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ABSTRACT: Duplicate bug reporting is a critical problem in the software repositories’ mining area. Duplicate bug
reports can lead to redundant efforts, wasted resources, and delayed software releases. Thus, their accurate identification
is essential for streamlining the bug triage process mining area. Several researchers have explored classical information
retrieval, natural language processing, text and data mining, and machine learning approaches. The emergence of
large language models (LLMs) (ChatGPT and Huggingface) has presented a new line of models for semantic textual
similarity (STS). Although LLMs have shown remarkable advancements, there remains a need for longitudinal studies
to determine whether performance improvements are due to the scale of the models or the unique embeddings
they produce compared to classical encoding models. This study systematically investigates this issue by comparing
classical word embedding techniques against LLM-based embeddings for duplicate bug detection. In this study, we
have proposed an amalgamation of models to detect duplicate bug reports using textual and non-textual information
about bug reports. The empirical evaluation has been performed on the open-source datasets and evaluated based
on established metrics using the mean reciprocal rank (MRR), mean average precision (MAP), and recall rate. The
experimental results have shown that combined LLMs can outperform (recall-rate@k = 68%–74%) other individual
models for duplicate bug detection. These findings highlight the effectiveness of amalgamating multiple techniques in
improving the duplicate bug report detection accuracy.
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1 Introduction
Duplicate bug reporting is a significant challenge in software development, leading to wasted resources

and delayed resolution times. Numerous bug reports are generated in the software industry, and manual
processing is time-consuming and error-prone, resulting in development delays [1,2]. Software bug reports
are essential for developing and maintaining software [3,4]. Bug reports in the bug repository are classified
to facilitate bug triage and assignment of bug-fixing. Identifying and handling duplicate bug reports can
be time-consuming for developers, QA personnel, and triggers [1]. Identifying duplicate bug reports is
vital for reducing triaging efforts. The “component” attribute in bug reports identifies the bug’s root cause
and the responsible developers [1]. However, it can be challenging due to poorly written and ambigu-
ous text. Extensively researched automated techniques have been developed to tackle this issue [3,5–7].
Despite their potential, these approaches encounter challenges that affect their reliability and scalability in
practical applications.
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Natural language processing (NLP) techniques have demonstrated significant potential in tackling vari-
ous language-related challenges [5]; however, they often lack interpretability, and the robustness required for
industry-level applications. Numerous methods have been implemented to detect duplicate bug reports [4,8–
12]. An increase of 200% in the count of detected bug reports has been reported by [13]. Numerous methods
have been suggested for automating the identification of duplicate bug reports, including NLP [14], machine
learning [3,15,16], information retrieval (IR) [17], topic analysis [6,15], deep learning (DL) [13,18–22], and
hybrid models [11,18].

Recent advancements in DL demonstrate that substantial data are essential to achieve high precision
with DL models [23]. In contrast, Neysiani et al. [24] reported that machine learning models had better
validation performance (up to 40% higher) than IR-based approaches for duplicate bug report detection
on an Android dataset. Jiang et al. [6] found that DL methods alone did not outperform IR-based methods
for ranking duplicate bug reports. To address the limitations of both approaches, some researchers have
proposed combining IR and DL techniques to compute textual similarity comprehensively. Jiang et al. [6]
proposed a method combining IR and DL techniques, improving the mean average precision (MAP) metric
by up to 28.97% compared to classic IR-based methods. Fang et al. [25] introduced RepresentThemAll,
a pre-trained approach that learns a universal representation of bug reports and can handle multiple
downstream tasks, including detecting duplicate bug reports. However, these approaches often fail to capture
nuanced semantic similarities or integrate textual and non-textual features effectively, leading to suboptimal
results. The advent of large language models (LLMs) introduces new possibilities for enhancing duplicate
bug detection. LLMs excel in capturing semantic relationships and understanding complex textual data,
addressing some limitations of traditional IR and DL approaches [4]. However, their integration with classical
models for effective bug report analysis remains underexplored.

This study aims to streamline the identification and management of duplicate bug reports, which can
otherwise increase developer workload and delay the resolution of critical issues.

To mitigate these consequences, this study aims to evaluate the effectiveness of contemporary IR models,
semantic textual similarity (STS) models, and LLMs (ChatGPT and Huggingface) in identifying duplicate
bug reports. This study combines sparse and dense vector representations to derive amalgamated models.
The amalgamated approach combines the strengths of classical and LLM-based methods for improved
duplicate bug detection. Classical methods like term frequency-inverse document frequency (TF-IDF)
excel at keyword-based matching, while LLMs provide deep semantic analysis of complex text. The model
balances precision and recall by integrating both, leveraging classical efficiency and LLMs’ contextual
understanding. A heuristic ranking system harmonizes outputs, enhancing accuracy and reducing false
results. Traditional text similarity models (global vectors for word representation (GloVe), TF-IDF, and
Word2Vec) are combined with sentence-BERT (SBERT) and LLMs to create amalgamated similarity scores.
Using this score, the bug triaging team can see duplicate (most similar) bug reports. The proposed models
consider bug reports’ textual and non-textual features.

