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ABSTRACT: Time series forecasting is important in the fields of finance, energy, and meteorology, but traditional
methods often fail to cope with the complex nonlinear and nonstationary processes of real data. In this paper, we propose
the FractalNet-LSTM model, which combines fractal convolutional units with recurrent long short-term memory
(LSTM) layers to model time series efficiently. To test the effectiveness of the model, data with complex structures and
patterns, in particular, with seasonal and cyclical effects, were used. To better demonstrate the obtained results and the
formed conclusions, the model performance was shown on the datasets of electricity consumption, sunspot activity,
and Spotify stock price. The result showed that the proposed model outperforms traditional approaches at medium
forecasting horizons and demonstrates high accuracy for data with long-term and cyclical dependencies. However, for
financial data with high volatility, the model’s efficiency decreases at long forecasting horizons, indicating the need for
further adaptation. The findings suggest further adaptation. The findings suggest that integrating fractal properties into
neural network architecture improves the accuracy of time series forecasting and can be useful for developing more
accurate and reliable forecasting systems in various industries.
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1 Introduction
In many fields, including finance, energy, meteorology, and health care, time series forecasting is

essential. It assists in forecasting the direction of the trends, the season period adjustments, and the systematic
volatility which assists in the subsequent decision-making process and promotes the proper utilization of
resources [1,2]. It has been quite common to construct time series models based on autoregressive (AR),
integrated moving average (ARIMA), and seasonal (SARIMA) approaches to predict time series that are
stationary [3]. However, these types of methods have been shown to have some drawbacks when addressing
nonlinear and nonstationary data that is typically found in practice [4].

Recent studies have explored hybrid neural architectures to enhance forecasting accuracy. For instance,
a novel hybrid recurrent artificial neural network combining gated recurrent units (GRU) and classical
forecasting methods has shown improved performance in capturing complex time series patterns [5].
Additionally, the integration of fractal concepts into deep learning models has been investigated for anomaly
detection in fractal time series, highlighting the potential of fractal-based neural networks in modeling
complex temporal dependencies [6].

Despite these advancements, challenges remain in effectively capturing intricate temporal patterns,
especially in time series with hierarchical, self-similar structures. Traditional methods such as ARIMA,
SARIMA, or classical RNNs may struggle with complex, multi-scale patterns, particularly when the data
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are highly nonlinear or exhibit strong nonstationary behavior. To address these challenges, LSTM networks
leverage memory cells and gating mechanisms to capture long-term dependencies. However, the hierarchical,
self-similar nature of certain time series calls for an additional layer of feature extraction that can operate
across multiple scales. This is where Fractal Neural Networks come into play: by exploiting the property of
self-similarity (fractal), they can extract features at different levels of abstraction, thereby complementing
LSTM capacity for sequence modeling. Hence, combining fractal architectures with LSTM (FractalNet-
LSTM) strengthens the model’s ability to identify intricate temporal patterns, following the logical chain:
Fractals→ Self-similarity→Multi-scale feature extraction→ Combination with LSTM→ Enhanced pattern
capture in time.

In a new real deep learning paradigm, neural networks can be utilized in modeling complicated
nonlinear relations present in time series due to the popularity of neural networks in deep learning [7,8].
RNNs, and more specifically LSTM networks, are able to model such sequential dependencies and long-range
temporal relations in the data [9,10]. Recent advances in LSTM applications have further enhanced their
usability for long-term forecasting tasks [11,12]. Even these sophisticated architectures are not exempt from
performance issues or overfitting, particularly when the dataset under consideration is limited or heavily
noise contaminated [13].

Fractal neural networks are a new approach to deep learning that combines the properties of fractal
geometry [14] with neural networks [15]. Due to their self-similarity and hierarchical structure, fractal neural
networks can effectively model complex patterns and nonlinear dependencies, which is especially useful for
time series with long-term and cyclic dependencies [16]. Previous studies have shown that fractal networks
can improve the generalization ability of models and increase their resistance to noise [17]. Applications
of fractal networks have also been explored for anomaly detection in time series data [6] and image
classification [18].

Fractal geometry is a branch of mathematics that explores self-similar patterns repeating at multiple
scales, forming intricate hierarchical structures. By leveraging this self-similarity principle, fractal neural net-
works introduce parallel ‘branches’ of convolutions (e.g., Conv1D) or transformations that operate at different
levels of abstraction. These branches are then combined—often through averaging or concatenation—to
create a richer, multi-scale feature representation. This multi-branch design is referred to as “fractal” because
each parallel path mirrors similar operations, reflecting the concept of self-similarity inherent in fractal
geometry. As a result, fractal neural networks can capture patterns spanning various time scales more
effectively than standard architectures.

