAB-based models outperformed state-

of-the-art methods on the HAM10000 dataset, with cross-dataset validation conducted on the ISIC-2019

dataset. Monica et al. [10] employed a deep learning-based fusion methodology using ISIC and HAM10000

datasets. �ey removed noise using normalization and preprocessing techniques. Mask-RCNN, using pre-

trained models ResNeXt101, Xception, and InceptionV3, was applied, and extracted features were passed

into a modi�ed GRU model. �is methodology achieved accuracy rates of 99.95% on the ISIC dataset,

and 99.98% on the HAM10000 dataset. Agrawal et al. [11] proposed a lightweight deep CNN model called

CACBL-Net, which incorporated a Channel Attention and Adaptive Class Balance Focal Loss function.�is

model e�ectively handled data imbalance and provided portability due to its lightweight architecture. It was

tested on theHAM10000, PAD-UFES-20, andMED-NODEdatasets, achieving sensitivities of 90.0%, 91.88%,

and 91.31%, respectively. �e lightweight nature of the model allowed prediction times of 0.006, 0.010, and

0.011 s, highlighting its real-time e�ciency. Claret et al. [12] proposed an approach to detect skin cancer

using discrete wavelet transformation (DWT). �is method extracted features from various skin lesion

images in the HAM10000 dataset and processed them using an ANN and multi-layer perceptron resulting

in sensitivity of 94% and speci�city of 91%. Shehzad et al. [13] introduced an ensemble technique using

E�cientNetV2S and Swim Transformer models. �ey applied preprocessing and normalization to remove

darker image regions, enhancing accuracy. Modifying the ��h block of E�cientNetV2S and incorporating

Swim Transformer led to signi�cant accuracy of 99.10%. Hussain et al. [14] addressed multiclass skin lesion

classi�cation with a model called SkinNet-INIO.�is system used fusion-assisted deep neural networks and

an improved nature-inspired optimization algorithm. Preprocessing methods included dark channel haze

and top-bottom �ltering. �e approach also incorporated genetic algorithms for hyperparameter selection

and anti-lion optimization for feature selection. Tested on the ISIC2018 and ISIC2019 datasets, it achieved

accuracy rates of 96.1% and 99.9%, respectively, demonstrating the bene�ts of combining deep learning

with optimization techniques. Maqsood et al. [15] focused on skin lesion localization and classi�cation.

�eir system used contrast enhancement preprocessing and a custom 26-layer convolutional neural network

(CNN) for lesion segmentation. �ey also explored the fusion of deep feature vectors extracted from

pre-trained CNN models. �e system achieved accuracy rates of 98.57% on HAM10000 and 98.62% on

ISIC2018, outperforming previous methodologies. Maqsood et al. [16] extended this research to monkeypox

classi�cation, introducing the MOX-NET framework, which used pre-trained deep learning models and

a convolutional sparse image decomposition fusion strategy. Tested on the MSLID dataset, it achieved

an accuracy of 98.64%, highlighting its e�ectiveness in diagnosing infectious diseases like monkeypox.

Nawaz et al. [17] proposed an improved DenseNet77-based UNETmodel for melanoma segmentation.�ey

addressed the challenges of segmentation caused by shape and color variations and light conditions by

incorporating DenseNet77 into the UNET encoder unit. Testing on the ISIC-2017 and ISIC-2018 datasets

resulted in segmentation accuracies of 99.21% and 99.51%, respectively. Nivedha et al. [18] introduced a diag-

nostic system formelanoma using the African Gorilla Troops Optimizer (AGTO) algorithm.�ey employed

Faster R-CNN to identify features for classi�cation and achieved an accuracy of 98.55% on the ISIC-2020

dataset, outperforming state-of-the-art models. Ren et al. [19] focused onmonkeypox detection using twelve

pre-trained deep learning models, including VGG16, ResNet152, and DenseNet201. DenseNet201 achieved

the best classi�cation results, with an accuracy of 98.89% for binary classi�cation and 100% for four-class

classi�cation. �is study demonstrated the adaptability of deep learning models in addressing various skin-

related diseases, even with limited training data. �ese studies collectively underscore the importance of

deep learning and AI in the medical �eld, especially for the detection, segmentation, and classi�cation of

skin lesions. By employing various neural network architectures, feature fusion methods, and optimization
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algorithms, these approaches havemade signi�cant strides toward enhancing diagnostic accuracy, improving

healthcare outcomes, and supporting medical professionals in early and e�ective disease management.

Fig. 1 provides a graphical summary of the literature review, including preprocessing methods, model

architecture, datasets, and performance metrics. Additional analysis has to be done to develop a model

that can more accurately identify all kinds of skin cancer than the methods used today. While classifying

skin cancer cases into binary classes, some researchers were unable to manage multiclass classi�cation with

better results.�e earlier techniques suggested for multiclass skin cancer diagnosis likewise failed to achieve

higher accuracy. Classifying skin cancer automatically from dermoscopy images is di�cult because of great

visual similarity between classes and intraclass variance, and due to existence of both internal and external

abnormalities and the di�erence between the a�ected and normal skin.
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Islam et al. [7] 98.75%
accuracy on HAM10000

Figure 1: Graphical representation of the literature review summarizing preprocessing methods, model architectures,
datasets used, and key performance metrics with corresponding references [7,8,10,15]

3 Proposed Methodology

�is section describes the proposed fusion-based technique, named xCViT, for classifying and localizing

the skin lesions using images.�e proposed xCViT architecture for classifying skin lesions is shown in Fig. 2.

�is fused model is trained on enhanced images and fused with the customized CNN, ViT, and pre-trained

model using a depth concatenation layer. �e hyperparameters of the proposed fused architecture have

been initialized using the Bayesian Optimization technique instead of random initialization. Trained model

features are passed to the So�Max classi�er for classi�cation purposes.
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Figure 2: xCViT architecture

�is study contributes to the advancement of accessible and scalable autonomous diagnostics through

a hybrid approach utilizing CNN, ViT, and Xception architectures. Using Explainable AI (xAI) techniques,

with Grad-CAM, would enhance model transparency and interpretability, hence fostering greater trust and

aiding doctors in improved decision-making. An interpretable approach named Grad-CAM has been used

for the explainability of the proposed architecture. A detailed description of each step is discussed below.

3.1 Dataset

�e “Human Against Machine with 10,000 training images,” or HAM10000 dataset, is a compilation of

dermoscopy images used for training neural networks in the automated detection of pigmented skin lesions.