A composite score is calculated using similarity scores from individual approaches to identify the top
k duplicate bug recommendations. Three datasets (Eclipse, Apache, and KDE) have been used for empirical
evaluation. Table 1 describes the datasets in detail. Three established performance metrics evaluate the
effectiveness of the proposed approach: mean reciprocal rank (MRR), MAP, and recall rate@k. This study
aims to investigate and provide contributions to the following research questions.
– RQ1: Which factors influence the ability to detect duplicates in bug reports, and what are the most

effective methods for identification?
– RQ2: How can the reliability of similarity scores be enhanced when using semantic search and LLMs for

duplicate detection, considering their limited context awareness?
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– RQ3: How effective is amalgamating different models to rank duplicate bug reports and improve
duplicate bug report detection?

– RQ4: What are the proposed models’ statistical significance and effect size in the context of duplicate
bug report detection?

Table 1: Dataset description [26]

Project Apache Eclipse KDE
Distinct id 2416 31,811 26,114
# of reports 44,049 503,935 365,893

# of products 35 232 584
# of components 350 1486 2054

Min report opendate 2000-08-26 2001-02-07 1999-01-21
Max report opendate 2017-02-10 2017-02-07 2017-02-13

Max number of rediscoveries 19 128 405
Non-discovered reports (%) 86 83 70

The remainder of the study has been organized as follows. The next section provides a detailed overview
of related work. The third section elaborates on the methodology and provides information on the evaluation
metrics. The fourth section explains the dataset and steps followed in pre-processing. The findings from the
proposed model have been discussed in the fifth section. Potential threats to validity are addressed in the
sixth section, and the final section concludes the paper while outlining directions for future work.

2 Related Work
Bocu et al. [27] reviewed artificial intelligence (AI)-driven bug-triaging methods to improve auto-

matic bug management and address conceptual and practical challenges and potential research directions.
Extensive research has been conducted to detect duplicate bug reports automatically [28–32]. LLMs are
revolutionizing natural language comprehension, marking a significant step towards artificial general intel-
ligence [33,34]. Transformer language models, like the top-rated ones, have revolutionized NLP since their
introduction in 2018 [35]. However, due to hardware constraints, these models often rely on few-shot or zero-
shot learning [35]. LLMs and vision-language models have recently been used to identify affordances and
constraints, generating trajectories for manipulation tasks [36]. LangNav [37] has used LLMs for navigation
by synthesizing data with GPT-4 [38] and fine-tuning with Llama2 [39] as the core framework.

Literature analysis has revealed various bug detection methods, including IR techniques (TF-IDF
weighting), cosine similarity), NLP (text embedding (Word2Vec, GloVe), topic modelling, named entity
recognition (NER) and natural language independence models, hybrid approaches, clustering and classi-
fication methods (k-means clustering, hierarchical clustering, and support vector machines (SVM)), DL
techniques (long short-term memory (LSTM), deep neural networks (DNNs), and convolutional neural
networks (CNNs)). The traditional TF-IDF approach represents a bug report as a vector to calculate the
similarity of textual features [40,41]. Duplicate detection has been implemented using an n-grams-based
approach [42]. The study by Jalbert and Weimer [11] combined the duplicate reports’ textual and non-textual
features. Further, Wang et al. combined the execution traces and textual information [8]. Word embedding
is a prevalent approach to represent document vocabulary using word lists and software dictionaries to
capture each issue report’s implicit context [15]. Further, Latent Dirichlet Allocation (LDA) has demonstrated
excellent potential for duplicate bug report identification [7]. Zou et al. [1] have suggested that LDA with
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the n-gram algorithm is more efficient than the state-of-the-art methods. A DL technique for duplicate bug
reports has been proposed by Budhiraja et al. [18].

Classical models such as Word2Vec [42] and GLoVe [43] pioneered word embeddings, capturing
semantic relationships through vector representations. These early methods were foundational but limited
to word-level embeddings. Since the introduction of transformer-based architectures such as BERT [44] and
RoBERTa [45], the field has expanded to include embeddings for longer text sequences such as sentences
and documents. Fine-tuned sentence encoders SBERT [46] further refined this approach, providing robust
contextual embeddings for various NLP tasks. The emergence of LLMs, including GPT [38] and LLaMA [39],
has dramatically increased the size and complexity of embedding models. These models produce high-quality
embeddings and excel across numerous NLP benchmark classical models. Despite their success, it’s uncertain
whether the improved performance is solely due to their larger scale or fundamentally distinct embeddings.

