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ABSTRACT: As technologies related to power equipment fault diagnosis and infrared temperature measurement
continue to advance, the classification and identification of infrared temperature measurement images have become
crucial in effective intelligent fault diagnosis of various electrical equipment. In response to the increasing demand for
sufficient feature fusion in current real-time detection and low detection accuracy in existing networks for Substation
fault diagnosis, we introduce an innovative method known as Gather and Distribution Mechanism-You Only Look
Once (GD-YOLO). Firstly, a partial convolution group is designed based on different convolution kernels. We combine
the partial convolution group with deep convolution to propose a new Grouped Channel-wise Spatial Convolution
(GCSConv) that compensates for the information loss caused by spatial channel convolution. Secondly, the Gather and
Distribute Mechanism, which addresses the fusion problem of different dimensional features, has been implemented
by aligning and sharing information through aggregation and distribution mechanisms. Thirdly, considering the
limitations in current bounding box regression and the imbalance between complex and simple samples, Maximum
Possible Distance Intersection over Union (MPDIoU) and Adaptive SlideLoss is incorporated into the loss function,
allowing samples near the Intersection over Union (IoU) to receive more attention through the dynamic variation
of the mean Intersection over Union. The GD-YOLO algorithm can surpass YOLOv5, YOLOv7, and YOLOv8 in
infrared image detection for electrical equipment, achieving a mean Average Precision (mAP) of 88.9%, with accuracy
improvements of 3.7%, 4.3%, and 3.1%, respectively. Additionally, the model delivers a frame rate of 48 FPS, which
aligns with the precision and velocity criteria necessary for the detection of infrared images in power equipment.

KEYWORDS: Infrared image detection; aggregation and distribution mechanism; sample imbalance strategy;
lightweight structure

1 Introduction
With the ongoing development and construction of substations, infrared imaging technology has

become increasingly prevalent in the inspection of electrical equipment. This technology not only enhances
the detection rate, efficiency, and reliability of identifying equipment anomalies but also mitigates potential
risks. In contrast to visible light images, thermal images are more resilient to the impact of external weather
conditions and fluctuations facilitating the timely collection of information about the electrical equipment’s
status and effectively preventing faults caused by overheating [1].

Recently, due to the ongoing development of artificial intelligence and information technology, deep
learning-based methods for infrared image recognition and processing have successfully addressed various
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challenges associated with traditional manual detection techniques. Li et al. [2] employed two parallel feature
encoders in extracting both RGB and infrared image features, and then utilized a multi-modal feature fusion
method in fusing the shallow feature output produced by the two encoders. Wang et al. [3] trained the Mask
R-CNN algorithm by using migration learning and a dynamic learning rate for the improvement in infrared
images of substation insulators. Yan et al. [4] firstly fused the visible and infrared images of substation
equipment, trained the fused image dataset by the Mask R-CNN algorithm for the detection accuracy, and
extracted semantic features of targets in dense target scenes while maintaining a streamlined model. Various
solutions have previously been proposed for different application scenarios. To address this issue, researchers
have proposed various solutions that have demonstrated their effectiveness in specific environments and
conditions. Combined with the YOLOv5s model, Chen et al. [5] developed an efficient algorithm in detecting
floating waste on aquatic surfaces, presenting its swift real-time capability for monitoring and water pollution
management. For the precision of service robots in recognizing elevator buttons, Tang et al. [6] proposed
the YOLOv5 algorithm in combination with robotic technology, and showed the improved efficiency and
reliability of robots in providing assistance services. Wang et al. [7] utilized residual networks to enhance the
model’s detection on traffic signs in complex backgrounds, providing more reliable traffic information and
road safety for drivers and autonomous vehicles. Ali et al. [8] integrated the Kalman filter to enhance the
stability of the YOLO model when processing noisy data and forecasting the movement paths of vehicles,
consequently improving the detection and tracking performance of vehicles in changing environments.

To enhance compatibility with the detection of electrical equipment in infrared imagery, a GD-YOLO
model is proposed in this paper. Firstly, the Feature Pyramid Network (FPN) has been augmented with a
Gather and Distribute mechanism, which encourages the enhanced to prioritize the effectiveness of feature
consolidation. Secondly, the Grouped Channel-wise Spatial Convolutional with Cross Stage Partial Network
(GCSCSP) architecture is engineered to diminish parameter count and computational demand, thereby
accelerating the inference process. Finally, Adaptive SlideLoss is used to alleviate the difference between
positive and negative samples, and the model utilizes the diagonal distance to ascertain the locations of the
target and prediction frames, enabling it to more effectively distinguish between various objects and thereby
enhance the precision of object detection in electrical equipment imagery.