However, the use of fractal neural networks in time series forecasting remains insufficiently explored.
There is a need to integrate fractal properties into the architecture of neural networks to improve forecast
accuracy and overcome the limitations of existing methods [19,20].

The main contributions of our study are as follows:

1. Development and fine-tuning of the FractalNet-LSTM model: A FractalNet-LSTM model was devel-
oped to account for complex patterns in the time series. Through careful fine-tuning, the model
performance was optimized, allowing it to effectively perform time series forecasting with com-
plex structures.

2. Demonstration of the effectiveness of FractalNet-LSTM and performance testing: The study highlights
the excellent performance of FractalNet-LSTM in time series forecasting tasks with cyclical and seasonal
effects at medium and long forecasting horizons. By analyzing and comparing the results with frequently
used architectures for this class of tasks, the improved accuracy and reliability of the FractalNet-LSTM
model were demonstrated. The proposed model was tested on electricity consumption, sunspot activity,
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and Spotify stock price datasets. The results show that FractalNet-LSTM outperforms traditional
approaches at medium forecasting horizons and demonstrates high accuracy for data with long-term
and cyclical dependencies.

The main conclusions show that the integration of fractal properties into neural networks is a promising
direction for improving time series forecasting. This opens up new opportunities for the development of
more accurate and reliable forecasting systems that can be applied in various industries.

The paper is organized as follows. The Materials and Methods section describes the datasets and data
preprocessing steps. It also describes the proposed model and the metrics used to compare the model’s
performance with other models. The Baseline Methods and Results section presents the main results
and compares them with known model results. The Discussion section summarizes the results, provides
recommendations based on their analysis, and highlights possible avenues for future research. Finally, the
Conclusions section provides general conclusions on the work.

2 Materials and Methods

2.1 Datasets
In this study, three different time series data sets were used: residential electricity consumption (Example

of the data can be seen in Fig. 1a), sunspot activity (Example in Fig. 1b), and Spotify stock prices (Example
in Fig. 1c). These datasets were chosen due to their diversity, which allows us to test the effectiveness of the
proposed model on different types of time series with different characteristics and behaviors.

Figure 1: Sample data from the tree datasets used in this study: (a) Monthly mean total sunspot number, (b) Household
power consumption, and (c) Spotify stock prices

Household power consumption [21], the dataset covers residential electricity consumption from
December 2006 to November 2010. The data contains measurements of electricity consumption per house-
hold at a frequency of once per minute, which allows the model to identify short-term and long-term
patterns. For the analysis, the variable “Global_active_power” was used, which reflects the total active
electricity consumption in kilowatts.

Monthly mean total sunspot number [22], the dataset contains information on the monthly average
number of sunspots for the period from 1749 to 2013. This long-term time series covers more than 260 years
of observations, which allows the model to be trained on data with well-defined long-term cycles, including
the well-known 11-year solar activity cycles.

Spotify stock price [23], the dataset represents the daily closing prices of Spotify shares over the past
five years, obtained from Yahoo Finance. This time series is characterized by high volatility and random
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fluctuations, which are typical for financial markets. Using this dataset allows us to test the model’s robustness
to noise and its ability to predict financial time series.

2.2 Data Preprocessing
Prior to training the model, thorough data preprocessing was performed for each set to ensure the

quality and relevance of the input data.
First, we analyzed for data gaps. The electricity consumption dataset revealed gaps that occurred due to

technical failures or missing observations. These gaps were filled using linear interpolation, which allowed
us to maintain the continuity of the time series. In the case of sunspot data, the gaps were minimal and were
filled with the average values of neighboring points. For Spotify share price data, gaps occurred due to non-
working days on the stock exchange. These gaps were filled using the last known value forward-fill method,
which is acceptable for financial time series.

Second, outliers were identified and processed. Statistical methods, such as interquartile range (IQR)
analysis, were used to identify outliers that differed significantly from other observations. Outliers could
distort the modeling results, so they were replaced with median values or smoothed using a moving average.
This helped reduce the impact of extreme values on model training.

