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ABSTRACT: This research explores the use of Fuzzy K-Nearest Neighbor (F-KNN) and Artificial Neural Networks
(ANN) for predicting heart stroke incidents, focusing on the impact of feature selection methods, specifically Chi-
Square and Best First Search (BFS). The study demonstrates that BFS significantly enhances the performance of both
classifiers. With BFS preprocessing, the ANN model achieved an impressive accuracy of 97.5%, precision and recall
of 97.5%, and an Receiver Operating Characteristics (ROC) area of 97.9%, outperforming the Chi-Square-based ANN,
which recorded an accuracy of 91.4%. Similarly, the F-KNN model with BFS achieved an accuracy of 96.3%, precision
and recall of 96.3%, and a Receiver Operating Characteristics (ROC) area of 96.2%, surpassing the performance of the
Chi-Square F-KNN model, which showed an accuracy of 95%. These results highlight that BFS improves the ability to
select the most relevant features, contributing to more reliable and accurate stroke predictions. The findings underscore
the importance of using advanced feature selection methods like BFS to enhance the performance of machine learning
models in healthcare applications, leading to better stroke risk management and improved patient outcomes.

KEYWORDS: Fuzzy K-nearest neighbor; artificial neural network; accuracy; precision; recall; F-measure; Chi-Square;
best search first; heart stroke

1 Introduction
In recent years, we have transitioned from a traditional world to one advanced and driven by technology.

The advent of 5G and beyond 5G technologies is shaping this transformation, enveloping humanity within
the expansive embrace of the Internet of Everything (IoE) [1]. Among the various facets of this interconnected
world, healthcare applications have emerged as a dominant area, addressing critical concerns and bringing
solutions to our fingertips. Alarmingly, heart-stroke incidents have been on the rise. According to the World
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Health Organization (WHO) and other health entities, stroke has consistently been one of the leading
causes of death and disability worldwide. By 2019, it was estimated that more than 13 million people would
suffer a stroke annually, with roughly 5.5 million resulting in death [2]. The increase in stroke incidence
and prevalence has been particularly notable in low-and middle-income countries, in part because of
changes in lifestyle and demographics. In contrast, some high-income countries have seen stable or declining
rates thanks to effective public health interventions. Given this surge, we must harness the capabilities
of the current technological landscape to effectively detect and respond to heart strokes, ensuring timely
interventions and saving countless lives [3].

Data mining plays a crucial role across various sectors, with its applications in the healthcare industry
being particularly transformative. At its core, data mining involves analyzing large datasets to extract
previously unrecognized, valid patterns and relationships [4]. This process is integral to the broader Knowl-
edge Discovery in Databases (KDD) discipline, which includes classification, association, and clustering as
key components.

Data mining’s profound impact on the healthcare sector cannot be overstated. It enables the discovery of
actionable insights from massive datasets and plays a pivotal role in enhancing the efficacy and efficiency of
healthcare services. By leveraging data mining techniques, healthcare organizations can address significant
challenges, including disease prediction, treatment optimization, and cost reduction, ultimately leading to
improved health outcomes and patient care [5].

In this research, we focused on improving stroke prediction accuracy by combining two machine learn-
ing algorithms–Fuzzy K-Nearest Neighbor (F-KNN) and Artificial Neural Networks (ANN) with advanced
feature selection techniques, specifically Chi-Square and Best First Search (BFS). Our key contributions
include enhancing feature selection by identifying the most relevant features and significantly improving
model performance. We evaluated our models using multiple metrics like precision, recall, F-measure, and
Receiver Operating Characteristics (ROC) area, ensuring a comprehensive assessment of performance. Our
findings highlight the effectiveness of combining ANN with BFS for stroke prediction, offering a robust
framework that can be adapted for other medical prediction tasks, ultimately aiding in faster and more
accurate healthcare decision-making.

2 Literature Review
Technologies such as machine learning and deep learning can significantly enhance stroke prediction

accuracy in the medical field, and numerous studies have investigated their application in this context. This
section presents a selection of studies that utilized publicly available datasets, including those from Kaggle
and data from local hospitals and laboratories. In [6], the main focus of this study was to consider six
types of beats taken from the MIT-BIH Arrhymtia database. They used a technique called PCA (Principal
Component Analysis). The performance of the fuzzy k-Nearest classifier was identified with PCA and
without using PCA. In the end, the Accuracy of the fuzzy-KNN is 97%.