The remainder of this paper is organized as follows: Section 2 reviews the literature related to Feature
Pyramid Networks (FPNs) and the application of lightweight networks. Section 3 outlines the overall
structure of the GD-YOLO detection model and explains the principles of its improved modules. Section 4
describes the creation of the dataset, the setting of environmental parameters, and the selection of relevant
indicators for experimental analysis. Section 5 presents the comparative experiments and visualization
analysis. Finally, Section 6 summarizes the research findings of this paper and offers insights into future
research directions.

2 Literature Review
Deep learning-based object detection can be divided into two primary categories: one-stage detectors

and two-stage detectors. Single-stage detectors, primarily employing the YOLO series [9] and SSD [10],
directly process the input image to predict the category and position of the object. The R-CNN family [11]
represents the two-stage detectors, which first generate a group of candidate regions before classifying and
regressing these regions. Furthermore, the diversity in object dimensions within the image might lead to a
loss of fine details during the feature extraction process at a particular scale. To tackle the challenge of varying
scales, target detection models typically incorporate feature pyramid architecture. The traditional FPN [12]
features a top-down pathway designed to integrate multi-scale features. However, this direct merging of
distinctions between different feature layers can lead to a loss of information within the image. PAFPN [13]
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enhances FPN by adding a bottom-up path to compensate for the low-level feature details in the high-
level features. GraphFPN [14] incorporates a graph neural network to overcome the limitation of direct
interaction between adjacent scale features. BiFPN [15] achieves efficient weighted feature fusion by utilizing
a jump connection and two-way channel between different scales. AFPN [16] sequentially expands and fuses
two adjacent features with varying resolutions, reducing disparities between features with different scales,
and preserving valuable information for fusion. Gold-YOLO [17] employs the aggregation and distribution
mechanism to inject globally fused multi-scale features into a higher-level feature layer, enabling efficient
information exchange. To fulfill the immediate detection demands of electrical infrastructure, a hybrid
approach that integrates conventional detection methods with deep learning is employed for the analysis
of infrared imagery. Lianqiao et al. [18] conducted position recognition and classification on preprocessed
infrared images, employing nonlinear least squares curve fitting to calculate the maximum temperature, and
proposed a YOLO-based method for detecting infrared images of electrical equipment. Li et al. [19] enhanced
the CSP structure by proposing YOLO-FIRI, which incorporates an attention mechanism into the residual
block, improving the network’s capacity to acquire robust. Yang et al. [20] proposed a detection method for
infrared images of power equipment based on YOLO. This method uses Efficient-IoU (EIoU) for feature
fusion, ultimately locating, identifying, and classifying objects, which better meets the requirements of power
detection. Yu et al. [21] introduced the ES-Net, a network that effectively sequences and amalgamates features
across various levels via a feature steering module and incorporates a multi-sensory field module to bolster
the network’s acquisition of robust features. Han et al. [22] introduced an approach for identifying regions
of interest (ROI) predicated on the responsiveness of thermal image hot spots, and used the MobileNet
detection network for the identification and detection of power equipment in infrared imagery, while
utilizing a streamlined network architecture to enhance detection velocity. To enhance detection accuracy,
Du et al. [23] implemented a mechanism that prioritizes negative samples by a combination of YOLO and
attention mechanisms to reduce false positives.

In practical applications, low-resolution infrared images of substation equipment cause obstacles to
image positioning, making it difficult to distinguish similar equipment in multiple substations in real-
time. To address these challenges, this paper proposes an inference model that integrates aggregation and
distribution mechanisms. The model uses global and locally aligned aggregation modules to splice and
extract features and then locates the category and position information of infrared images by the diagonal
distance between the prediction frame and the target frame. The major contributions of our proposed
Infrared image target detection are as follows:

A Partial Convolution Group (PCG) is proposed based on SqueezeNet and depth separable convolution.
This approach utilizes partial convolution to reduce the computational load while maintaining the same con-
volutional form. Building upon GSConv, the GCSConv and its lightweight module GCSCSP are developed
by integrating the double branch PCG and depth separable convolution.

The feature alignment component and the information dissemination component are integrated into the
neck of YOLOv8 to construct Gather and Distribution-Feature Pyramid Network (GD-FPN), which enables
efficient information interaction among features at different levels and further enhance the synergistic
information processing ability of the neck.