In a recent study, Zhang et al. [19] proposed CUPID, combining the traditional duplicate bug detection
approach REP with the advanced LLM (ChatGPT) under the zero-shot setting to extract essential infor-
mation from bug reports. While LLMs like PaLM and ADA perform better on word analogy tasks, they
often yield results like classical models such as SBERT [46]. This indicates that smaller, more resource-
efficient models can still be highly effective. Common challenges in identifying duplicate bug reports include
vocabulary mismatches, low report quality, managing structured and unstructured data, and scalability issues
in large software projects. The current study aims to test and refine our understanding of how classical
embeddings and LLM-based embeddings differ and are similar. It has also presented a recent trend in
amalgamating the contextual, statistical, and semantic models for identifying duplicate bug reports.

The study accessed the Web of Science to collect articles through a search for “Duplicate” AND “Bug”
OR “Detect*”. The open-source tool JabRef was used to collect, screen, select, and prepare the corpus. The
literature was manually reviewed to identify the articles that satisfied the required criteria. Eliminating
duplicate articles or those out of focus resulted in 116 articles in the final literature dataset. Fig. 1a displays the
word cloud from the literature abstracts, exported to a CSV file using JabRef. Fig. 1b shows the publication
trend for bug detection. Fig. 1c presents the top ten authors in duplicate bug detection from 2008-2024,
and Fig. 1d displays the top ten publishing venues based on dataset occurrences.

Figure 1: (Continued)
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Figure 1: Analysis of literature

3 Methodology
After thorough data preparation, semantic search employs query meaning to retrieve relevant docu-

ments from a collection effectively. The existing bug reports act as a “database,” and the new bug report
as a “query.” Detecting duplicate bugs involves searching the database for reports that match the query’s
semantic content by embedding the query and bug reports to find the closest matches. This method uses
vector representations of text for mathematical comparison, comparing embedding vectors for semantic
matches rather than keywords. This study compares traditional approaches with the most recent LLMs and
amalgamated approaches for duplicate bug detection. The flowchart in Fig. 2 shows the study approach.
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Figure 2: Flow of the duplicate bug detection system

3.1 Term Frequency-Inverse Document Frequency
TF-IDF is a method for determining a term’s significance within a document collection [47,48]. It

evaluates a term’s significance based on its frequency within a document relative to its frequency across the
entire collection. The TF measures how often a term appears in a document, while the IDF measures how
unique a term is across the entire collection (Eq. (1)) [1].

IDF = log(1 + nd)
(1 + d fi , j) + 1

(1)

It is also a pre-trained two-layer neural network. There are two types of Word2Vec models: continuous
bag-of-words (CBOW) and skip-gram. Both models demonstrate how a word interacts with surrounding
words differently. To find a target word’s probability, the softmax function is applied to a predicted word
vector r̂ and a target word vector wt, as given in Eq. (2) [1].

P (wt ∣ r̂) =
ex p(wt , r̂)

∑w∈W exp(w′, r′)
(2)

The Gensim implementation of the Word2Vec (skip-gram) model was used. It was pre-trained on
the Google News corpus, which consists of 3 billion running words. The model includes 3 million 300-
dimensional English word vectors. Here, W represents all target word vectors set and exp(wt,r̂) calculates
the target word wt,s compatibility with the context r̂.

3.2 Global Vectors for Word Representation
An unsupervised learning algorithm, GloVe combines global matrix factorization with local context

window methods [49]. The Google News pretrained model was used to reduce the error between the word
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embedding vectors and the co-occurrence probability log’s dot product. It is represented in Eq. (3), where w
and w˜ are word vectors.

F (wi , wi , w̃) = Pi k

Pjk
(3)

where i, j, and k are three words, and Pik/Pjk depends upon them.

3.3 Large Language Models
A language model is a mathematical model that assigns probabilities to strings from a language’s

vocabulary. It uses algorithms to analyze text, learn a language, and predict words in a sentence. Advanced
language models are highly effective for NLP tasks, leveraging transformer architectures for rich word
embeddings. Among the top models, SBERT [46] is known for generating sentence-level embeddings by
fine-tuning BERT with a Siamese network structure, making it ideal for semantic similarity, clustering,
and retrieval tasks. Voyage-large-2-instruct ranks at the top of the Massive Text Embedding Benchmark
(MTEB) [50] for its instruction-tuned capabilities, outperforming models from OpenAI and Cohere in
critical tasks such as retrieval, classification, and reranking. GPT-4, developed by OpenAI, excels in STS
due to its ability to handle complex sentence structures and long-range dependencies, making it versatile
for various NLP tasks beyond similarity measures. RoBERTa, an optimized version of BERT, improves
performance in many STS benchmarks due to its robust training approach [45]. DistilBERT [51] is a lighter
version of BERT, suitable for real-time applications where resource constraints are a concern.

These models, available on platforms like Hugging Face [52], provide powerful tools for high-quality
text embeddings and accurate semantic similarity measurements. For this manuscript, the LLM models,
OpenAI, SBERT, and Voyage AI, were chosen based on the literature and as the top-performing models of
the MTEB for the STS task [50].