�is dataset has ten thousand visualizations from diverse populations preserved in multiple modalities.�is

encompasses a broad spectrum of skin malignancies, including basal cell carcinoma (bcc), actinic keratosis

(akiec), melanoma (mel), melanocytic nevi (nv), benign keratosis (bkl), dermato�broma (df), and vascular

lesions (vasc), as depicted in Fig. 3.

Figure 3: Sample images of pigmented skin lesions from the HAM10000 dataset
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Most of the images in the HAM10000 dataset have excellent resolution, measuring 600 × 450 pixels and
in JPEG format. With respect to storage and processing requirements, this quality and format guarantee that

the images have su�cient detail for e�cient analysis and model training. We have divided this dataset into

three major partitions which are train, test and valid with ratios of 70, 20, and 10, respectively.

�is study also uses a dataset including 2357 images of cancerous and non-cancerous skin conditions

obtained from�e International Skin Imaging Collaboration (ISIC)1 project (Skin Cancer ISIC dataset).�e

images are categorized based on ISIC criteria in terms of illness distribution, but with a higher representation

of melanomas and nevi compared to other disorders. �e datasets include of many skin disorders, including

actinic keratosis (akiec), basal cell carcinoma (bcc), melanoma (mel), nevus (nv), dermato�broma (df),

pigmented benign keratosis (bkl), seborrheic keratosis (sk), squamous cell carcinoma (scc), and vascular

lesions (vasc) as samples shown in Fig. 4.

Figure 4: Sample images of pigmented skin lesions from the Skin Cancer ISIC dataset

3.2 Data Augmentation

During the learning and optimization stages, data augmentation is used to improve diversity and reduce

over�tting bymodifying the images. Initially, we have reduced the 450× 600 pixels images to 299× 299 pixels.
Since the distribution of images is not uniform among categories, data balancing is employed to equalize the

number of images in each category before the training phase as illustrated in Fig. 5.

Table 1 shows the total amount of data points for each class a�er going through data preprocessing steps

on HAM10000 dataset.

Table 2 illustrates the allocation of images among categories of skin lesions a�er image preprocessing

on Skin Cancer ISIC dataset. �e original dimensions of the images were 640 × 450 pixels. Prior to the

model training, all images were resized to a dimension of 299 × 299 pixels to facilitate their integration

into the neural network structures. �e training data set, however, consisted of a two-phase distribution of

images that were unevenly distributed across di�erent classes. �is led to potential bias during the model

training process. To prevent this scenario, other perspectives (descriptive augmentations) were incorporated,

including rotation, scaling, shearing, �ipping, and adjusting brightness, among others as shown in Fig. 6.

Consequently, the class balancing strategies facilitated the generation of new images in the image dataset that

1https://www.kaggle.com/datasets/nodoubttome/skin-cancer9-classesisic (accessed on 18 February 2025).

https://www.kaggle.com/datasets/nodoubttome/skin-cancer9-classesisic
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belong to the same class as the original images. As a result, the number of images increased to a range between

2357 and 3889.�e dataset was enhanced with diversity and balance, so mitigating the risk of over�tting and

improving the model’s performance on unknown data.

Figure 5: Original images and their augmented variants from the HAM10000 dataset
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Table 1: Total amount of data points for each class a�er preprocessing of the HAM10000 dataset

Class Original size Augmented size

mel 6715 7000

nv 1000 3000

bcc 1000 3000

akiec 500 1500

bkl 250 1500

df 300 1500

vasc 235 1500

Total 10,015 19,000

Table 2: Total amount of data points for each class a�er preprocessing of Skin Cancer ISIC dataset

Class Original size Augmented size

Akiec 130 390

Bcc 392 500

Df 111 333

Mel 454 500

Nv 373 500

Bkl 478 500

sk 80 240

scc 197 500

vasc 142 426

Total 2357 3889

Figure 6: (Continued)
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Figure 6: Original and Augmented Image Variants of each class from the Skin Cancer ISIC dataset

To increase the diversity and robustness of the training data, image augmentation is used during the

preparation of this dataset images. One way to address orientation and positioning di�erences in images

is to rotate them by 30 degrees and adjust their width and height by 20%. To further replicate perspective

distortions, a 20% shearing e�ect is added. To enhance the quantity of distinct samples, the images undergo

a vertical and horizontal �ip. Reliability in a range of illumination levels is guaranteed by brightness

adjustments between 0.7 and 2.5. By simulating real-world variability, these augmentations together enhance

the model’s generalization.

3.3 Vision Transformer Architecture

Originally, the transformers’ attention mechanisms have played a major role in natural language

understanding challenges. Expanding on this idea, theVisionTransformer (ViT) [20] has become an e�ective

visual classi�cation architecture. �e architecture of ViT is illustrated in Fig. 7.

3.3.1 Patch Localization

In order to create a sequential representation of �attened 2D patches, patch localization on the skin

dermoscopy images ∈ R × × is �rst divided into �xed-size patches. In this representation, p ∈ RN×(p2 . )

is represented by , , and , which stand for image height, width, and resolution of individual image

patches, respectively. It is possible the number of patches N to be determined as

N =
×
p2

(1)



1376 Comput Mater Contin. 2025;83(1)

Figure 7: ViT architecture

An embedding matrix E is used for applying a linear projection to transfer a sequence of patches to a

d-dimensional vector space before feeding them into the Transformer. Patch embeddings are created by this

procedure. Subsequently, positional embeddings Epos are incorporated into the patch embeddings to encode

positional information inside the image. In addition, the embedded picture patches are concatenated with a

learnable class token xclass for the classi�cation procedure.�us, the series of embedded picture patches and

the class token make up the original patch embedding 0.

0 = [xclass; x 1pE; x
2
pE; . . . ; x

n
pE] + Epos , E ∈ R

(p2 . )×D ,Epos ∈ R(N+1)×d (2)

�e n-th image patch in this case is denoted by xnp , where n ∈ 1, 2, . . . , N. �e Transformer encoder

receives the embedded picture patches that are produced.

3.3.2 Encoder Blocks

A fully connected feed-forward multi-layer perceptron (MLP) layer and a multi-head self-attention

(MSA) layer comprise each of the L identical encoder blocks that make up the Transformer encoder. Input

zl−1 is received by each l-th layer from the layer before it. In order to improve training time and performance,

this input is subjected to layer normalization, which normalizes values throughout the feature dimension.

�e output is normalized once more before being sent to the MSA layer.�eMLP layer is provided this �nal

output. Vanishing gradients are addressed by using residual connections to promote information �ow across

non-adjacent layers. �is allows gradients to propagate una�ected by non-linear activations. �e gradient

�ow in the l-th encoder layer is de�ned as

′
l =MSA (LN ( l−1)) + l−1 , l = 1, ..., L (3)

l =MLP (LN ( ′l)) +
′
l , l = 1, ..., L (4)

where layer normalization is indicated by LN.