To address the imbalance between complex and simple samples in infrared images, an adaptive SlideLoss
is developed to enhance classification. Additionally, when the prediction box shares the same aspect ratio as
the ground truth box but has significantly different width and height values, MPDIoU is introduced to tackle
where IoU may not accurately reflect the discrepancy. This new metric streamlines the calculation process
and maintains the accuracy of bounding box regression.
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3 Method
Given the low resolution and complex background of the infrared image, the YOLOv8 model remains

inadequate in ensuring the accuracy of recognition. In this paper, the GD-FPN technique is employed in the
neck to address the issue of information loss between feature fusion of different layers in the original FPN.
Additionally, GCSCSP is utilized to replace the original C2f in order to reduce the number of parameters
and computational load. Furthermore, the dual channel partial convolution DWConv is integrated with
convolution to enhance the spatial correlation information of feature fusion. Moreover, Adaptive SlideLoss
is adopted to mitigate the sample imbalance of infrared images, while MPDIoU is introduced to improve
model convergence speed and detection performance. The GD-YOLO model is depicted in Fig. 1.

Figure 1: The GD-YOLO model is composed of three parts: (a) the backbone network, (b) the feature fusion network,
and (c) the head network. In the feature fusion network, (d) is the constructed lightweight GC module, and (e) is the
GD-FPN network, which enhances multi-scale feature fusion by adopting the gather and distribute mechanism

3.1 Network Based on Dual-Channel Spatial Correlation Information
In the context of infrared image detection, ensuring accuracy while maintaining low computational

complexity has consistently been a focal point of interest. This objective is primarily accomplished through
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the utilization of deep separable convolution operations, which serve to diminish the quantity of floating-
point computations. Nevertheless, DWConv also exhibits certain limitations: the separation of channel
information from the input image during the computation process results in the loss of some inter-channel
related information. As suggested by GhostNet [24], it is argued that not all feature maps are necessary to
be derived from convolutional operations. From the above, a partial convolution group module based on
SqueezeNet and DWConv. The detailed computation procedure is depicted in Fig. 2.

Figure 2: Schematic diagram of three types of convolutions

PCG incorporates the concept of grouping convolution from squeeze net, utilizing various convolution
kernels and DWConv point-by-point convolution. Then, perform 1 × 1 pointwise convolution for the
feature map without convolution operation and the feature map obtained through convolution operation
to exchange information between channels. The concept of partial convolution is adopted to reduce the
parameters of convolution. Finally, inspired by GSConv, and since PCG has the ability to capture different
spatial features, it can be integrated into GSConv as a receptive field enhancement module. Through the
collaboration of dual branches and DWConv, the limitation of the Depthwise Convolution stage of DWConv
is alleviated, that is, it only emphasizes the feature changes in the channel dimension while ignoring the
spatial position information. By integrating PCG, DWC, and Shuffle technologies, we introduce a dual-
channel network module named GCSConv, aiming to improve the spatial correlation information. The
feature map of GCSConv exhibits a greater number of contour features compared to those of DWConv and
SqueezeNet. The GCSConv layer is utilized to replace the Conv layer in the backbone from a lightweight
perspective. To fully utilize CNN features, the original C2f module is optimized in the neck. After studying
DenseNet, VoVNet, and CSPNet, the streamlined structure, GCSCSP, for the detection of infrared images
leveraging GCSConv is shown in Fig. 3.

3.2 Enhancement of Feature Fusion in GD-FPN
Currently, the conventional pyramid network still suffers from information loss during amalgamating

features across disparate scales. The method of Gold-YOLO based on global information fusion, is incor-
porated into the architecture of YOLOv8 to create GD-FPN. As shown in Fig. 4, the GD-FPN structure is
displayed. The network includes the feature alignment module SimFusion, the information fusion module
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(IFM), and the information injection module Inject. The system employs the mechanism of aggregation and
distribution and utilizes SimFusion to gather and merge information from multiple layers. This information
is then distributed to various layers through the IFM and ultimately injected into different detection heads
through the process of Injection.

Figure 3: The network module of GCSConv

Figure 4: The network structure of the GD-FPN
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In the Neck module, the outputs of B2, B3, B4, and B5 are initially combined by using SimFusion4, and
the alignment of low-level features is achieved by utilizing B4 to facilitate effective information aggregation
while preserving a greater amount of low-level information. By employing multi-layer re-parameterized
convolution blocks with RepBlock, the transfer of information between different layers is facilitated, leading
to an increased network capacity without significantly adding parameters or computational burden. This
achieves the aggregation of low-order information of Low-IFM. Selective pooling operations are used to
perform global feature down-sampling, and the local features and global features generated by IFM are
cascaded across various tiers of feature layers. The alignment of the overall features, the fusion of Rep Block
information, and the formula of information injection are as follows:

Finally, to more effectively capture contextual information and extract essential details, High-IFM
employs a Transformer structure for high-dimensional mapping and complex transformation. This approach
enhances the model’s expressive capabilities and further improves its performance. The formulas for local
feature alignment, transformer feature fusion, and information injection are as follows:

Fa1 = simFusion3 (N3 + N4 + N5) (1)
Fb1 = RepBlock (Fa1) (2)
Fin jec P5, Fin jec P4 = Spl it (Fb1) (3)
Fa = simFusion4 (B2 + B3 + B4 + B5) (4)
Fb = RepBlock (Fa) (5)
Fin jec P3, Fin jec P4 = Spl it (Fb) (6)

3.3 Loss Function
Within the realm of object detection, samples are categorized as straightforward or intricate based on the

IoU measure of the predicted bounding box and the actual bounding box. The simple sample’s target box may
slightly overlap with the real box due to optimization, suggesting that the sample is easily accommodated.
In contrast, the difficult sample exhibits a low degree of overlap with the real box, resulting in a consistently
low IoU even after extensive training. In the context of infrared image detection, there is a high prevalence of
easy samples and a relatively low occurrence of difficult samples, leading to potential issues related to sample
imbalance. YOLOv8 employs the Task Alignment Learning (TAL) to ascertain the assignment and pairing of
positive and negative samples. The method is highly sensitive to the choice of IoU threshold, as it determines
the allocation of positive and negative samples. This situation can lead to the determined target category being
affected by excessive negative samples during the training process, which may impact the model’s ability to
effectively learn from these categories and subsequently hinder its capacity to handle challenging targets. To
address the disparity between complex and simple samples in infrared images, SlideLoss is introduced within
scope of this research. SlideLoss utilizes the average value of IoU of all bounding boxes as the threshold μ,
and categorizes the samples into positive and negative samples based on μ. The sample of the boundary is
highlighted by the slide weighting function, as shown in Fig. 5. The enhanced Adaptive SlideLoss is outlined
below. The weighting function for the Slide can be expressed as follows:

y =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, x ≤ μ − 0.1
eα(1−μ), μ − 0.1 ≤ x ≤ μ

eα(1−x), x ≥ μ
(7)

where μ represents the mean value of IoU, and α denotes the decay rate. When α = 0.96, the optimal result
can be obtained. The adaptive SlideLoss method involves the adaptive learning of the threshold parameter
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μ for positive and negative samples. Placing higher weights in the vicinity of μ will amplify the relative
loss associated with the classification of challenging samples, thereby directing greater emphasis toward the
classification of such samples. This methodology seeks to boost the precision and reliability of the object
detection model by reducing the direct disparity between the estimated box and the ground-truth box.

Figure 5: Adaptive SlideLoss

3.3.1 MPDIoU
The bounding box regression loss is calculated using a combination of Distribution Focal Loss (DFL)

and Complete Intersection over Union (CIoU). CIoU considers both the distance between the center point
of the prediction box and the real box and the aspect ratio. The formulation of CIoU can be written as follows:

LCIoU = 1 − CIoU (8)

CIoU = IoU − (d2 (b, bg t)
c2 + av) (9)

ν = 4
π2 (arctan w g t

hg t − arctan w
h
)

2

(10)

α = ν
(1 − IoU) + ν

(11)

The formula involves the coordinate parameters of the center of the predicted box, the coordinate
parameters of the center of the actual box, and the weight coefficient. It is used to assess the consistency of
the parameters of the two rectangular boxes, specifically the width and height of the actual frame. When the
height value differs significantly, it can limit the convergence speed and accuracy, rendering CIoU ineffective.
An IoU loss, MPDIoU, based on the minimum point distance is utilized. It simplifies the comparison of
the two bounding boxes by minimizing the diagonal distance between the predicted bounding box and the
actual bounding box, allowing for adaptation to overlapping or non-overlapping bounding box regression.
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4 Experiment

4.1 Datasets
The original images of the power equipment studied in this paper are derived from actual on scene

electric power substation. The images in the dataset are saved in the default JPG format. The initial dataset
contains 600 images, and the collected infrared images are enhanced through Mosaic-9 and Real-ESRGAN
methods. The constructed dataset, comprising 5900 infrared images, is detailed in Table 1. This dataset
includes infrared temperature measurement images of five types of power equipment: 220 kV lightning
arresters, 220 kV current transformers, 220 kV voltage transformers, insulation bushings, and insulators.
Among them, the voltage transformer, arrester, and insulation bushings are chosen as representatives of
similar devices to enhance the model’s universality.

Table 1: Composition of data sets

ID Class name Training sets Val sets Total
0 Arrester 800 200 1000
1 Current-transformer 960 240 1200
2 Potential-transformer 960 240 1200
3 Bushing 1000 250 1250
4 Insulator 1000 250 1250

4.2 Experimental Metrics
Common object detection algorithm metrics can be divided into two categories: detection accuracy

evaluation metrics and model complexity evaluation metrics. In terms of detection accuracy, this paper
selects mAP as the evaluation metric for model detection accuracy. In terms of model complexity, this paper
selects the model’s parameter count, computational load, and Frames Per Second (FPS) as the evaluation
metrics for model complexity.