3.4 Proposed Amalgamated Model
Established models like NextBug [53] often rely on a single approach, limiting their effectiveness in

complex bug detection. This study addresses this by integrating LLMs with classical machine learning
techniques, combining their strengths to improve prediction accuracy and robustness. The flow of the entire
system is illustrated in Fig. 2 and implementation details have been provided in the Git repository1 for
reproducibility. The similarity scores vector (S1, S2, S3, S4, etc., from individual models) for the k most similar
bug reports is obtained from each approach. A heuristic ranking method combines these and creates a
universally ranked set of results. The ranking method adjusts the weights of each item in the similarity scores
vector based on its position, following Eq. (4).

Ri =
1

Positioni
(4)

After obtaining the ranks for each bug report from each selected model, the combined score is generated
by summing these ranks (Eq. (5)) as discussed in [1]. The ranks are zero for non-contributing models. This
results in a vector with elements less than or equal to nk, where k represents the number of duplicate bug
reports returned from each model, and n is the number of combined models.

S = (R1 + R2 + R3 + R4 + . . .) ∗ PC (5)

In Eq. (5), S represents each returned bug report’s combined score (rank), with R1, R2, R3, R4, ⋅ ⋅ ⋅ denoting
the ranks obtained from different models, respectively, as defined in Eq. (4). PC is the product & component
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score, acting as a filter. For example, if two bug reports pertain to the same product and component, their
similarity depends on the document similarity score. However, if they belong to different products and
components, they are unlikely to be similar, even if their document similarity score is high, resulting in a
score of zero.

For example, a bug report, “Null pointer exception when attempting to load configuration file,”
undergoes pre-processing, including lowercasing, tokenization, and lemmatization. Feature embeddings
are then generated using methods like TF-IDF, which weights terms by domain relevance, Word2Vec for
semantic relationships, and SBERT for sentence-level encoding. Similarity scores are computed for a query
report (e.g., “Error when loading config file”) with TF-IDF, SBERT, and a weighted combination yielding
scores of 0.76, 0.84, and 0.82, respectively. The amalgamation step aggregates these scores using a heuristic
ranking method, incorporating product and component filters to ensure relevance, assigning a score of 0 to
mismatched components.

3.5 Evaluation Metrics
The established metrics [1], including recall-rate@k (RR@k), MAP, and MRR, have been used to assess

the models, which measure how effectively the system retrieves relevant duplicate reports. These metrics are
commonly used in recommendation systems to address software engineering tasks [6].

1) Recall-rate@k: RR@k is a metric used to evaluate the effectiveness of a recommendation system by
measuring how many of the top k recommended items are relevant. For a given query q, RR@k is defined
as follows:

RR (q) = 1, i f S (q) ∩ R (q) ≠ 0, = 0, otherwise (6)

where, S(q) represents the ground truth set of relevant bug reports for the query q, and R(q) represents
the set of top-k recommendations the system returns. If there is at least one relevant bug report in the
top-k recommendations, the RR@k is 1; otherwise, it is 0.

2) Mean Average Precision: MAP evaluates the precision of a recommendation system across all queries
and provides an overall measure of the system’s accuracy by considering the order of the recommended
items. It is defined as the mean of the average precision (Avg P) values for all queries, as shown below:

MAP = ∑
∣Q ∣
q=1

AvgP(q)
∣Q∣

(7)

where, Q represents the total number of queries in the test set. A single query’s average precision (Avg
P) is calculated by averaging the precision at each rank position where a relevant item is retrieved. The
average precision for a query q is calculated as:

Avg P (q) = Pnk=1 (P (k) . rel(k))
number o f rel evant documents

(8)

where P(k) is the precision at rank k, rel(k) is a binary indicator function that is 1 if the item at rank k is
relevant and 0 otherwise, and n is the total number of items in the recommendation list.

3) Mean Reciprocal Rank (MRR): MRR focuses on the first relevant item’s ranking position in the
recommendation list and is calculated as the average of the reciprocal ranks of the first relevant item for
all queries, as defined below:

MRR = 1
∣Q∣ ∑

∣Q ∣
i=1

1
ranki

(9)
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Q represents the total number of queries, and ranki is the rank position of the first relevant item for the
i-th query. The reciprocal rank for a query q, denoted as ReciprocalRank(q), is calculated as:

Reciprocal Rank (q) = 1
indexq

(10)

Here, indexq represents the first relevant bug report position for the query q.