�e MSA comprises a linear layer, a self-attention layer, a concatenation layer, and a concluding linear

layer. �e quantity of heads k dictates the amount of concurrent self-attention operations performed in

the MSA. To derive the query (q), key (z), and value (v) matrices for each head, the D-dimensional patch



Comput Mater Contin. 2025;83(1) 1377

embedding is multiplied by three weight matrices: Uq, Uk, and Uv. �e multiplication process for each

head is delineated as

[q, k, v] = [zUq , zUk , zUv] , Uq ,Uk ,Uv ∈ RD×Dh (5)

A�er projecting the resultant matrices, A, B, and C, into k subspaces, the weighted sumW , is calculated

for all values. �e attention weights in each brain are determined based on the dot product of q i and k j,

considering the connection between each pair of elements (i , j). �e produced dot product shows the

importance of patches in the sequence.�e weights for the values are derived by calculating the dot product

of v and w, and then applying the so�max function:

A = so�max( qkT√
Dh

) , A ∈ RN×N (6)

whereDh = D
k
. Following their concatenation, the self-attentionmatrices are run through a single linear layer

that has a learnable weight matrix Umsa, yielding

MSA (z) = [SA1 (z) ; SA2 (z) ; ...; SAk (z)]Umsa , Umsa ∈ Rk.Dh×D (7)

Since each head of the MSA gathers data from several angles and locations, the model can encode

complex features concurrently. ViT employs a MLP including two fully connected layers, utilizing the Gaus-

sian error linear unit (GeLU) activation function. �e GeLU activation function incorporates a weighting

element to the inputs according to speci�c parameters. Evaluating according to their intrinsic principles

rather than their advantageous or disadvantageous implications. GeLU, unlike the ReLU function, may

generate both positive and negative outputs and exhibits a greater degree of curvature. �e GeLU function

excels at approximating complex functions relative to the ReLU function.

�e encoder’s last layer identi�es the initial token in the sequence, denoted as 0
L, and produces the

visual representation r by layer normalization. �e resultant r is sent into a succinct MLP head, consisting

of a solitary hidden layer employing the sigmoid function for classi�cation purposes. �e sequence is

transformed into a visual representation with the subsequent technique:

r = LN ( 0
L) (8)

3.4 Xception Architecture

�e CNN Xception is an enhanced version of the traditional Inception model. �e model comprises

36 convolutional layers and serves as the foundation for the feature extraction block. �e convolutional

layers are interconnected by a residual network that facilitates their linkage [21]. �e Xception network

has demonstrated superior performance relative to the CNN variation, while concurrently utilizing less

parameters [22]. �e spatial division of each channel in the model architecture occurs subsequent to the

initial convolutional block through the use of a 1 × 1 point-wise convolution.�e convolution output is used

to obtain cross-channel correlations.

�e convolutional network employs depthwise separable convolution and channel separation by a 1 × 1
convolution. �is is accomplished by implementing a concatenation �lter to aggregate the results.

�is research involves the use of transfer learning and �ne-tuning techniques. �e di�erence lies in the

input shape, which is de�ned as a dimension of 299 × 299 × 3, according to the criteria of Xception. �e

present study freezes the last 19 layers. In addition, this study employs a global average pooling method to

reduce the feature dimensions from 10 × 10 × 2048 to only 2048. �is is achieved by downsampling the
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output layer of the Xception architecture.�emodel architecture is shown in Fig. 8. It incorporates Xception

transfer learning and �ne-tuning operations.

Figure 8: Xception architecture

3.5 Custom CNN Architecture

�e proposed CNN architecture is a combination of convolutional blocks, depthwise separable convo-

lutional blocks and module inspired by inception architecture. �ese modules are used to create a robust

deep CNN architecture for image classi�cation.�is model is designed to capture the complex features from

images through di�erent convolutional strategies.�e aim of this architecture is to balance the e�ciency and

high accuracy of model as illustrated in Fig. 9.

Figure 9: Customized CNN architecture

3.5.1 Initial Convolution and Pooling

�e architecture starts with an initial convolutional layer with a 7 × 7 kernel size and stride of 2,

along with batch normalization and ReLU activation function.�is initial layer helps in reducing the spatial

dimensions and extracting low level features from the input image as follows:

Convinit = ReLU (BatchNorm (Conv2D) (x)) (9)

A max pooling layer with 3 × 3 kernel size and stride of 2 is used for the purpose of more reduction in

the spatial dimensions and prepare the feature maps for upcoming layers.

3.5.2 Block 1: Dense Block

�e Block 1 structure is derived from the DenseNet design and incorporates a dense block. �is block

consists of three layers: a 3 × 3 convolution layers, a batch normalization layer, and a ReLU activation layer.
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To facilitate the smooth �ow of gradients and the reuse of features, the outputs of these layers are combined

with the input as represented in Eq. (10).

xi+1 = Concatenate (xi , Conv(xi)) (10)

�is process repeats for a speci�ed number of layers, enhancing the feature maps’ representational

capacity by progressively integrating new features with the existing ones as shown in Fig. 10.

Figure 10: Architecture of Block 1: Dense Block

3.5.3 Block 2: Depthwise Separable Convolution

�e Block 2 function employs depthwise separable convolutions, a technique that decomposes a

standard convolution into a depthwise convolution followed by a pointwise convolution as illustrated

in Fig. 11. �is approach reduces the number of parameters and computational cost while maintaining the

ability to capture spatial patterns.

Figure 11: Architecture of Block 2: depthwise separable convolution

�e operations in Block 2 can be expressed as

xdw = ReLU (BatchNorm (DepthwiseConv2D) (x)) (11)

xpw = ReLU (BatchNorm (Conv2D) (xdw)) (12)

3.5.4 Block 3: Inception-Like Module

�e Block 3 function is inspired by the Inception architecture, combining multiple convolutional �lters

of di�erent sizes. �is block processes the input through parallel convolutions with 1 × 1, 3 × 3, and 5 × 5

kernels, along with a 3 × 3 convolution followed by a 1 × 1 convolution as shown in Fig. 12. �e outputs are

concatenated to create a rich feature representation:

xconcat = Concatenate ([x1×1 , x3×3 , x5×5 , x3×3 → x1×1]) (13)
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Figure 12: Architecture of Block 3: inception-like module

3.5.5 Setting Block: Transition Layer

To control the model’s complexity and reduce spatial dimensions, the Setting Block applies a 1 × 1

convolution followed by max pooling. �is layer serves as a transition between dense blocks and other

components, compressing the feature maps without losing important information:

xreduce = ReLU (BatchNorm (Conv2D) (x)) (14)

xpool = MaxPooling2D() (xreduce) (15)

�is architecture e�ciently combines di�erent convolutional strategies to enhance feature extraction

and achieve high performance on image classi�cation tasks as represented in Fig. 13.