The next step was to normalize and scale the data. Since different variables could have different scales
and units of measurement, it was important to bring them to a single range. To do this, we used the min-
max scaling method, which converts the data to the range [0, 1]. The formula for min-max scaling is shown
in Eq. (1):

xscal ed =
x − xmin

xmax − xmin
. (1)

This made it possible to improve the stability of model training and prevent a situation where variables
with higher values dominate over others.

Next, we generated training samples. To do this, we used the windowing method, which converts a time
series into a set of input and output sequences. A fixed window of previous values of size window_size was
chosen as input and a corresponding number of subsequent values of size predict_size as target values for
prediction. This allowed the model to learn to predict not only a single future value but also a sequence of
future values.

2.3 Methods
To solve the problem of time series forecasting, we propose the FractalNet-LSTM model. The general

structure of FractalNet-LSTM is shown in Fig. 2. In particular, we implement a fractal convolutional encoder
that extracts multiscale features from input sequences by capturing local patterns at different levels of
abstraction. Similar to recent works exploring fractional-order neural networks [24], this design emphasizes
feature extraction at various scales. Next, we develop a recurrent decoder based on LSTM layers to model
temporal dependencies and enhance long-term dependencies between sequences. Finally, the output layer
of FractalNet-LSTM is built using a fully connected layer that generates the final prediction. The technical
details of each component of FractalNet-LSTM are described in detail in the following sections.
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Figure 2: The general structure of the proposed FractalNet-LSTM model

The main components of the architecture include:

1. Fractal convolutional blocks: Each block consists of multiple parallel paths containing sequences of
one-dimensional convolutional layers (Conv1D), batch normalization layers (BatchNormalization), reg-
ularization layers (Dropout), and ReLU activation functions. Convolutional layers extract local features
from the input data, and parallel branches allow the model to simultaneously process information at
different scales;

2. Combining outputs: The outputs of parallel branches are combined using an averaging or concate-
nation mechanism. This allows you to integrate information from different levels of abstraction and
improves the model’s ability to generalize;

3. LSTM layer: After the fractal blocks, an LSTM layer is used to process the sequence of extracted features.
The LSTM can store information about previous states and take into account long-term dependencies,
which is critical for time series;

4. Output fully connected layer: The final layer of the model is the Linear layer, which converts the LSTM
output into predicted values.
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The use of fractal convolutional blocks in combination with LSTM allows the model to efficiently extract
both local and global features from the data, which improves the prediction accuracy.

The design of the fractal convolutional blocks in FractalNet-LSTM is founded on the principles of
self-similarity and multi-scale feature extraction inherent to fractal geometry. Each fractal block comprises
multiple parallel convolutional paths with varying kernel sizes and depths, enabling the model to capture
patterns at different temporal scales. To adapt the fractal blocks for new datasets, one can adjust the
number of columns, the initial number of channels, and the dropout probabilities based on the specific
characteristics of the dataset. For instance, datasets with more complex or longer-term dependencies may
benefit from increased depth or additional parallel paths within the fractal blocks. Furthermore, the kernel
sizes can be modified to better align with the inherent periodicities or trend lengths in the data. By tuning
these hyperparameters, the fractal convolutional blocks can be effectively redesigned to suit the unique
requirements of various time series datasets, thereby enhancing the model’s adaptability and performance
across diverse forecasting tasks.

For training the proposed FractalNet-LSTM and baseline models, we utilized the Adam optimizer with
a learning rate of 1e − 3 and a weight decay of 1e − 4 across all experiments. To enhance training efficiency
and prevent overfitting, we implemented the “ReduceLROnPlateau” scheduler, which reduces the learning
rate by a factor of 0.5 if the validation loss does not improve for 20 consecutive epochs. Additionally, we
employed “EarlyStopping” with a patience of 50 epochs to terminate training early if no improvement in
validation loss was observed, thereby saving computational resources and avoiding overfitting.

The loss function used during training was the Huber loss, which combines the robustness of MAE with
the sensitivity of MSE to larger errors, making it suitable for handling outliers in the data. For evaluation
during the testing phase, we employed the following metrics: MAE, MAPE, RMSE, R2, and Huber loss.
These metrics were consistently applied across all datasets to ensure a fair and comprehensive comparison
of model performance.

Each model was trained separately on the respective datasets (electricity consumption, sunspot activity,
and Spotify stock prices) using the same training parameters to maintain consistency and fairness in the
experimental results. Detailed initialization parameters for each model run, including window size, batch
size, and other hyperparameters, are provided in config files inside the repository.