4 Dataset and Pre-Processing

4.1 Dataset
Sadat et al. [26] curated a collection of bug reports for research purposes, which has been widely utilized

in numerous studies [1]. The repository contains three defect datasets in CSV format from Bugzilla, covering
Apache, Eclipse, and KDE open-source software projects. The datasets include 914,000 defect reports from
1999 to 2017, highlighting the intricate relationships between duplicate defects. Table 1 presents descriptive
statistics for the datasets. The textual information refers to the bug’s user description, which is represented
by the “Short desc” field. Non-textual features, in contrast, include attributes that are not based on free-text
input. For example, the “Product” field specifies the software product affected by the defect (e.g., Apache,
Eclipse), while the “Component” field identifies the specific module or feature of the software where the
bug was found (e.g., “UI,” “Database”). Other non-textual features include “Bug severity” (e.g., “Critical,”
“Minor”), “Priority” (e.g., “High,” “Low”), “Bug status” (e.g., “New,” “Resolved”), “Version” (e.g., “v1.0,”
“v2.3”), “Current status” (e.g., “Open,” “Closed”), and “Duplicate list” (which identifies the list of related bug
reports that are considered duplicates). These non-textual features are essential for understanding the context
of each bug report and are used for tasks such as filtering or categorizing defects. For instance, the “Product”
and “Component” fields are commonly used as filters in duplicate detection algorithms, while the “Duplicate
list” feature is used as the ground truth for evaluating the performance of duplicate detection techniques.

4.2 Pre-processing
The corpus’s textual features were prepared using pre-processing and term filtering. Subsequently, the

identified sentences, words, and characters were converted into tokens to create a corpus. This process
involved converting everything into lowercase, normalizing words, removing punctuation characters, and
performing lemmatization.

5 Results
We used a high-performance computing machine with 64 GB of RAM and a 1 TB hard disk to evaluate

the models. Our approach compares new bug reports to a database of resolved reports to find similar cases.
The algorithms were developed using Python, primarily relying on standard library packages and LangChain
to use LLM models (from OpenAI and Huggingface). We tested values of k = 1, 10, 20, 30, 40, and 50
to measure improvements in accuracy and efficiency when identifying duplicate bug reports. This study
rigorously tested the proposed models against a suite of established approaches for recommending duplicate
bug reports. The models were applied to a publicly accessible bug report dataset comprising three distinct
subsets. Each dataset was partitioned into training and testing sets. The test set consists of bug reports labelled
with ground truths about duplicates; specifically, bug reports in the test dataset either contain a non-empty
list of duplicates or are marked as ‘NA’ (indicating no duplicates).
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Using data from open-source software (OSS) bugs in the real world adds practical relevance to our study,
allowing us to test models under realistic conditions that software developers might encounter. In the OSS
dataset, one column contained the duplicate bug list for validating evaluation parameters.

The Apache, Eclipse, and KDE project test datasets contained 2518, 34,316, and 30,377 bug reports,
respectively. We divided each project dataset into 80% for training and 20% for testing. The training dataset
converted the existing textual information into the vector representation for the models. The test data
detected duplicate bug reports from the training dataset, which were considered resolved.

5.1 Empirical Analysis
The proposed ensemble model has been empirically analyzed on OSS data sets. The models analyze the

text in the training dataset to build a vocabulary for detecting duplicate test bug reports.

1) Apache dataset: The Apache dataset is the smallest of the three datasets, containing 44,049 bug reports
generated for 35 products and 350 components.

2) Eclipse dataset: The Eclipse dataset contains 503,935 bug reports and 31,811 distinct IDs, including 232
products and 1486 component bug reports. Due to its size, a random sample of 10% of the full dataset
was taken.

3) KDE dataset: This dataset comprises 365,893 bug reports for 584 products, of which 2054 were used. A
random sample representing 10% of the data was selected due to its large size.

For empirical validation, we compared the performance of different amalgamated approaches with
individual established approaches in detecting duplicate bug reports. Various amalgamated models can be
created from selected models, but this section focuses on amalgamating only the top-performing models.

Fig. 3a–c illustrates the RR@k for amalgamated and established individual approaches, with varying
values of the parameter k for Apache, Eclipse, and KDE datasets, respectively. The recall rate analysis across
the Apache, Eclipse, and KDE datasets shows that OpenAI + Voyage AI and SBERT AI + Voyage AI
consistently achieve the highest recall rates, stabilizing around 0.74.

The amalgamation of TF-IDF+OpenAI and Glove +OpenAI showed moderate performance, 0.54 and
0.58, respectively. Traditional models, like TF-IDF, Word2Vec, and Glove, exhibit the lowest recall rates.
Recall rates improve rapidly at lower k values and stabilize at higher k values. Advanced models with Voyage
AI significantly enhance recall performance across all datasets. Further, in Fig. 4, the evaluation metrics
comparison has been presented for all the datasets. The analysis has revealed that the amalgamated score is
more valuable than those obtained from individual approaches.