The mAP is the mean of the Average Precision (AP) across different object categories for a network
model, with its calculation detailed in Formulas (15) and (14). In this context, N denotes the total number of
object categories that the network model is capable of recognizing; AP signifies the average accuracy of the
network model in identifying a particular category, which is calculated as the area under the curve plotting
Precision (P) against Recall (R) for that category.

P = TP
(TP + FP) (12)

R = TP
(TP + FN) (13)

AP = ∫
1

0
P (R) dR (14)

mAP =

n
∑
i=0

AP (i)

N
(15)

Precision P, also known as the positive predictive value, is used to measure the proportion of samples
correctly predicted as positive among all samples predicted as positive by the model, and its calculation
method is shown in Formula (12). Recall R, also known as sensitivity, is used to measure the proportion of
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positive samples correctly predicted by the model out of all positive samples in the test set, and its calculation
method is shown in Formula (13). In Formulas (12) and (13): TP represents true positives; FP represents false
positives; FN represents false negatives.

4.3 Experimental Environment
The experiments are conducted via the PyTorch 1.8.1 deep learning framework, with Python 3.10 and a

64-bit Windows 10 operating system. The experimental hardware is a CPU Ryzen 5600X with 4.0 GHz, and
the GPU is an NVIDIA RTX 3060Ti with 8 GB video memory. The GPU accelerators are CUDA 11.1 and
CUDNN 8.1. During the training, we used an SGD optimizer at a learning rate of 0.01 and a batch size of 16,
and then the model was trained for 300 epochs.

5 Experimental Analysis

5.1 Validation of GCSConv
In order to comprehensively assess the efficacy of GCSConv, a comparison of the speed and parameters

of these modules with common convolution modules was proposed in Table 2.

Table 2: Comparison of convolution parameters

Name All-Time (ms) Mean-Time FPS FLOPs Params
DWConv 27.16662 0.00906 110.430 872.415 M 1.408 K

Depth-Conv 66.931 0.02231 44.822 9.731 G 18.304 K
LightConv 45.96909 0.01532 65.261 9.731 G 18.048 K

PConv 37.91922 0.01264 79.116 5.100 G 9.472 K
Ghost-Conv 41.99972 0.01400 71.429 4.865 G 9.152 K

DCNV2 430.94253 0.14365 6.961 16.576 G 31.387 K
GSConv 85.44381 0.02848 35.111 39.762 G 75.712 K

GCSConv 73.29446 0.02443 40.931 40.837 G 73.883 K

DWConv primarily concentrated on the characteristic transformations of channel dimensions during
the deep convolutional stage, neglecting the contextual interactions. GCSConv addressed the low frames
per second and prolonged reaction times in the PCG by leveraging the synergistic effects of the dual-
branch PCG and DWConv. Experimental outcomes demonstrated that the proposed GCSConv enhanced
reaction time by 12% and accelerated reasoning time, with minimal to no increase in parameter count
and computational load. By refining the spatial structure’s relevant information, the model’s robustness and
efficacy were significantly bolstered.

5.2 Consumption of Inference Time and Computational Memory
To conduct a thorough evaluation of the GD-YOLO model, we assessed its time consumption by

examining both the reasoning time and the speed of inference. Additionally, we evaluated the spatial
consumption by determining the memory space and the size of the parameter set during the training phase.
The time consumption was quantified through an analysis of the model’s inference times across various
image resolutions and on different hardware platforms. Meanwhile, the space consumption was gauged by
measuring the memory usage during both the training and inference stages.
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As could be seen from the time consumption in Table 3, the input image with a lower resolution had
a faster detection speed. However, due to its fewer pixels, the computational amount required for feature
fusion was relatively low, so it was not easy to extract the most obvious features during feature extraction.
When the input image was set to the standard resolution of 640 × 640, although the model’s parameters and
inference time both increased, the accuracy rate was 1.6% higher compared to the resolution of 1080% and
3.1% higher compared to the resolution of 416. The detection speed could meet the real-time requirements.