The authors in [7] collected data from Kaggle involving 3254 participants. The dataset comprises ten
independent features, including age, BMI, glucose level, smoking status, hypertension, and a history of
stroke. Data preprocessing was conducted, and class balancing was achieved using the Synthetic Minority
Over-Sampling Technique (SMOTE) resampling technique. To predict stroke occurrence, various machine
learning models, including Stacking, Decision Tree, Random Forest, Majority Voting, Naive Bayes, Multi-
layer Perceptron, KNN, Stochastic Gradient Descent, and logistic regression. The results indicated that the
stacking classifier outperformed the others, achieving an Area Under The Curve (AUC) value of 0.989 and
precision and recall rates of 0.974. Additionally, random forest, KNN, and majority voting demonstrated
strong performance.
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In [8], the authors developed a model for predicting heart disease using Neural Networks, K-means
clustering, and Frequent Item Set generation methods. The dataset was sourced from the Cleveland Heart
Disease database, encompassing 14 key attributes and 303 records. Performance analysis was conducted,
focusing on accuracy, sensitivity, and specificity. Ultimately, the Artificial Neural Network emerged as the
most effective classifier, achieving an accuracy rate of 79%.

The author in paper [9] utilized a dataset published by McKinsey and Company, which included 11
attributes such as body mass index, heart disease status, marital status, age, average blood glucose levels, and
smoking habits. The dataset comprised 548 patients who had experienced a stroke and 28,524 patients with
no prior strokes, necessitating a size reduction. To mitigate sampling bias, 1000 downsampling experiments
were conducted. Subsequently, 70% of the dataset was allocated for training and 30% for testing. Among the
1000 experiments, the Neural Network model achieved the highest accuracy at 75.02%, followed by Random
Forest with 74.53% and Decision Tree at 74.31%.

In [10], the authors investigate the implementation of data mining approaches for forecasting heart
disease. The primary focus of this survey paper is to identify more effective mining techniques for heart
disease classification. According to the findings, several machine learning algorithms were evaluated,
including Fuzzy KNN, K-Nearest Neighbor, K-means, Neural Network, Neuro-Fuzzy, C4.5, and J48. Among
these algorithms, Fuzzy KNN demonstrated superior performance and enhanced accuracy compared to
the others.

In [11], the authors presents a machine learning model designed to improve the prediction of car-
diovascular diseases (CVDs). The model integrates a Multilayer Perceptron Neural Network (MLPNN)
with an Arithmetic Optimization Algorithm (AOA) to select the most relevant features from medical
datasets, focusing on the Cleveland dataset. The methodology involves preprocessing data, applying AOA
for feature selection, and using MLPNN for classification. By addressing issues such as imbalanced datasets
and irrelevant features, the approach enhances the accuracy and efficiency of CVD prediction. The model’s
performance was evaluated using metrics like accuracy, precision, recall, and F1-score. It achieved an
accuracy of 88.89%, outperforming traditional machine learning models like SVM, decision trees, and KNN.
This demonstrates the model’s ability to provide reliable and non-invasive predictions, making it a valuable
tool for early CVD diagnosis.

In [12], the author proposed a model in his thesis to predict stroke disease utilizing K-Nearest
Neighbor (KNN) and Decision Tree classifiers. Chi-Squared and Genetic Search data mining techniques
were implemented to effectively evaluate and preprocess the attributes. The comparison between the
K-Nearest Neighbor and Decision Tree algorithms revealed that the Chi-Squared method outperformed
Genetic Search. At the same time, KNN demonstrated superior performance compared to the Decision
Tree algorithm.

The researcher in the paper [13] introduced four stacking ensemble techniques designed for heart disease
diagnosis by optimizing hyperparameters. Their research utilized the UCI dataset containing 918 records and
12 attributes. To enhance the performance of 11 machine learning classifiers, they employed GridSearchCV
with five-fold cross-validation. The highest accuracy, 91.5%, was achieved with the second stacking ensemble
method combined with oversampling. Similarly, in the paper [14], the researchers tackled the problem of
data imbalance by applying the SMOTE technique for oversampling. They developed a machine learning
approach for predicting cardiac conditions, using the Cleveland dataset to train models such as Naive Bayes,
Random Forest, Support Vector Machines, Decision Trees, and K-Nearest Neighbors.

The study [15] explores an automated stroke prediction model using machine learning, focusing on
improving early diagnosis and intervention. The methodology involves using various machine learning
models, such as Random Forest and XGBoost, alongside techniques like SMOTE for data balancing to
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address the issue of imbalanced datasets. Explainable Artificial Intelligence (XAI) methods, including SHAP
and LIME, were employed to provide interpretable insights into the model’s decision-making process.
A web application was developed to facilitate user interaction with the model, allowing real-time stroke
risk prediction. The Random Forest model achieved the highest accuracy of 90.36% without data leakage,
demonstrating its reliability. Performance metrics like precision, recall, and F1-score were used to evaluate
the models comprehensively.