The proposed method was also compared with several state-of-the-art approaches for duplicate bug
report detection. TF-IDF + SVM struggles with ambiguity and non-textual data, while BERT performs well
with text but has limitations in context and requires high computational resources. Word2Vec + Random
Forests is effective for structured data but faces challenges with domain-specific terminology. Hybrid
approaches combining deep learning and traditional methods improve performance but lack scalability and
integration of non-textual information. In contrast, the proposed amalgamated model (OpenAI + Voyage
AI, SBERT + Voyage AI) outperforms these methods in RR@k, MAP, and MRR, achieving higher recall,
better accuracy, and more consistent ranking.
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Figure 3: Recall rate for amalgamated and established individual approaches, with varying values of the parameter k
for datasets

Figure 4: Comparative evaluation results for the models for MAP, MRR, and recall rate for different datasets

5.2 Ablation Study
In the ablation study, we evaluated the contributions of classical models (e.g., TF-IDF, GloVe, Word2Vec)

and LLMs, such as SBERT and OpenAI to the amalgamated model for duplicate bug detection. By
systematically removing different components, we observed several key findings. First, removing classical
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models, such as TF-IDF and GloVe, resulted in a moderate drop in performance, indicating that these models
play an important role in handling simpler, structured bug reports. On the other hand, removing LLMs,
such as SBERT and OpenAI, led to a significant degradation in performance, highlighting their critical
role in capturing complex semantic relationships within bug reports. Additionally, a layer-wise ablation
of LLMs demonstrated that the deeper layers are essential for maintaining high performance. Among the
tested combinations, the amalgamation of OpenAI (Voyage AI) and SBERT consistently delivered the best
results, achieving the highest scores in both precision and recall across all datasets. The study confirms that
combining classical and LLM-based approaches results in a more robust and effective system for detecting
duplicate bug reports.

The analysis of various models using the Apache, Eclipse, and KDE datasets consistently shows that the
combinations of OpenAI +Voyage AI and SBERT +Voyage AI achieve the highest scores across all metrics.
These combinations demonstrate superior performance in quickly retrieving relevant results with higher
precision, ranking, and recall values than other combinations. Integrating Voyage AI with OpenAI or SBERT
significantly enhances retrieval performance across different scenarios.

5.3 Discussion
1) RQ1: Several factors influence the ability to detect duplicates in bug reports, and various methods

have been proposed to address this challenge. The variation in vocabulary makes it difficult to detect
duplicate bug reports. Different terms used by users create gaps between similar issues. Poorly written
or ambiguous description of the bug report also hinders the accurate identification of duplicates.
Additionally, excluding non-textual information and a bug that spans multiple components or products
can impact result quality. Traditional vector space models have been widely used for duplicate detection,
often combined with heuristics and domain-specific adaptations. Machine learning models like support
vector machines, random forests, and neural networks have shown promising results, especially when
combining textual and structured features. Recent studies have explored DL techniques such as CNNs,
attention mechanisms, and transformer models (e.g., BERT) to capture semantic similarities between
bug reports [55]. Pre-trained language models fine-tuned on bug report data using transfer or few-
shot learning have shown potential for effective duplicate detection. These models can generate more
accurate and contextually relevant responses, addressing the limitations of earlier methods. For exam-
ple, LLMs have been effectively used to mitigate misinformation by recanting and retrieving accurate
statements, achieving high similarity recall rates. Despite their advantages, LLMs are not without
challenges. Issues such as model hallucination, where the model generates inaccurate or misinterpreted
data, and concerns around user privacy and data optimization must be addressed to ensure reliable and
ethical use. Moreover, integrating LLMs with traditional IR systems can lead to a more balanced and
user-centric approach. To mitigate hallucination, integrating rule-based validation, using classical IR
systems for cross-verification, and fine-tuning LLMs on domain-specific data can improve accuracy.
Hybrid models combining LLMs with traditional IR approaches balance precision and contextual
understanding, enhancing reliability. For example, methodologies to optimize the retrieval process,
select optimal models, and effectively scale and orchestrate LLMs can improve result accuracy and cost
efficiency. Still, their effectiveness can vary across different domains and applications. For this study, the
amalgamation of models took advantage of their strengths and improved overall performance. Further,
LLM models and their fusion (OpenAI + Voyage AI and SBERT + Voyage AI) have outperformed the
classical IR approaches.

2) RQ2: LLMs struggle with semantically related and randomly chosen pairs [56]. This search presented
the ensemble approach of the classical models and LLMs to enhance the reliability of similarity scores in