Table 3: Time consumption of inference

Resolution Inference-time (ms) All-time (ms) FPS mAP50 (%)
320 × 320 2.7 5.28 189 83.7
416 × 416 4.56 8.91 112 85.6
640 × 640 11.32 23.1 48.9 88.9

1080 × 1080 31 60 16.4 87.3

As the batch size increases, the GPU memory consumption (GPU-Memory) generally increases upward.
Nonetheless, compared to the baseline model, GD-YOLO has successfully trimmed its parameters by 0.3%
and lessened the computational burden by 10%, which helped to mitigate memory consumption to some
extent. This advantage was leveraged in resource-constrained environments by adjusting model parameters
or adopting more efficient memory management strategies to reduce memory requirements. In large-scale
environments, as evidenced by the data in Table 4, GD-YOLO demonstrated potential for deployment.
Although GPU memory consumption increased with larger batch sizes, the relatively stable processing
time and acceptable latency indicated that it could handle large volumes of data. The needs of large-scale
deployment were met by utilizing high-performance GPUs.

Table 4: Evaluate the model’s memory consumption

Batch Inference-time (ms) GPU-memory (MB) GPU-util (%) Computation latency (ms) FPS
1 10.54 1895 10 105.43 29.86
2 9.08 2173 9 100.89 34.68
3 8.55 2453 13 65.77 36.84
4 7.75 2737 16 48.44 40.62
8 6.87 3897 28 24.54 45.82
16 6.44 5717 53 12.153 48.94
32 7.83 11,795 100 7.83 40.25

5.3 Ablation Experiment
To verify the effectiveness of the proposed GD-FPN pyramid network, lightweight GC module, Slide-

Loss, and MPDIoU, ablation experiments were conducted and presented in Table 5. This table outlines eight
distinct scenarios, each showcasing a unique combination of the four strategies. While the baseline method
foregoes these strategic implementations, the proposed method integrates a full suite of these advanced
strategies: GD-FPN to bolster the feature pyramid network, GC to reduce computational complexity,
SlideLoss to refine sliding window detection, and MPDIoU to enhance mean point detection intersection
over union calculations.
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In the ablation experiment, we adopted a method of sequentially adding different modules to evaluate
the impact of each module on the entire GD-YOLO model. Initially, the GD-FPN pyramid network
was introduced into the neck network, through which large-scale feature maps were extracted via low-
dimensional branches, preserving as much feature information of small targets as possible. The aligned
features were then distributed across different levels in a self-attention-like manner, further enhancing feature
fusion. The high-dimensional branch down-sampled the low-dimensional fused features, better-handling
targets of various sizes and improving the model’s detection capabilities for objects of all sizes, leading to the
most significant enhancement in mean average precision (mAP50). Compared to the base model, mAP50
increased by approximately 1.3%. Subsequently, the GC lightweight module was introduced, which extracts
features using partial convolution, focusing on the parts of the features that contribute significantly to object
detection. Additionally, the Depthwise Separable Convolution further reduced the number of parameters
and computational load, cutting the total parameters by 10% compared to the base model. Building upon the
GD-FPN framework, the SlideLoss function was added to alleviate the imbalanced infrared image samples by
changing negative samples near the IoU mean to positive ones for training, thereby reducing the sensitivity of
IoU and presenting an increase of 0.4% in mAP50 when adding GD-FPN alone. Based on GD and SlideLoss, a
GC module was added to reduce the computational load caused by the complex structure of GD-FPN, leading
to an increase of mAP50 about 0.3%. Furthermore, considering the complex background of infrared images
and the overlap of different objects, traditional localization methods may lead to confusion or inaccuracy. To
improve the localization accuracy, the diagonal distance of MPDIoU was adopted to more accurately measure
the similarity between the target box and the predicted box, thus reducing it effectively. Finally, through the
four combined effects in Table 5, the model’s ability to extract multi-scale features was enhanced, mitigating
the disparity between positive and negative samples, and allowing predicted boxes to fit more closely to
the true boundaries of the target objects. Compared to the baseline model, mAP50 increased by 3.1%, and
computational load decreased by 10%, indicating that the model effectively identifies detection tasks in
infrared images of electrical equipment. The improved GD-YOLO model, as shown in Fig. 6, demonstrates
substantial improvements, indicating a high degree of confidence in accurately extracting target objects
under complex background interference.

Table 5: Ablation experiment

Baseline GD GC Slideloss MPDIoU mAP50 (%) mAP75 (%) FPS GFLOPs
√ × × × × 85.8 55.1 50.3 27.4√ √ × × × 87.1 55.4 45.8 30.3√ × √ × × 86.7 55.9 66 24.1√ √ × √ × 87.5 55.1 46.1 30.4√ √ √ × × 87.8 55.8 48.0 24.8√ √ √ √ × 88.2 56.8 48.4 24.8√ √ √ × √

88.3 56.2 48.5 24.8√ √ √ √ √
88.9 57.6 48.9 24.8
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Figure 6: Evaluation index of the GD-YOLO

5.4 YOLO Series Models Comparison Experiment
The GD-YOLO model introduced in this study was benchmarked against the YOLOv5, YOLOv7,

and YOLOv8 models. The focus of this paper is exclusively on evaluating these models in terms of their
performance across the N, S, M, and L scales.