Despite the promising results achieved in stroke prediction using machine learning, there are still
several areas that require further improvement. While many models have demonstrated high accuracy, the
performance can be enhanced even more, especially for real-time applications. One of the challenges lies in
the time complexity and memory consumption of complex models, which can be a barrier when trying to
deploy them in resource-limited environments. The feature selection methods used to improve prediction
accuracy also need further optimization, particularly when dealing with large and high-dimensional datasets.

3 Methodology
In this study, the tool used to construct the data mining model is the ‘WEKA’. This tool foresees stroke

disease, and suggestions are provided for physicians to apply the proposed model in the medical field. The
first step in this research is gathering data on stroke disease. For the analysis and verification of the data, the
Chi-Squared and best first search are used for better and more delicate feature selection. Classifiers called
Fuzzy K-Nearest Neighbor and Artificial Neural Network classification algorithms are used to check the
accuracy. The model is trained using the WEKA tool, and then data is provided to this model to check the
accuracy. Fig. 1 shows research methodology architecture.

Figure 1: Research methodology architecture

3.1 Stroke Data Collection
In our comprehensive framework for stroke disease prediction, data preprocessing plays a crucial role

in enhancing the performance of our predictive models, including Fuzzy K-Nearest Neighbor (F-KNN) and
Artificial Neural Networks (ANN) augmented with the Chi-Square (CS) and Best First Search (BFS) feature
selection technique. The process involves several meticulously designed steps to ensure the highest quality
of data feeding into our prediction algorithms.

Our methodology’s initial phase involves gathering a stroke patient dataset, which we sourced from
the publicly available UCI and Kaggle repositories. The dataset consists of 1207 instances with 12 attributes.
Attributes of the stroke dataset consist of age, gender, blood pressure, fasting blood sugar, diabetes,
cholesterol, smoking, family history, arrhythmias, FND (functional neurological disorder), stroke type and
Class Label.
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3.2 Preprocessing
The preprocessing stage is fundamental in transforming raw data into a suitable format for analysis. This

stage involves several key processes.

• Data Cleaning: The first step in preprocessing involves cleaning the dataset by removing any incon-
sistencies or irrelevant data. It is a crucial step because the presence of such data can lead to
inaccurate predictions.

• Handling Missing Values: We identified and imputed missing values within our dataset. Missing
values can distort the predictive model’s understanding of the data, leading to less accurate predictions.
Various strategies were employed for imputation, including the mean imputation method for continuous
variables and mode imputation for categorical variables.

• Normalization: We applied data normalization techniques to scale the features within a similar range.
This process is vital, especially when dealing with features that vary in magnitudes, units, and range.
Normalization ensures that each feature contributes proportionately to the final prediction.

• Final Dataset: After the preprocessing steps, we finalized a clean, normalized dataset and reduced it to
only the most relevant features. This dataset was then split into a training set, which comprises 70% of
the data, and a test set, making up the remaining 30%. The training set was used to train our F-KNN and
ANN models, while the test set was reserved for evaluating the models’ performance.

3.3 Chi-Square
A statistical hypothesis test is implemented if the statistics are a Chi-Squared distribution when the

null hypothesis is accurate and the distribution of the statistics is simple. It is also known as “Pearson’s
Chi-Squared test. It is also asymptotically true, showing that the sampling distribution can be estimated as
carefully as anticipated by making the sample size big enough. The Chi-Square test is considered to identify
whether there is a noteworthy difference between the predictable and experimental frequencies in one or
more classes [16]. Formula for Chi-Square:

x2
c = ∑

(Oi − Ei)2

Ei

Oi represents the observed value, Ei is the expected value, C represents the degree of freedom, and i is
the ith position in the contingency table.

The Chi-Square technique removes noise and unnecessary and irrelevant features from selected data.
As a result, the best and optimal attributes are chosen, contributing more to our data. The best selection
attributes process with Chi-Square is shown in Table A1.

3.4 Best First Search (BFS)
In Best-First Search, the algorithm expands nodes based on their heuristic values, selecting the node

with the best (minimum) heuristic value at each step. It maintains two lists: the open list and the closed list.
The open list contains the nodes that have been created but not yet expanded, while the closed list contains
the nodes that have already been expanded. The node with the lowest heuristic value from the open list is
selected for expansion during each iteration. Once expanded, its child nodes are added to the closed list. This
process ensures that the algorithm prioritizes exploring shorter or more promising paths while longer or less
favorable paths are less likely to be pursued. The best selection attributes process with Best First Search is
shown in Table A2. The formula for Best First Search is as follows:
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f (n) = g(n) + h(n) (1)

• f (n) represents the expected total cost of the path through the goal
• g(n) represents the cost to reach the node
• h(n) is the estimated cost to get from the node to the goal

3.5 Building Classification Models of F-KNN and ANN
The term classification is also known as supervised learning, which gives class labels to new items. This

new stroke patient classification model allows a class label (Yes or No). The two classifiers, Fuzzy K-Nearest
Neighbor and Artificial Neural Networks, are used for stroke disease classification. The 70% data are used
for machine training, and the remaining 30% is used for model testing.