Figure 13: Architecture of setting block: transition layer

3.6 Fusion of Model Output

A�er getting the standard and high-level features, we come upwith two di�erent ways to combine them.

One approach is to establish a constant ratio λ, which is referred to as F feature fusion. �e combination of
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features for classi�cation is calculated as follows.

FF = λ × CF + (1 − λ) ×HF (16)

where FF represents the fusion feature, whereas CF represent conventional features and HF represent

high-level features, respectively. �e λ is the weight parameter that indicates the relative signi�cance of two

distinct features. Implementing this approach is straightforward due to its local weighting. Once we have

acquired the parameter λ, there is unnecessary to recompute. �e process of feature fusion will be used to

input data into the So�Max function to complete the �nal classi�cation job. Nevertheless, this approach is

only applicable to linear feature fusion and requires a substantial number of tests to determine the value λ. It

is challenging to combine the characteristics to accurately depict the visuals. When switching to a di�erent

dataset, it becomes necessary to do the same experiment once again to acquire the parameter λ.

To address these issues, we provide an alternative method that can automatically adapt the balance

between high-level characteristics and conventional features, thereby eliminating the tedious and time-

consuming task of determining the parameter λ. �e approach involves training a multilayer perceptron

neural network capable of integrating information into a nonlinear feature space. �e fusion feature (FF )

operation is de�ned as follows:

FF =max (0,∑n

i
ω i l i +∑

m

j
ω j l j + b) (17)

where CF = {l1 , l2 , ..., l i , ..., ln} and HF = {h1 , h2 , ..., h j , ..., hm} represent conventional and high-level

traits, whereas the b represents the bias. �e MLP consists of a fully linked layer and a so�max layer, which

serves as a classi�er. �e concept aligns with the notion of a kernel function, which transforms data from

a lower-dimensional space to a higher-dimensional one. Using a non-linear feature space may result in

the acquisition of more e�ective distinguishing characteristics for medical pictures compared to employing

a linear feature space. Furthermore, it can decrease the computational workload by avoiding redundant

calculations of the same parameter.

3.7 Explainable AI Methods

Grad-CAM

Deriving the Grad-CAM [23] for 1D CNNs is done in a manner similar to that of 2D CNNs, with

the exception that there is one less dimension. �e model does a forward pass, which involves processing

the input data through the layers of the network until an output, represented as y, is obtained. �e model

also generates a series of feature maps Ak throughout this process. �e variable K stands for the sum of all

the chosen hyperparameters that control the number of �lters or kernels in the CNN. CNN captures and

represents di�erent learning patterns from the input data; the output is the feature maps. With Grad-CAM,

we just consider the feature maps produced by the model’s latest, most output-proximal CNN layer.

Currently, our approach deviates from the techniques used in classi�cation-based models, where

gradients are calculated for a certain class, or in other words, a single output. Our goal is to understand

the impact of each characteristic on several future time points, rather than just one speci�c time point, as

predicted by our forecast model. �erefore, we calculate the gradient of all the outputs in relation to each

feature map. �e feature attributions Ω j for the j-th feature are determined by taking the weighted total of

the feature mappings, which is generated using a speci�c method.

Ω j = ReLU ( K

∑
k=1

ωk
j A

k
j) (18)
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where each feature map’s weights ωk
j re�ect its signi�cance. To make sure that only positive contributions

are considered, the ReLU function is used. By calculating the gradient of all the output values with respect to

each feature map, we can get the weight ωk
j of the k-th �lter, as Ak

j has already been obtained in the forward

propagation of the model.

ωk
j =

1

N

N

∑
i=1

max
⎛
⎝0,

dy

dAk
i , j

⎞
⎠ (19)

Considering just positive gradients provides better resolution and highlight the most important input

components to the prediction. SinceCNNs employ padding, the size of featuremapAk a and b-th input series

xb are same. �ese gradients may be easily computed using deep learning frameworks like TensorFlow and

PyTorch, which come with built-in functions for automated di�erentiation.�e study’s stated computational

gains can only be achieved if the feature maps of both heads are acquired simultaneously during the model’s

forward pass. Eqs. (18) and (19) are calculated repeatedly to provide attribution scores for each feature.

Feature attributions of individual forecasts are combined to get global feature attributions, sometimes called

average feature signi�cance. �is process is repeated for all 365 non-overlapping samples in the test set.

4 Results and Discussion

4.1 Experimental Setup

�e proposed xCViT was built using PyTorch 2.3.1 and other toolkits. We used an Intel
R©

Core™ i7-

10870HProcessor with 64GBRAMandNVIDIARTX 3080 Ti GPU for all training and testing experiments.

�e model was trained end-to-end using the Charbonnier Loss [24] and the AdamW [25] optimizer. �e

learning rate was set to 10−5, with β1 = 0.9 and β2 = 0.99. All images were resized to 299 × 299 pixels. Training
batch size was set to 16, and xCViT network was trained for 150 epochs. Learning rate was adjusted using a

20-epoch warm-up, followed by a cosine annealing scheduler [26].

4.2 Results using Di�erent CNN Combination

Table 3 presents a comparison of the performance of various deep learning architectures, including

the Custom CNN + ViT and combinations of DenseNet201, ResNet50, E�cientNetB2, MobileNetV2, and

Xceptionmodels.�emodels are evaluated using two well-known datasets for skin cancer—HAM10000 and

Skin Cancer ISIC. To determine all potential conclusions about the models, four key assessment measures

are used: Accuracy (Acc), Precision (Pre), Recall (Re), and F1-Score (F1). Each of these measurements and

means provides valuable insights into di�erent aspects of model performance.

�e results in Table 3 indicate that theCustomCNN+ViT+Xception combination achieved the highest

performance in both databases, with an accuracy of 96.74%, speci�city of 96.00% and an F1-Score of 95.86%

on the HAM10000 database, and an accuracy of 93.19% and speci�city of 92.89% on the Skin Cancer ISIC

database. �e combination of Xception on ViT and Custom CNN demonstrates excellent performance on

both datasets, making it a highly e�ective architecture for skin lesion classi�cation. In addition, the results

obtained using the CustomCNN+ViT+DenseNet201 andCustomCNN+ViT+MobileNetV2models also

demonstrate a high performance, especially for the HAM10000 dataset. �e accuracy reached is 94.12% for

the �rst combination and 93.16% for the second combination. However, the Xception combo outperforms

them in in terms of recall and F1-Score.