Comput Mater Contin. 2025;83(1) 447

semantic search for duplicate detection, especially given their limited context awareness. There are other
approaches mentioned in the literature that can be used for improvement, which we will experiment
with in future work. One of the methods is to leverage the rewriting capabilities of LLMs to augment
data, thereby improving the robustness of models in recognizing duplicates. For instance, the technique
employs contextual rewriting and entity replacement strategies to enhance the quality of training data.
This can significantly improve the performance of few-shot named entity recognition (NER) tasks and,
by extension, duplicate detection tasks [57]. Additionally, integrating knowledge graphs (KGs) with
LLMs can address the issue of hallucinations and enhance the reasoning process. LLMs can combine
explicit and implicit knowledge by iteratively exploring KGs and retrieving task-relevant subgraphs,
leading to more reliable similarity assessments [58]. Further, fine-tuning, or continual pre-training
of LLMs on software engineering data can help them better understand domain-specific terminology
and context. Incorporating structured information (e.g., product, component, stack traces) alongside
unstructured text can provide additional context and improve similarity assessments. The current study
successfully integrates non-textual components that previous researchers could not incorporate [27]. By
combining these strategies, the reliability of similarity scores in semantic search and LLMs for duplicate
detection can be significantly enhanced, addressing the challenges posed by limited context awareness.

3) RQ3: Amalgamating or combining different models has shown promising results in improving the
performance of duplicate bug report detection. For duplicate detection tasks framed as ranking or
retrieval problems, ensembling different ranking models or combining their similarity scores can
improve the overall ranking quality. Polisetty et al. [59] identified that although DL models per-
form better than traditional machine learning models, they only partially fulfill the criteria set by
practitioners. Qian et al. [60] suggested integrating NLP models to enhance bug report descriptions
and runtime information accuracy. Jiang et al. [13] found that their combined IR and deep learning
method outperformed individual approaches in ranking potential duplicate bug reports. Although
amalgamating models can improve performance, it is essential to carefully design the ensemble strategy,
considering factors such as model diversity, computational complexity, and potential trade-offs between
accuracy and efficiency. Additionally, effective techniques for model selection, weighting, and fusion
are crucial for realizing the full potential of ensemble approaches.

Designing the ensemble strategy requires attention to several critical factors. Model diversity is essential,
and this is achieved by selecting models with different architectures and training data to capture various
aspects of the data. Balancing trade-offs between improved accuracy and increased computational cost is nec-
essary. This is done by testing different combinations and weights of the models and employing strategies such
as the heuristic ranking method that combines these and creates a universally ranked set of results. Potential
limitations and challenges associated with combining multiple models include computational efficiency.
Measures such as efficient coding practices and hardware acceleration (e.g., using GPUs) are employed to
optimize computational efficiency. Trade-offs between computational cost and accuracy are inevitable, and
accepting a slight reduction in accuracy may be necessary for significant gains in efficiency. Techniques like
early stopping during model training or using simpler models in the ensemble can help achieve this balance.
By carefully considering these factors and employing appropriate techniques, the challenges associated with
combining multiple models can be effectively managed to enhance the performance of duplicate bug report
detection systems.

4) RQ4: (Statistical significance and effect size): We used the Wilcoxon signed rank test to calculate the
p-value and measured Cliff ’s Delta and Spearman correlation to assess the results of the proposed
model. Cliff ’s Delta measure is interpreted in Table 2. After the Shapiro-Wilk test identified non-normal
distribution, the non-parametric Spearman correlation test was used to assess relationships between



448 Comput Mater Contin. 2025;83(1)

different method results. Its value varies between −1 and +1, with 0 implying no correlation. Non-
parametric tests were chosen because the data did not follow a normal distribution, as indicated by the
Shapiro-Wilk test. Non-parametric tests like the Wilcoxon signed rank test and Spearman correlation
are more appropriate for non-Gaussian data because they do not assume a specific distribution, making
them suitable for our dataset.

Table 2: Interpretation of cliff ’s delta scores [54]

Effect size Cliff ’s delta (δ)
Negligible −1.00 ≤ δ < 0.147

Small 0.146 ≤ δ < 0.330
Medium 0.330 ≤ δ < 0.474

Large 0.474 ≤ δ ≤ 1.00

Table 3 presents the p-value, Cliff ’s Delta measure and Spearman’s correlation coefficient of an amal-
gamated (OpenAI + Voyage AI) model with TF-IDF (for example) for the given datasets. The TF-IDF
model and amalgamated approach, often considered a benchmark model in previous studies, have been
compared. Table 3 shows a positive correlation with a medium to large effect size, indicating improvement
through model amalgamation. A positive Spearman correlation implies that as the performance of one model
improves, the performance of the other model also improves, indicating consistency between the models’
results. Cliff ’s Delta measure, indicating a large effect size, suggests that the magnitude of improvement due
to the amalgamation of models is substantial. This means the amalgamated model performs significantly
better than the benchmark model, highlighting the effectiveness of combining models.