To illustrate each step of the predictive model, suppose we have a simplified one-dimensional time series
with daily measurements {x1 , x2, x3, . . .}. We choose a window size of 3 for inputs (i.e., we use 3 past values)
and aim to predict the next 2 future values. Below is an outline of how FractalNet-LSTM would process a
single training sample (consisting of 5 consecutive days) from this toy dataset:

1. Input Window. We select days 1, 2, and 3 as inputs, labeled {x1 , x2, x3}. The model then attempts to
forecast {x4, x5}.

2. Fractal Convolution Blocks. Parallel Convolution Paths: Each path applies a different Conv1D kernel
(for example, sizes 1, 2, and 3) to capture local patterns at multiple scales. Batch Normalization
and ReLU: After each convolution, batch normalization stabilizes feature distributions, and the ReLU
activation adds nonlinearity. Dropout (Regularization): Dropout layers reduce overfitting by randomly
‘dropping’ a fraction of neurons during training. Output Merging: Outputs from each parallel path are
combined (e.g., concatenated) into a single feature matrix.

3. LSTM Layer. Sequential Processing: The merged features, now shaped as a short sequence, enter the
LSTM. Memory Cell and Gates: The LSTM retains information about past states, learning longer-term
dependencies that may span beyond the 3-day window.
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4. Output Fully Connected Layer. Dense Layer: A linear (fully connected) layer processes the final
hidden state of the LSTM to generate the model’s prediction. Predicted Values: In this toy example, the
layer outputs two values, ŷ1 and ŷ2, which corresponds to the forecast for days 4 and 5.

By repeating the above process on many overlapping windows from the training dataset, FractalNet-
LSTM learns a comprehensive mapping between past observations {xt−2, xt−1 , xt} and future outcomes
{xt+1 , xt+2}. The fractal blocks capture multi-scale features, while the LSTM layer models the temporal
aspect of the sequence. Thus, each component plays a distinct role, ultimately enhancing the model’s
predictive performance in time series forecasting tasks.

2.4 Evaluations Metrics
To quantify the accuracy and efficiency of the proposed models, several metrics were used to evaluate

various aspects of performance in time series forecasting.
MAE is one of the main indicators of model accuracy. It is calculated as the average of the absolute

differences between the actual values and the predicted model values. The Eq. (2) for MAE is as follows:

MAE = 1
n∑

n
i=1 ∣yi − ŷi ∣ , (2)

where yi are real values, ŷi are predicted values and n is the number of observations. MAE shows how much
the model is wrong on average in absolute units.

The MAPE expresses the error as a percentage of the actual value, which allows you to evaluate the
accuracy of the forecast regardless of the scale of the data. The Eq. (3) for MAPE:

MAPE = 100%
n ∑n

i=1 ∣
yi − ŷi

yi
∣. (3)

RMSE gives more weight to larger deviations because the error is squared before being averaged. This
makes RMSE sensitive to large errors, which is important in the context of forecasting. The Eq. (4) for RMSE:

RMSE =
√

MSE =
√

1
n∑

n
i=1(yi − ŷi)2. (4)

The Huber loss function combines the properties of MAE and MSE to provide robustness to outliers.
It uses a quadratic function for small errors and a linear function for large errors, reducing the impact of
anomalous values. The Eqs. (5) and (6) is defined as:

Huber = 1
n∑

n
i=1

1
2
(yi − ŷi)2, i f ∣yi − ŷi ∣ ≤ δ, (5)

Huber = 1
n∑

n
i=1 δ (∣yi − ŷi ∣ −

1
2

δ) , i f ∣yi − ŷi ∣ > δ, (6)

where δ is the threshold that determines the transition between the quadratic and linear parts of the function.
The coefficient of determination (R2) reflects the proportion of variation in the dependent variable that

is explained by the model. An R2 a value close to 1 indicates that the model fits the data well. Eq. (7) for R2:

R2 = 1 − ∑
n
i=1(yi − ŷi)2

∑n
i=1(yi − ŷ)2 , (7)

where ŷi is the average value of the real data.
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The use of these metrics provides a comprehensive assessment of the models, allowing for analysis of
their accuracy, robustness to outliers, and ability to explain variations in the data. Low values of MAE, MAPE,
and RMSE indicate high model accuracy, while a high R2 determination coefficient confirms that the model
models the relationship between input and output data well.