Comput Mater Contin. 2025;83(1) 1383

Table 3: Comparison of Custom CNN + ViT with di�erent backbone networks on HAM10000 and Skin Cancer ISIC
datasets

Model HAM10000 Skin Cancer ISIC

Acc (%) Pre (%) Re (%) Spec (%) F1 (%) Acc (%) Pre (%) Re (%) Spec (%) F1 (%)

Custom CNN + ViT +
DenseNet201

94.12 94.23 94.86 93.24 93.32 90.98 91.45 91.12 89.14 89.74

Custom CNN + ViT +
ResNet50

88.87 87.35 89.33 88.12 86.77 90.56 90.89 91.06 87.21 88.67

CustomCNN + ViT +
E�centNetB2

91.34 90.74 92.12 91.24 90.42 89.47 88.98 88.32 88.41 87.88

Custom CNN + ViT +
MobileNetV2

93.16 92.54 93.58 92.10 92.96 91.56 92.14 92.23 90.02 90.45

Custom CNN + ViT

+ Xception

96.74 95.46 96.27 96.00 95.86 93.19 93.25 92.80 92.89 93.19

�e combination of Custom CNN, ViT, and ResNet50 produces the lowest validation accuracy on

HAM10000, which is approximately 88.87%. Consequently, this combination is deemed less successful for

solving this problem. Table 3 demonstrates that implementing the Xception model enhances the ViT and

customCNNmethods, resulting in themost comprehensive coverage of bothmetrics across the two datasets

in comparison.�ese results demonstrate that neglecting architectural factors might have a negative impact

on the classi�cation of medical images, especially for more complicated tasks.

4.3 Proposed xCViT Model Results from the HAM 10000 Dataset

Experimental analysis was conducted using HAM10000 dataset while keeping di�erent learning rates

and highlighting major performance metrics. Table 4 illustrates the importance of selecting learning rates

in terms of a�ecting its performance. Experiments were conducted over various learning rates ranging from

10−2 to 10−6. Out of these learning rate 10−5 showed best performance while achieving accuracy 96.74%,

precision 95.46%, recall 96.27, F1-Score 95.86% and AUC 97.86%. Fig. 14a shows the graphs of training and

validation accuracy while Fig. 14b shows the graphs of training and validation loss.

Table 4: Results of di�erent initial learning rates

Learning rate Accuracy (%) Precision (%) Recall (%) Speci�city (%) F1-Score (%) AUC (%)

10−2 89.68 88.12 89.04 89.21 88.89 89.57

10−3 90.24 89.44 89.97 89.94 89.67 89.88

10−4 92.56 92.07 91.88 92.00 92.34 92.41

10−5 96.74 95.46 96.27 96.00 95.86 97.86

10−6 95.33 94.89 94.93 94.61 94.87 95.09

Keeping the learning rate 10−5, Table 5 and Fig. 15 summarize the classi�cation performance for skin

lesion classes.�ismodel has high accuracy in detectingmel by achieving precision of 98.84%andF1-Score of

98.28%.�is shows that model has low rate of false positives and false negatives in detection of mel case. For

the bcc class, themodel achieved precision of 97.81% andAUCof 98.21% showing strong ability to distinguish

between true and false positives. Other performances include nv with precision of 97.31% and akiec with

recall of 96.00% showing the model ability to detect skin lesion types accurately.
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Figure 14: Graphs for training phases: (a) training and validation accuracy. (b) training and validation loss

Table 5: Summarized performance for the classi�cation of various skin lesion classes

Class Precision (%) Recall (%) F1-Score (%) AUC (%)

mel 98.84 97.71 98.28 98.52

nv 97.31 96.33 96.82 97.92

bcc 97.81 96.83 97.32 98.21

akiec 93.51 96.00 94.74 97.71

bkl 94.04 94.67 94.35 97.08

df 92.97 97.00 94.94 98.19

vasc 93.77 95.33 94.55 97.40

Accuracy 96.74

Macro Avg 95.46 96.27 95.86 97.86

Weighted Avg 96.77 96.74 96.75 98.08

�emodel demonstrates the strong capacity across all evaluatedmetrics and achieving overall accuracy

of 96.74%. �e macro average precision and recall shows the balanced performance across all classes

95.46% and 96.27%, respectively. �e weighted average AUC of 98.08% indicates that the model has good

discriminative power. �ese �ndings highlight the overall model is e�ective for detecting di�erent skin

lesions. Fig. 16 shows the confusion matrix, where the mel class has the highest accuracy of 97.71%, where

1368 images out of 1400 are classi�ed correctly. Lowest accuracy is achieved for bkl class, which classi�ed 284

out of 300 images correctly with an accuracy of 94.67%.
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Figure 15: Graphical representation of the summarized performance for the classi�cation of various skin lesion classes
of HAM10000 dataset, showcasing accuracy, precision, recall, and F1-Score for each class

Figure 16: Confusion matrix of xCViT (Proposed Model) on HAM10000
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4.4 Proposed xCViT Model Results on Skin Cancer ISIC Dataset

�eprovided results evaluate the e�cacy of the proposed xCViTmodel on the SkinCancer ISIC dataset.

�e tables and the confusion matrix speci�cally analyze the model’s behavior in relation to the classi�cation

accuracy of di�erent kinds of skin lesions at various learning rates. Table 6 displays the impact of varying

learning rates on the performance of the xCViT model.

Table 6: Results of di�erent initial learning rates

Learning rate Accuracy (%) Precision (%) Recall (%) Speci�city (%) F1-Score (%) AUC (%)

10−2 84.21 85.98 84.57 83.24 83.67 85.34

10−3 87.36 89.57 86.38 86.71 85.98 88.97

10−4 90.92 92.14 90.11 89.24 89.85 93.15

10−5 93.19 92.97 92.95 92.89 93.14 96.26

10−6 89.56 90.68 88.45 88.76 88.21 91.72

�e model achieves its highest level of performance when the learning rate is set to 10−5. �e model

achieved a maximum accuracy of 93.19% as shown in Fig. 17b. �e precision, recall, and F1-Score were

reported as 92.97%, 92.95%, and 93.14%, respectively. In addition, the AUC of the model was a matter of

concern. It reached its highest value at 96.26%, indicating the model’s capacity to accurately di�erentiate

between di�erent categories of skin lesions.�ese results emphasize the necessity of conducting ameticulous

and controlled search for the optimal learning rate. It is important to acknowledge that increasing the

learning rate leads to a decline in performance at both higher 10−2 and lower 10−6 learning rates. When the

value is reduced to 10−2, the accuracy decreases to 84.21%.�is decrease is also evident in other performance

indicators, particularly Precision and F1-Score. �is highlights the importance of considering the learning

rates when �ne-tuning the model to get optimal performance in this domain.