From Table 6, it was evident that the GD-YOLO models demonstrate exceptional capability in detecting
infrared images of electrical equipment, achieving mAP of 88.9%. This performance was notably superior to
its predecessors, surpassing YOLOv5 by 3.7%, YOLOv7 by 4.3%, and YOLOv8 by 3.1%. These improvements
underscored GD-YOLO method can enhance the accuracy of object detection in infrared images of electrical
equipment and meet real-time requirements.
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Table 6: Comparison between different models

Models Precision (%) Recall (%) mAP50 (%) mAP75 (%) Parameters (M) GFLOPs
YOLOv8 n 85.3 83.7 84.4 54.6 2.9 8.1
YOLOv8 s 85.4 86.3 85.8 55.8 11.1 27.6
YOLOv8 m 86.9 87.5 87.2 56.0 25.3 77.9
YOLOv8 l 86.6 87.3 87.0 56.4 43.1 165.8
YOLOv7 n 85.9 84.2 85.1 54.8 1.8 4.5
YOLOv7 s 85.2 84.1 84.6 55.3 9.5 26.5
YOLOv7 m 86.0 84.5 85.3 57.2 21.9 60.3
YOLOv7 l 86.1 84.7 85.9 57.6 37.6 109
YOLOv5 n 85.1 84.5 84.5 56.7 2.0 4.3
YOLOv5 s 85.3 85.2 85.2 55.5 7.1 15.8
YOLOv5 m 86.8 86.3 86.5 56.6 20.4 49.4
YOLOv5 l 87.2 87.1 87.9 56.9 46.9 108.8
GD-YOLO 89.1 88.5 88.9 57.6 10.1 24.8

5.5 Performance Comparison
In order to validate the enhanced algorithm presented in this paper, we carried out comparative tests

on the subsequent models, including GD-YOLO and YOLO models, the fault diagnosis models of RetinaNet
and CenterNet, and the Improved models for detection of electrical equipment in infrared imagery. As
depicted in Table 7, the GD-YOLO algorithm outperformed algorithms like YOLOv4, YOLOv8, and YOLOX
in metrics such as mAP50, frames per second (FPS), and model size. Algorithms including Faster R-
CNN, RetinaNet, and CenterNet all employed ResNet 50 for their base feature extraction. However, the
feature maps produced by ResNet50 were of a single layer and comparatively low resolution, which meant
they couldn’t capture the intricate details of small objects effectively, resulting in a considerable number
of detection failures. Compared to recent improvements in electrical equipment infrared image detection
models such as ECA-Net, CBAF-FOCS, BASNet, FINet, and ISNet, GD-YOLO employed partial convolution
to extract features, followed by Depthwise Separable Convolution to reduce the number of parameters and
computational load, thereby achieving a reduction in model size and computational costs while maintaining
accuracy, with a total parameter reduction of 10%. Furthermore, GD-YOLO adopted a local and global
feature alignment mode, enhancing the model’s neck’s ability to integrate information. By using shallow and
deep convergence modules along with attention-based modules to extract and fuse feature information, it
enhanced the model’s ability to detect objects across a range of sizes. This resulted in improvements in mAP50
of 1.4% over ECA-Net, 0.3% over CBAF-FOCS, 0.4% over BASNet, 0.9% over FINet, and 0.8% over ISNet.
Additionally, it achieved a recognition speed of 48 frames per second, which was more than twice that of
RetinaNet and CenterNet.

Table 7: Comparison with advanced models

Modules mAP50 (%) mAP75 (%) GFLOPs FPS
Faster-RCNN 83.2 54.1 29.1 21

YOLOv4 84.2 54.2 30.2 43
YOLOX-tiny 86.7 57.3 33.1 45

(Continued)
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Table 7 (continued)

Modules mAP50 (%) mAP75 (%) GFLOPs FPS
YOLOv8 85.8 55.8 27.6 50

RetinaNet [25] 87.3 56.2 29.5 22
CenterNet [26] 86.5 57.1 28.8 24
ECA-Net [27] 87.3 56.8 29.4 47

CBAF-FOCS [28] 88.4 56.6 45.7 51
BASNet [29] 88.3 57.2 33.4 42
FINet [30] 87.8 56.8 34.2 41
ISNet [31] 87.9 55.8 29.8 44

GD-YOLO 88.7 57.9 27.6 48

5.6 Robustness Experiment
Adversarial perturbations refer to slight noise added to clean images, which was almost imperceptible

but could be used and created samples by malicious-intentioned users to mislead models in fault recognition,
accordingly posing a serious threat to the security of artificial intelligence in infrared image target detection
in power systems.