Table 3: p-value of Wilcoxon signed-rank test, Cliff ’s Delta and Spearman’s correlation coefficient comparing the
metrics of amalgamated (OpenAI + Voyage AI) model with TF-IDF for Apache dataset

Metrics Spearman’s r Cliff ’s delta p-value
Recall 0.98 0.9712 4.77618E–17
MRR 0.97 1 5.4159E–18
MAP 0.98 1 5.57032E–18

Further, the error analysis of the proposed amalgamated model for duplicate bug detection identified
several key failure modes and areas for improvement. The model struggled with semantic misunderstand-
ings, often misclassifying bug reports with subtle contextual differences as duplicates. Additionally, it faced
challenges with ambiguous descriptions, indicating a reliance on textual features that could be enhanced.
For instance, the report ‘System crashes during data import’ was erroneously identified as a duplicate of
‘Application error while uploading files,’ reflecting a semantic misunderstanding. Similarly, a vague descrip-
tion like ‘App stops responding when opened’ could erroneously match issues such as ‘Crash on startup’ or
‘Hangs after login.’ The model also underutilized non-textual attributes that are critical for differentiation and
exhibited instances of overfitting to training data, leading to lower generalization performance. Furthermore,
as dataset sizes increased, especially with Eclipse and KDE, performance slightly declined, suggesting
scalability issues. This analysis highlights essential areas for refining the model’s accuracy and robustness in
practical applications.
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Further, as dataset size increased (e.g., Eclipse and KDE), scalability issues became evident, particularly
with LLM-based methods. While the proposed method achieved higher recall rates, future work should
explore model optimization techniques like quantization and pruning to balance accuracy and efficiency.
Additionally, leveraging lightweight architectures (e.g., DistilBERT) could enable real-time applications
while maintaining acceptable performance levels.

6 Threats to Validity

6.1 Internal Validity
There may be threats to the effectiveness of compiling the bug reports dataset in finding a sufficiently

large number of bug reports. These threats are confined to internal validity errors in current empirical
experiments. The dataset repository contains bug reports up to 2017, but each report contains limited textual
information. We used well-established NLP methods to prepare the corpus from large datasets, so we believe
there are no significant threats to internal validity.

6.2 External Validity
Another limitation of this study may be the generalization of results. The similarity score was computed

by following several steps, and each of these steps significantly affected the results. However, results are
verified using open-source datasets to achieve enough generalization. To improve generalizability, future
studies should extend the analysis to larger and more diverse datasets. Validation of additional datasets would
help assess the robustness of the proposed amalgamated model in varied contexts.

7 Conclusion
This study tackles the critical challenge of duplicate bug reporting in software repositories by comparing

classical word embedding techniques with contemporary LLM-based word embeddings. The findings show
that amalgamating multiple models, incorporating both textual and non-textual information, significantly
enhances the accuracy of duplicate bug detection. Several validation steps were undertaken to ensure that
the fusion process improved performance and maintained the robustness and generalizability of the results
without introducing significant biases: 1) Empirical Validation: The performance of different amalgamated
approaches was compared with individual established approaches in detecting duplicate bug reports. The
evaluation was performed on multiple datasets, including Apache, Eclipse, and KDE. The metrics used for
comparison included RR@k, MAP, and MRR; 2) Statistical Tests: Statistical significance and effect size of the
proposed models were evaluated using the Wilcoxon signed rank test, Cliff ’s Delta measure, and Spearman
correlation. These tests provided insights into the improvement of amalgamated models over benchmark
models, such as TF-IDF. Positive Spearman correlation values and large Cliff ’s Delta effect sizes indicated
substantial improvements due to model amalgamation; 3) Validation Metrics: The use of established metrics
such as RR@k, MAP, and MRR ensured that the performance improvements were measured accurately and
consistently across different datasets and scenarios; 4) Generalization: Results were verified using open-
source datasets to ensure that the findings were generalizable beyond the specific datasets used in the study.
This helped in minimizing the risk of overfitting and ensured the applicability of the models in different
contexts; 5) Evaluation of Diverse Models: The amalgamated models incorporated both traditional models
(like TF-IDF, Word2Vec, GloVe) and advanced language models (like OpenAI, SBERT, and Voyage AI),
ensuring diversity in the model architectures and training data. This diversity helped in capturing various
aspects of the data and improving the overall performance of the duplicate bug report detection system. The
empirical analysis of OSS datasets, including Apache, Eclipse, and KDE, revealed that combined scores from
amalgamated models outperformed individual approaches. Specifically, OpenAI + Voyage AI and SBERT
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+ Voyage AI consistently achieved the highest scores across all metrics, indicating superior performance in
quickly and consistently retrieving relevant results. Strategies to improve the reliability of similarity scores
include fine-tuning LLMs on domain-specific data and incorporating structured information. Future work
can delve deeper into the factors influencing the detection of duplicate bug reports, exploring enhancements
in semantic search and LLMs to address context awareness limitations. Additionally, investigating the
proposed models’ statistical significance and effect size will provide more insights into their practical
applicability. We will include visualizations to demonstrate how different components contribute to the final
predictions for specific bug reports. To improve generalizability and scalability, future research will explore
domain-specific fine-tuning of LLMs, leveraging knowledge graphs for context, and adopting lightweight
models for resource-constrained settings.
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