During the experiments, these metrics were used to compare the performance of the proposed
FractalNet-LSTM model with the baseline models. This approach allowed us to objectively evaluate the
advantages and disadvantages of each model and draw conclusions about their suitability for different types
of time series.

3 Baseline Methods and Results

3.1 Baseline Models
To objectively evaluate the effectiveness of the proposed FractalNet-LSTM model, we compared it with

other well-known neural network architectures that are widely used in time series forecasting tasks. In
particular, the following basic models were selected: standard LSTM, bidirectional LSTM (BiLSTM), NAR,
and the combined CNN-LSTM model.

The LSTM model is a classical recurrent neural network specifically designed to model long-term
dependencies in sequential data. Through the use of memory cells and gate mechanisms (input, forgetting,
and output), LSTM efficiently stores and transmits information over long periods of time, preventing the
problem of gradient vanishing. In the context of time series forecasting, LSTM allows the model to take into
account both short-term and long-term patterns, which is critical for accurately predicting future values.

Bi-directional LSTM extends the standard LSTM architecture by allowing the model to process a data
sequence in both the forward (past to future) and backward (future to past) directions. This provides a more
complete capture of context, as the model takes into account information on both sides of each element in
the sequence. In some tasks, this can improve the quality of forecasting, especially when future states affect
current ones. However, in time series forecasting tasks, the use of BiLSTM has limitations, since the model
does not have access to future data when predicting future values. Nevertheless, the inclusion of BiLSTM
in the comparison allows us to evaluate the potential advantages of this architecture in the context of time
series processing.

The NAR model was included in our comparative analysis due to its robust capability to capture complex
temporal dependencies in time series forecasting. NAR is a type of feedforward neural network that models
the current output as a nonlinear function of its past outputs, enabling it to effectively recognize and represent
intricate patterns and interactions within the data. Unlike standard autoregressive models, NAR can handle
nonlinear relationships, which enhances its ability to model sophisticated dynamics inherent in various
time-dependent datasets. By incorporating historical information through the inclusion of lagged outputs
as input features, NAR allows the model to anticipate future values based solely on its own previous states.
This autoregressive dependency facilitates more accurate and reliable predictions, particularly in scenarios
where the underlying processes exhibit nonlinear behavior. Including NAR in our evaluation provides a
comprehensive benchmark against which the performance of the proposed FractalNet-LSTM model can
be assessed, highlighting the strengths and potential improvements of our approach in handling nonlinear
temporal dependencies in forecasting tasks.

The combined CNN-LSTM model combines the capabilities of CNNs and LSTMs to process time series.
In this architecture, CNN is used to extract local features from the input data. Convolutional CNN layers
effectively detect local patterns and relationships in sequences, which can be especially useful when working
with data that has local dependencies or repeated structures. After that, the extracted features are passed to
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the LSTM layer, which models long-term dependencies and takes into account the sequence of data over
time. This combination allows the model to simultaneously take into account both local and global patterns,
which can improve the accuracy of forecasting.

All basic models were implemented using the same principles and tools as the proposed FractalNet-
LSTM model. The following conditions were met to ensure a fair comparison:

• Data sets: The models were trained and tested on the same datasets of electricity consumption, sunspot
activity, and Spotify stock prices;

• Pre-processing: The same preprocessing techniques were applied to the data, including gap filling,
normalization, and training set generation;

• Data split: The same data split was used for all datasets and models: 70% for training, 15% for validation,
and 15% for testing.

• Training conditions: We used the same loss functions (MSE or Huber Loss), optimizers (Adam), and
training stopping criteria (early stopping based on validation error);

• Evaluation metrics: The performance of the models was evaluated using the same metrics: MAE, MAPE,
RMSE, R2, and Huber’s loss function.

3.2 Results
The combined CNN-LSTM model combines the capabilities of CNNs and LSTMs to process time series.

In this architecture, CNN is used to extract local features from the input data. Convolutional CNN layers
effectively detect local patterns and relationships in sequences, which can be especially useful when working
with data that has local dependencies or repeated structures. After that, the extracted features are passed to
the LSTM layer, which models long-term dependencies and takes into account the sequence of data over
time. This combination allows the model to simultaneously take into account both local and global patterns,
which can improve the accuracy of forecasting.