Figure 17: Graphs for training phases: (a) training and validation accuracy. (b) training and validation loss
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Table 7 and Fig. 18 show the results of the model’s accuracy breakdown regarding various skin lesion

kinds. Although recall decreased to 90.00%, resulting in an F1-Score of 93.26%, the class of nv had the best

precision at 96.77%. Regarding bkl and sk classes, among other types of lesions, the recall %ages are nearly

identical at 95.00% and 95.83%, respectively, leading to high F1 ratings. �e model also performed well on

class classi�cation tasks, as evidenced by thigh AUC values across all classes (97.57% for sk), con�rming the

stability and reliability of this model.

Table 7: Summarized performance for the classi�cation of various skin lesion classes

Class Precision (%) Recall (%) F1-Score (%) AUC (%)

akiec 93.59 93.59 93.59 96.44

bcc 92.16 94.00 93.07 96.41

df 91.30 94.03 92.65 96.59

mel 92.08 93.00 92.54 95.91

nv 96.77 90.00 93.26 94.78

bkl 95.00 95.00 95.00 97.13

sk 90.20 95.83 92.93 97.57

scc 94.85 92.00 93.40 95.63

vase 90.80 92.94 91.86 95.89

Accuracy 93.19

Macro Avg 92.97 92.95 93.14 96.26

Weighted Avg 93.25 92.80 93.19 96.16

Figure 18: Classi�cation performance of various skin lesion classes for Skin Cancer ISIC dataset, showcasing accuracy,
precision, recall, and F1-Score for each class

In Fig. 19, confusion matrix enables us to determine the accuracy of the model’s predictions for each

skin lesion, categorizing them as either correct or erroneous. �e akiec class achieves an accuracy level
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of 93.59 %, with minimal errors that mostly occur when distinguishing between extremely similar classes.

�e classi�cations of bcc and df classes have both demonstrated excellent performance, each achieving an

accuracy rate of above 94%.�emodel demonstrates a low level of overlap between these classes and the other

lesion classes, highlighting its ability to e�ectively handle the inclusion of more diverse and visually similar

lesion classes while maintaining a satisfactory level of accuracy. �is matrix highlights the limited progress

gained in terms of misclassifying lesions, indicating that these signi�cant errors can be readily remedied

in future versions of the model. �e confusion matrix provides a graphical depiction of the model’s ability

to predict outcomes by displaying accurate and inaccurate classi�cations for all types of skin lesions. �e

akiec class obtains an accuracy of 93.59%, with only a few incorrect classi�cations, mainly into closely related

categories. �e bcc and df classes exhibit robust performance, with each obtaining an accuracy rate of 94%.

�ere is very little confusion between these and other types of lesions, which emphasizes the importance.

Figure 19: Confusion matrix of xCViT (Proposed Model) on skin cancer ISIC dataset

4.5 Comparison of Proposed Method with Other Pre-Trained Networks

Table 8 compares the performance of several pre-trained models, highlighting their e�ectiveness across

key evaluation metrics. �e proposed xCViT model outperforms all others, achieving the highest accuracy

of 96.74%, along with Precision (95.46%), Recall (96.27%), Speci�city (96.00%), F1-Score (95.86%), and
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AUC (97.86%). Among the competing models, Xception follows with an accuracy of 93.28%, demonstrating

strong performance with a speci�city of 92.14% and an AUC of 92.94%. DenseNet201 also shows competitive

results with 92.47% accuracy and a speci�city of 91.42%. E�cientNetB2 and ResNet50 exhibit moderate

performance, achieving 88.90% and 89.34% accuracy, respectively. Lastly, VGG19 reports the lowest accuracy

of 85.34%, with a speci�city of 83.26%. �ese results are graphically represented in Fig. 20, providing a

comparative visualization of model performance across all key metrics.

Table 8: Comparison of xCViT with pre-trained models

Model Accuracy (%) Precision (%) Recall (%) Speci�city (%) F1-Score (%) AUC (%)

E�centNetB2 88.90 88.07 88.19 87.46 87.49 89.34

Xception 93.28 93.04 92.78 92.14 92.59 92.94

VGG19 85.34 84.14 85.06 83.26 84.96 85.13

DenseNet201 92.47 92.08 91.89 91.42 91.68 91.83

ResNet50 89.34 89.10 89.03 88.64 88.53 89.67

xCViT (Proposed) 96.74 95.46 96.27 96.00 95.86 97.86

Figure 20: Comparison of evaluation metrices on di�erent pre-trained models
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4.6 Explainability of Proposed xCViT

�e results derived by GradCam on both the HAM10000 and Skin Cancer ISIC datasets include visuals

depicting the model’s decisions. Fig. 21 illustrates the Grad-CAM visualizations for various skin lesion

classes from the HAM10000 dataset, namely melanoma (mel), melanocytic nevus (nv), basal cell carcinoma

(bcc), actinic keratosis (akiec), benign keratosis (bkl), dermato�broma (df), and vascular lesions (vasc).

�e visualizations highlight the regions of the input images that the xCViT model focused on to make its

predictions. InMelanoma (mel) class, the model predominantly focuses on irregular and asymmetrical dark

regions, which are critical features formelanoma diagnosis.�ese regions alignwith the clinical observations

used by dermatologists to di�erentiate melanoma from benign lesions. In Melanocytic nevus (nv) class, the

heatmaps highlight evenly pigmented and smooth areas, which correspond to the clinical characteristics of

benign moles. In Basal cell carcinoma (bcc) class, the model emphasizes the central regions of the lesion,

capturing the characteristic nodular patterns o�en seen in this type of skin cancer. InActinic keratosis (akiec)

class, Grad-CAM highlights the rough and scaly areas of the lesion, consistent with the precancerous nature

of actinic keratosis. In Benign keratosis (bkl) class, themodel focuses on the distinctive borders and textures,

which help in distinguishing benign keratosis from malignant lesions. In Dermato�broma (df) class, the

heatmaps cover the central portion of the lesion, re�ecting its well-de�ned and non-aggressive nature. In

Vascular lesions (vasc) class, Grad-CAM highlights the vascular structures, including red or purplish areas,

which are critical for identifying this class. �e proposed model successfully identi�es the essential visual

characteristics that enable accurate classi�cation.�e highlighted areas for each class correlate to the clinical

dermatoscopy characteristics that con�rm the accuracy of the model’s information. �ese explainability

visualizations demonstrate that the xCViT model is not only accurate in classifying skin lesions but also

interpretable, as the highlighted areas correspond to clinically relevant features.