Adversarial perturbations that may be encountered in practical applications were simulated by intro-
ducing Gaussian noise at different peak signal-to-noise ratio (PSNR) levels, aiming to verify the robustness
of the GD-YOLO model against these perturbations. Specifically, Gaussian noise with PSNR values of 40,
35, 30, 25, and 20 dB was added during the model’s training and testing phases to simulate adversarial attack
scenarios ranging from mild to severe.

In Fig. 7, it can be concluded that at a PSNR value of 40 dB, due to the minimal addition of Gaussian
noise, the training and inference datasets were very close to the original images, hence the mAP values of
all models were relatively high. Nevertheless, the GD-YOLO model outperformed BASNet, FINet, and the
standard YOLOv8 model in terms of accuracy. When the PSNR value was between 30 and 40 dB, YOLOv8
experienced the most significant performance decline against accumulated noise. In contrast, GD-YOLO,
BASNet, and FINet, which employed deeper convolutional networks, could suppress noise interference
through multi-scale feature extraction and contrast enhancement and demonstrated better robustness. When
the PSNR value dropped to between 25 and 30 dB, noise interference significantly increased, and the
image recognition accuracy of all models showed a downward trend. Specifically, the accuracy of YOLOv8
decreased by 12%, while the accuracy of GD-YOLO, BASNet, and FINet decreased by 7.1%, 8.3%, and 8.9%,
respectively. This indicated that under higher noise interference, the deep network structure and feature
extraction capabilities of GD-YOLO, BASNet, and FINet were more effective in maintaining performance.
When the PSNR value further dropped to 20 dB, the GD-YOLO model, through residual connections in
its GC module, helped the model learn the differences between samples, enhancing its resistance to noise.
The multi-head attention mechanism in GD-FPN focused the model more on the target areas in the image,
allowing it to maintain a classification accuracy of 55% even in high-interference environments. Compared
to YOLOv8, the accuracy of GD-YOLO increased by 10%, by 4.5% compared to BASNet, and by 6.7%
compared to FINet. These results showed that when the amplitude of disturbance is greater, the effect of
the GD-YOLO model was more significant, proving its clear advantage in reducing the mAP loss caused by
noise interference.
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Figure 7: Comparison of accuracy of different PSNR
5.7 Detection Results

To facilitate and directly showcase the model’s detection capabilities, the model’s inference outcomes and
heatmaps were employed for a comparative analysis of detection performance. Due to the complexity and low
resolution of the background, infrared images of electrical equipment often contained a high proportion of
objects that were misclassified as background, resulting in a greater possibility of missing class. In this study,
GD-YOLO was used for inference experiments. Fig. 8 shows the inference results of the GD-YOLO model
for several similar objects such as arrester, potential-transformer, bushing, and current-transformer, which
ensures that the algorithm more comprehensively adapts to electrical equipment in infrared image scenes.

Figure 8: GD-YOLO inference results
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The heatmap directly presents the regions of the feature map that capture the model’s attention. The
gradient values are derived from the backpropagation of the model’s predicted class confidence using
Gradient-weighted Class Activation Mapping (Grad-CAM). In the heatmap, pixels with higher gradients are
indicated by more intense red hues, while those with lower gradients are shown with darker blue shades. The
results of the experiment are illustrated in Fig. 9. As depicted in Fig. 9, YOLOv8 falls short in focusing on
small objects and lacks sensitivity to distant targets. MPDIoU directs the model’s attention primarily to the
center of the target, enabling more precise localization of objects. This enhancement allows GD-YOLO to
concentrate on targets of interest against an infrared background, thereby improving the overall detection
performance of the model.

Figure 9: Visualization results of a heat map

6 Conclusion
The problem of low accuracy in infrared image detection by introducing the GD-YOLO mode is

emphasized and solved in this paper. Firstly, Initially, the GD-FPN architecture is crafted to facilitate more
effective communication and merging of information by holistically amalgamating features across various
tiers and reintroducing the amalgamated global data into these distinct tiers. The multi-head attention
mechanism focuses the model more on the target areas in the images, thus maintaining high classification
accuracy. Then, a lightweight GC module is designed to replace C2f, reducing the overall number of model
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parameters and computational load while maintaining model accuracy. Finally, the implemented adaptive
SlideLoss function adjusts the loss dynamically in response to the intricacy of the samples, transforming
nearby negative samples into positive ones for training by varying the IoU threshold, making the model focus
more on challenging classifications during training and enabling it to learn more discriminative features.
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