3.2.1 Sunspot Activity
Table 1 shows the results of the FractalNet-LSTM, LSTM, BiLSTM, NAR, and CNN-LSTM models for

different forecast horizons on sunspot activity data. Also, a comparison of models by MAE and RMSE metrics
can be seen in Fig. 3.

Table 1: Models result in sunspot activity data

τ Window Model MAE MAPE RMSE R2 Huber
FractalNet-LSTM 1.64 0.0413 2.29 0.996 1.24

BiLSTM 1.79 0.0428 2.5 0.996 1.38
1 64 LSTM 1.67 0.0460 2.32 0.995 1.26

CNN-LSTM 3.84 0.0907 4.96 0.981 3.37
NAR 2.1 0.6888 2.79 0.992 1.66

FractalNet-LSTM 6.23 0.158 8.56 0.92 5.76
BiLSTM 6.04 0.2430 8.32 0.856 5.56

8 64 LSTM 6.33 0.19 8.53 0.89 5.85
CNN-LSTM 6.86 0.29 9.34 0.76 6.38

NAR 6.1 0.21 8.78 0.89 5.63

(Continued)
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Table 1 (continued)

τ Window Model MAE MAPE RMSE R2 Huber
FractalNet-LSTM 9.28 0.28 13.19 0.42 8.79

BiLSTM 9.9 0.4 13.98 0.47 9.41
16 128 LSTM 11.52 0.666 15.33 −6.33 11.03

CNN-LSTM 11.79 0.36 16.98 −0.15 11.3
NAR 11.6 0.74 14.85 −0.28 11.12

FractalNet-LSTM 11.72 0.51 15.79 0.59 11.24
BiLSTM 18.02 1.46 24.78 −189.5 17.53

32 128 LSTM 14.9 0.85 19.47 −14.7 14.41
CNN-LSTM 16.19 0.81 21.99 −38.6 15.7

NAR 18.52 1.47 24.6 −1.56 18.02

Figure 3: Comparison of model forecasting results on sunspot activity dataset by: (a) MAE; (b) RMSE metrics

When forecasting a single point, the BiLSTM model performed the best with the lowest MAE (1.64)
and highest R2 (0.9960), indicating its high accuracy in short-term forecasting. FractalNet-LSTM and LSTM
also demonstrate high accuracy with a slight lag.

At a forecast horizon of 8 points, FractalNet-LSTM outperforms the other models, achieving the lowest
MAE (6.23) and MAPE (15.8%), as well as the highest R2 (0.9205). This indicates the model’s ability to
effectively model medium-term patterns in the data.

For the 16-point horizon, BiLSTM and FractalNet-LSTM show similar results, with BiLSTM slightly
ahead in terms of MAE (9.90 vs. 9.28). However, the R2 for both models decreases, indicating the difficulty
of long-term forecasting.

At a long horizon of 32 points, FractalNet-LSTM again performs best with MAE (11.72) and R2 (0.5986),
outperforming the other models. This indicates that the fractal architecture helps the model to better detect
long-term dependencies in the data.
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3.2.2 Household Power Consumption
Table 2 shows the results in household power consumption data. Comparison by MAE and RMSE

metrics can be seen in Fig. 4.

Table 2: Models result in household power consumption data

τ Window Model MAE MAPE RMSE R2 Huber
FractalNet-LSTM 0.19 0.045 0.24 0.59 0.03

BiLSTM 0.19 0.047 0.24 0.69 0.03
1 7 LSTM 0.2 0.05 0.24 0.67 0.03

CNN-LSTM 0.21 0.048 0.26 0.66 0.033
NAR 0.19 0.044 0.24 0.65 0.03

FractalNet-LSTM 0.42 0.1 0.56 −0.07 0.15
BiLSTM 0.49 0.14 0.64 0.05 0.2

8 30 LSTM 0.43 0.12 0.56 0.19 0.15
CNN-LSTM 0.42 0.111 0.55 0.2 0.15

NAR 0.46 0.12 0.59 0.17 0.17

FractalNet-LSTM 0.62 0.16 0.76 −0.68 0.27
BiLSTM 0.72 0.22 0.9 −0.58 0.38

16 30 LSTM 0.89 0.28 1.11 −1.37 0.52
CNN-LSTM 0.68 0.2 0.86 −0.44 0.34

NAR 0.63 0.17 0.78 −0.2 0.29

FractalNet-LSTM 0.85 0.27 1.11 −1.78 0.5
BiLSTM 1.2 0.4 1.41 −2.46 0.81

32 64 LSTM 0.95 0.33 1.16 −1.27 0.61
CNN-LSTM 1.1 0.27 1.3 −6.66 0.67

NAR 0.75 0.24 0.9 −0.57 0.38

Figure 4: Comparison of model forecasting results on household power consumption dataset by: (a) MAE; (b) RMSE
metrics
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At a short horizon (1 point), BiLSTM, NAR, and FractalNet-LSTM performed best with MAE (0.19) and
low MAPE. This indicates their ability to accurately predict short-term changes in electricity consumption.