Figure 21: Grad-CAM visualizations of di�erent skin lesion classes from the HAM10000 dataset

Fig. 22 showcases Grad-CAM visualizations for various skin lesion classes from the Skin Cancer ISIC

dataset, including actinic keratosis (akiec), basal cell carcinoma (bcc), dermato�broma (df), melanoma

(mel), melanocytic nevus (nv), benign keratosis (bkl), seborrheic keratosis (sk), squamous cell carcinoma

(scc), and vascular lesions (vasc). �ese visualizations highlight the speci�c regions in each image that the

proposed xCViT model focuses on to make its predictions. �e heatmaps illustrate the relative importance

of di�erent areas, with warmer colors (e.g., red, orange) indicating higher model attention. For Actinic

keratosis (akiec) class, the model emphasizes rough, irregularly textured regions typical of this precancerous
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condition, re�ecting its focus on clinically signi�cant features. For Basal cell carcinoma (bcc) class, Grad-

CAM highlights the central nodular area of the lesion, aligning with the known presentation of basal cell

carcinoma as a raised and localized lesion. For Dermato�broma (df) class, the heatmap focuses on the

lesion’s central area, corresponding to the well-de�ned, �rm nature of dermato�bromas. For Melanoma

(mel) class, the highlighted regions emphasize irregular pigmentation and asymmetrical patterns, which

are critical for diagnosing melanoma. For Melanocytic nevus (nv) class, the heatmap captures smooth and

evenly pigmented areas, consistent with benign characteristics of melanocytic nevi. For Benign keratosis

(bkl) class, Grad-CAM focuses on distinctive borders and textured regions, helping to distinguish benign

keratosis frommalignant counterparts. For Seborrheic keratosis (sk) class, the model captures areas of waxy,

textured growths, indicative of this non-cancerous condition. For Squamous cell carcinoma (scc) class,

the heatmap highlights irregular borders and rough textures, characteristics of this malignant lesion. For

Vascular lesions (vasc) class, the model emphasizes vascular patterns, including red and purplish regions,

crucial for identifying this class. �ese visualizations provide insights into the model’s decision-making

process, demonstrating its ability to focus on clinically relevant features for each lesion type.

Figure 22: Grad-CAM visualizations of di�erent skin lesion classes from the skin cancer ISIC dataset

Table 9 summarizes the key insights for malignant and benign lesion classes, focusing on Grad-CAM

results, clinical alignment, and the implications of the model’s explainability and performance.

Table 9: Summarized insights for malignant and benign lesion classes based on Grad-CAM visualizations

Lesion type Dataset Model focus Clinical alignment Deep insights

Melanoma

(malignant)

HAM10000 &

ISIC

Irregular

pigmentation,

asymmetry,

darker areas.

Consistent with

clinical

diagnostic

features such as

asymmetry,

uneven borders,

and irregular

pigmentation.

�e model

e�ectively

generalizes across

datasets, focusing

on critical

malignant

features, making

it a strong tool for

early melanoma

detection.

(Continued)
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Table 9 (continued)

Lesion type Dataset Model focus Clinical alignment Deep insights

Actinic keratosis

(malignant)

HAM10000 &

ISIC

Rough, scaly

regions and

irregular textures.

Matches

precancerous

signs used in

dermatological

diagnosis.

�e model

demonstrates

strong capability

in identifying

early-stage

cancerous lesions,

with focus areas

critical for

prevention and

timely

intervention.

Basal cell

carcinoma

(malignant)

HAM10000 &

ISIC

Central nodular

areas, raised

regions with

de�ned edges.

Aligns with BCC

presentation as

nodular and

localized lesions.

�e model

consistently

highlights

clinically relevant

regions, showing

robustness in

capturing

localized

cancerous

features.

Squamous cell

carcinoma

(malignant)

ISIC Irregular borders

and rough

textures.

Consistent with

features like scaly

patches and

irregular lesion

edges.

�e model

e�ectively

identi�es subtle

malignant traits,

supporting its use

in distinguishing

SCC from other

conditions.

Melanocytic

nevus (benign)

HAM10000 &

ISIC

Smooth, evenly

pigmented areas.

Matches clinical

features of benign

moles with

uniform

structure.

High precision in

distinguishing

benign nevi,

minimizing false

positives for

malignant lesions

like melanoma.

(Continued)
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Table 9 (continued)

Lesion type Dataset Model focus Clinical alignment Deep insights

Benign keratosis

(benign)

HAM10000 &

ISIC

De�ned borders,

textured regions,

distinct patterns.

Aligns with

non-malignant

features used in

di�erentiating

keratosis from

malignant

lesions.

Model’s focus on

distinct benign

features helps

reduce diagnostic

uncertainty in

clinical

applications.

Dermato�broma

(benign)

HAM10000 &

ISIC

Centralized areas

with even texture.

Matches

well-de�ned and

�rm

dermato�broma

characteristics.

Strong

performance in

identifying

benign features,

enhancing model

reliability in

di�erentiating

non-aggressive

lesions.

Seborrheic

keratosis (benign)

ISIC Waxy, textured

areas with

uniformity.

Re�ects benign

and

non-threatening

nature of

seborrheic

keratosis lesions.

E�ective focus on

unique benign

traits,

demonstrating

the model’s

adaptability to a

variety of benign

conditions.

Vascular lesions

(benign)

HAM10000 &

ISIC

Vascular patterns,

including red and

purplish areas.

Consistent with

vascular lesion

features such as

clustered

capillary regions.

�e model

captures speci�c

vascular features

e�ectively,

showcasing its

utility in

non-malignant

classi�cation.