At the 8-point horizon, FractalNet-LSTM and CNN-LSTM performed similarly with MAE (0.42).
However, the CNN-LSTM has a slightly higher R2 (0.2000), indicating a better fit of the model to the data.

When forecasting 16 points, FractalNet-LSTM retains the lowest MAE (0.62) and MAPE (16.0%),
although R2 becomes negative, indicating a decrease in model accuracy compared to the simple average.

At a long horizon of 32 points, NAR demonstrates the best results in terms of MAE (0.75), FractalNet-
LSTM is second place with MAE (0.85), but all models show a decrease in accuracy, which indicates the
complexity of long-term electricity consumption forecasting.

3.2.3 Spotify Stock Price
Similar to the previous sections, Table 3 shows the results in Spotify stock price data. A comparison by

MAE and RMSE metrics can be seen in Fig. 5.

Table 3: Models result in Spotify stock price data

τ Window Model MAE MAPE RMSE R2 Huber
FractalNet-LSTM 3.54 0.0124 3.97 0.88 3.1

BiLSTM 2.16 0.0075 2.75 0.95 1.71
1 7 LSTM 2.84 0.0099 3.54 0.9 2.37

CNN-LSTM 5.95 0.0211 6.68 0.61 5.46
NAR 1.6 0.005 2.1 0.96 1.2

FractalNet-LSTM 5.22 0.0173 7.29 0.04 4.75
BiLSTM 6.45 0.0221 8.74 −0.02 5.6

8 30 LSTM 7.9 0.0269 9.97 −0.4 7.4
CNN-LSTM 5.79 0.0198 7.55 0.22 5.47

NAR 5.8 0.0197 8.05 0.03 5.36

FractalNet-LSTM 18.01 0.058 20.11 −8.3 17.5
BiLSTM 11.91 0.0404 14.82 −1.7 11.4

16 30 LSTM 9.37 0.0321 12.35 −0.74 8.89
CNN-LSTM 9.14 0.0314 11.35 −0.52 8.65

NAR 11.4 0.0382 14.05 −1.76 10.9

FractalNet-LSTM 41.86 0.1351 43.77 −29.76 41.4
BiLSTM 23.94 0.0769 26.99 −10.5 23.4

32 64 LSTM 22.0 0.0706 25.19 −8.87 21.5
CNN-LSTM 16.94 0.0542 20.95 −6.45 16.5

NAR 20.42 0.0652 23.55 −8.55 19.9

On the short horizon (1 point), NAR shows the best results with MAE (1.6) and R2 (0.96). FractalNet-
LSTM lags behind BiLSTM and LSTM, which may indicate that for financial data with high volatility, the
fractal architecture is less effective in short-term forecasting.
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Figure 5: Comparison of model forecasting results on Spotify stock price dataset by: (a) MAE; (b) RMSE metrics

At the 8-point horizon, FractalNet-LSTM demonstrates the lowest MAE (5.22) and MAPE (1.73%), but
its R2 is lower than that of CNN-LSTM (0.0400 vs. 0.2200). This indicates that although FractalNet-LSTM
has a better average error, its fit to the data overall may be worse.

For the 16 and 32 point horizons, CNN-LSTM performs the best in terms of MAE and RMSE among
all models, although all models exhibit negative R2 values, indicating a significant decrease in accuracy for
long-term forecasting.

FractalNet-LSTM is significantly inferior to the other models at long horizons, which may be due to the
complexity of financial data and high volatility, which is difficult to model even with sophisticated architec-
tures.

4 Discussion
In this study, we proposed the FractalNet-LSTM model, which combines fractal convolutional blocks

with recurrent LSTM layers to improve the accuracy of time series forecasting. The results show that the
proposed model outperforms traditional approaches at medium forecasting horizons and demonstrates high
accuracy for data with long-term and cyclic dependencies.

Analysis of the results. On the sunspot activity and household electricity consumption datasets,
FractalNet-LSTM performed particularly well at medium forecast horizons (8 and 16 points). This can be
explained by the ability of the fractal architecture to effectively detect complex patterns and multi-level
dependencies in the data. The fractal convolutional units allow the model to extract features at different
scales, which is critical for time series with long cycles, such as 11-year solar activity cycles.

Compared to baseline models such as standard LSTM and BiLSTM, FractalNet-LSTM demonstrates
competitive or even superior performance at medium and long horizons. This suggests that the addition of
fractal structure improves the model’s ability to detect global patterns and model long-term dependencies.

However, at short forecast horizons (1 point), BiLSTM often outperforms FractalNet-LSTM. This may
be due to the fact that BiLSTM takes into account information from both the past and the future, although
in tasks of predicting future values, access to future data is limited. Nevertheless, FractalNet-LSTM still
demonstrates high accuracy on short horizons, which emphasizes its versatility.

Limitations and challenges. Although the FractalNet-LSTM approach has proven effective in various
scenarios, it also faces potential difficulties that include high computational complexity arising from the
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parallel “branches” within the fractal blocks, the risk of overfitting when the available dataset is limited due to
the depth and complexity of the architecture, and difficulties in tuning the large number of hyperparameters
typical for fractal and LSTM-based models. Additionally, the model exhibits sensitivity to highly volatile
financial time series such as the Spotify dataset, where the presence of noise can overshadow the benefits of
fractal structures, particularly over long forecasting horizons. While fractal convolutional blocks help capture
multi-scale features, the LSTM’s memory mechanisms may not suffice to retain or generalize information
under these conditions, often leading to negative R2 values and decreased accuracy. These issues reflect the
inherent complexity of long-term forecasting and emphasize the need for extensive amounts of data and
additional strategies (e.g., more robust regularization or specialized volatility modeling) when dealing with
data dominated by randomness.

Comparison with previous studies. The results of our study are consistent with previous works that
indicate the effectiveness of using fractal neural networks to model complex nonlinear dependencies [15,16].
Previous studies have shown that fractal networks can improve the generalization ability of models and
increase their resistance to noise [17]. Our results confirm these findings and demonstrate that the integration
of fractal properties into neural networks is a promising direction for improving time series forecasting.

Compared to baseline models such as standard LSTM and BiLSTM, FractalNet-LSTM demonstrates
competitive or even superior performance at medium and long horizons. This observation aligns with the
findings of other reviews on the strengths and limitations of LSTM-based forecasting [25].

Practical implications. The results have important practical implications. The FractalNet-LSTM model
can be used to improve forecasting accuracy in industries where time series have long-term and cyclical
dependencies, such as energy and meteorology. This can contribute to more informed decision-making and
resource optimization.

Directions for future research. Further research could be aimed at adapting FractalNet-LSTM to
work with highly volatile data, including financial data. A possible approach is to integrate noise processing
methods or use hybrid architectures that combine fractal networks with other noise-resistant models.

In addition, it is worth exploring the possibility of automatically adjusting the depth and structure of
fractal blocks depending on the characteristics of the data. This will improve the adaptability of the model
and its versatility for different types of time series.

5 Conclusion
Overall, the study shows that integrating fractal properties into neural network architecture improves

the accuracy of time series forecasting. FractalNet-LSTM demonstrates advantages at medium forecasting
horizons and for data with long-term dependencies. This opens up new opportunities for developing more
accurate and reliable forecasting systems that can be applied in various industries.

Furthermore, the outcomes of this research hold practical relevance for a wide range of real-world
applications, such as forecasting energy consumption to optimize power grid operations, improving mete-
orological predictions for resource management, and supporting long-term strategic planning in diverse
industrial sectors. For high-volatility financial time series, additional noise suppression or specialized
filtering methods may be necessary to achieve robust performance. Future work could explore adaptive
fractal networks, hybrid solutions that incorporate attention mechanisms, and pre-trained models to further
enhance the flexibility and resilience of FractalNet-LSTM across different data domains.
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ARIMA Autoregressive integrated moving average
BiLSTM Bi-directional long short-term memory
CNN Convolutional neural network
LSTM Long short-term memory
MAE Mean absolute error
MAPE Mean absolute percentage error
NAR Nonlinear AutoRegressive
RMSE Root mean square error
RNN Recurrent neural network
SARIMA Seasonal autoregressive integrated moving average
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