4.7 Comparison with Other Studies

Table 10 shows that Maduranga et al. [27] achieved accuracy of 85.00% using MobileNet, while

�urnhofer-Hemsi et al. [28] reported accuracy of 83.20% with Shi�ed 2-Nets. Srinivasu et al. [29] combied

MobileNetV2 with LSTM resulting accuracy of 86.33%. EW-FCMwithWide Shu�eNet was used by Hoang

et al. [30] and obtained accuracy of 86.33%. Al-Masni et al. [31] achieved accuracy of 88.70% using FrCN

with DenseNet201. Agyenta et al. [32] obtained accuracy of 86.91% by combining InceptionV3, ResNet50,

and DenseNet201. �e proposed xCViT model achieved an accuracy of 96.74% which surpasses all these

techniques. Fig. 23 illustrates the comparison of xCViT with other techniques.
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Table 10: Comparison with previous works

Author Technique Accuracy (%)

Maduranga et al. [27] MobileNet 85.00

�urnhofer-Hemsi et al. [28] Shi�ed 2-Nets 83.20

Srinivasu et al. [29] MobileNetV2 + LSTM 85.34

Hoang et al. [30] EW-FCM +Wide Shu�eNet 86.33

Al-Masni et al. [31] FrCN + DenseNet201 88.70

Agyenta et al. [32] InceptionV3 + ResNet50 + DenseNet201 86.91

xCViT (Proposed) CNN + Xception + ViT 96.74

Figure 23: Performance comparison of xCViT (proposed) with previous works [27–32]

4.8 Discussion

�e main problem in automated skin cancer identi�cation is the precise capture of both local features

and global context in skin lesion images. Conventional models, mostly reliant on CNNs, excel in local feature

extraction but frequently struggle to grasp the contextual relationships within the image.�is constraintmay

result in misclassi�cations, especially in instances where nuanced di�erences betweenmalignant and benign

lesions are present. �e incidence of false positives and false negatives continues to be a signi�cant concern,

leading to diagnostic ine�ciencies and even treatment delays. �is paper presents the xCViT technique,

which combines CNNs, Vision Transformers (ViTs), and Xception architecture to tackle these di�culties.

�is hybrid methodology utilizes the advantages of CNNs for local feature extraction and ViTs for global

context acquisition, markedly improving classi�cation precision and diagnostic reliability. �e integration

of Xception architecture enhances the model’s e�ciency, allowing it to process intricate skin lesion images

while preserving scalability and performance.

�e xCViT technique has enhanced performance relative to other leading methods. Table 9

shows that the xCViT model attains superior accuracy, precision, recall, and F1-Score on

both the HAM10000 and Skin Cancer ISIC datasets. It surpasses models including Custom

CNN + ViT + DenseNet201, Custom CNN + ViT + ResNet50, Custom CNN + ViT + E�cientNetB2, and

Custom CNN + ViT +MobileNetV2. �is underscores the e�cacy of the hybrid architecture in gathering
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both detailed local features and extensive contextual information, essential for precise lesion classi�cation.

�e amalgamation of ensemble methods with anomaly detection algorithms decreases the incidence of

false positives and false negatives, hence enhancing the model’s reliability for clinical application. Table 3

presents a comparison of the xCViT approach against various backbone topologies. �e xCViT model

surpasses conventional CNN-based models and hybrid architectures that integrate CNNs with other vision

transformers or deep learning frameworks such as ResNet50, DenseNet201, and E�cientNetB2. �is

illustrates the e�cacy of the suggested method in processing complex skin lesion images and rendering

dependable diagnostic conclusions. �e capacity to extract local and global features, along with the

application of sophisticated ensemble algorithms, enhances classi�cation accuracy and diagnostic reliability,

rendering the xCViT approach a viable solution for the early and precise identi�cation of skin cancer.

4.9 Policy Suggestions

�e research �ndings can provide policy recommendations aimed at facilitating the integration of

AI-driven technology into healthcare systems for early identi�cation of skin cancer. Governments and

healthcare organizations ought to promote the integration of sophisticated AI technologies, such as the

suggested hybrid deep learningmodel, into clinical dermatology. Investment in arti�cial intelligence research

and development is essential for policies, especially for skin cancer detection. �e standardization of data

gathering and model evaluation procedures could facilitate consistency and equity in AI applications, hence

encouraging the utilization of diverse and impartial datasets, enhancing early diagnosis and hence reducing

errors in the treatment of skin cancer patients.

5 Conclusion

�is article proposes a novel deep learning fusion architecture xCViT that leverages ViT, Xception, and

a proprietary CNN to address class imbalance and improve e�ciency. �e initial phase of our methodology

involved class balance through data augmentation, followed by the integration of ViT, CNN, and Xception

models. In light of the initial performance de�ciencies, it was determined to implement a custom CNN

comprising three application-oriented blocks: the Dense Block for enhanced transfer of perceptual features,

the depth-wise separable convolution block to reduce computational complexity, and the Inception-Like

Module for comprehensive feature extraction.�emetrics of precision, accuracy, recall, speci�city, F1-Score,

and ROC-AUC are 96.74%, 95.46%, 96.27%, 96.00%, 95.86%, and 97.86% for the HAM10000 dataset, and

93.19%, 92.97%, 92.95%, 92.89% 93.14%, and 96.26% for the Skin Cancer ISIC dataset, all of which are

exceeded. Grad-CAM representations validated the previous advantages of our methodology.

5.1 Limitations

�e primary problem is a limited number of datasets (only two) used, which may compromise the

model’s generalizability. �e HAM10000 and Skin Cancer ISIC datasets encompass a limited spectrum

of potential skin diseases and conditions. Subsequent study may incorporate more datasets comprising

a more varied array of samples from distinct people and places to assess its robustness and adaptability

across di�erent contexts. Although our proposed model attains accuracy, its computational complexity

may pose a challenge for deployment in resource-constrained situations. As a speci�c focus for future

research, optimizing for reduced resource use without compromising performance may be considered. A

further problem is the class imbalance in the datasets. �e imbalance may continue to adversely a�ect

model performance in the underrepresented classes. �is would include employing advanced approaches

such as generative adversarial networks (GANs) for data augmentation or class-weighted loss functions

to enhance performance across all categories of skin diseases. Although Grad-CAM visualizations o�ered
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valuable qualitative insights into the model’s decision-making, a more comprehensive method for real-time

interpretability in clinical environments is still needed to foster trust and transparency in AI-driven systems

for skin cancer detection.

5.2 Future Scope and Research Directions

�epotential future uses of our proposed approachmay be extended beyond skin cancer diagnosis. Our

architecture can be modi�ed for other medical imaging applications, including the detection of breast, lung,

or brain cancer, or general pathology, where deep learning model’s capacity to identify complex features will

be advantageous.�emodel can be further tailored from the presented design, so augmenting its capacity to

generalize and excel on previously unseen data. Potential avenues of investigation include the application of

sophisticated AI methodologies, like reinforcement learning for improved decision-making and federated

learning to safeguard data privacy. �e primary hurdles encountered throughout this research involved

insu�cient data diversity, class imbalance, and computational resource constraints. Future research e�orts

can surmount these restrictions by including additional datasets, employing transfer learning techniques to

enhance accuracy, and re�ning the model for other applications. �e integration of AI into conventional

diagnostic instruments as a part of a hybrid system may enhance the reliability of diagnostic systems in

healthcare applications.
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