A WEKA tool version 3.7 was used to build up classification models. The machine is trained to apply
a training data set through two classification methods: Fuzzy K-Nearest Neighbor and Artificial Neural
Network. Then, these models were used for stroke disease classification.

Classification Model: Fuzzy K-Nearest Neighbor (F-KNN)
The Fuzzy K-Nearest Neighbor (F-KNN) algorithm is a sophisticated extension of the conventional K-

Nearest Neighbor (K-NN) method, which is widely used for classification tasks [17]. F-KNN incorporates
fuzzy logic principles into the K-NN framework to enhance its classification performance, especially in
scenarios where the data is not separable or overlaps among the classes. This section delves into the details
of the F-KNN algorithm, including its working mechanism.

The F-KNN algorithm uses the membership grades principle to determine a query instance’s class.
Instead of assigning the instance to the majority class among its nearest neighbors, F-KNN calculates the
degree of membership of the instance to each class, providing a more nuanced classification that accounts
for the instance’s proximity to various class clusters.

• Determine the K-Nearest Neighbors: For a given query instance, the algorithm identifies the K closest
training instances based on a distance metric, typically Euclidean distance. The distance between two
points xi and x j in an n-dimensional space is calculated with Eq. (2).

d(xi , x j) =
�
���

n
∑
k=1
(xi k − x jk)2 (2)

• Calculate Membership Grades: For each class Cl , the membership grade of the query instance to that
class is computed based on the distances to the neighbors and their respective memberships to CL . The
membership grade of the query instance x to class Cl , denoted as u(x , Cl), is calculated using Eq. (3).

u(x , Cl) =
∑K

i=1 u(xi , Cl) ⋅ ω(i)
∑K

i=1 ω(i)
(3)

where u(xi , Cl) is the membership grade of the ith neighbor to class Cl , and ω(i) is the weight associated
with the ith neighbor, typically defined with Eq. (4).

ω(i) = 1
d(x , xi)2 (4)

Here, d(x , xi) is the distance between the query instance x and its ith neighbor. The inverse square
of the distance is used as the weight to give higher importance to closer neighbors. If a neighbor is
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exactly at the same point as the query instance (implying d(x , xi) = 0), a small constant is added to the
denominator to avoid division by zero.

In the context of stroke disease prediction, the F-KNN algorithm’s ability to account for overlapping
symptoms and risk factors across different patient profiles significantly enhances its predictive accuracy. By
evaluating the fuzzy membership grades of a patient to the classes of ‘stroke’ and ‘no stroke,’ the algorithm
provides a nuanced assessment of stroke risk, which is critical for early intervention and personalized
healthcare planning. The Algorithm 1 elaborates the pseudo-code of Fuzzy K-Nearest Neighbors with
Chi-Square and Best First Search feature selection techniques for Stroke Prediction.

Algorithm 1: F-KNN algorithm for stroke prediction chi-square and best first search feature selection
techniques

1: Perform Data Preprocessing on D
2: Normalize continuous features.
3: Handle missing values.
4: Chi-Square Feature Selection
5: FOR each feature f i in D DO
6: Calculate the Chi-Square value between f i and the class label.
7: Select the top N features with the highest Chi-Square values.
8: Best First Search (BFS) for feature selection
9: Initialize open list with all features.

10: Initialize closed list as empty.
11: While open list is not empty
12: Select the feature with the best heuristic value from the open list.
13: Expand its neighboring features based on the BFS heuristic.
14: Add the feature to the closed list.
15: If desired number of features selected
16: Stop.
17: End If.
18: End while.
19: Let D′ be the dataset D reduced to the selected N features.
20: Split D′ into Training and Testing sets
21: Define Fuzzy K-Nearest Neighbors Classification
22: FUNCTION F_KNN(Training_Set, Test_Instance, K)
23: Distances = []
24: FOR each instance xi in Training_Set DO
25: distance = EuclideanDistance(xi, Test_Instance)
26: Distances.append((distance, class_of_xi))
27: END FOR
28:
29: Distances = Sort(Distances)
30: Neighbors = Distances[0:K]
31:
32: Membership_Scores = Initialize to zero for each class
33: FOR each neighbor ni in Neighbors DO

(Continued)
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Algorithm 1 (continued)
34: weight = 1 / (distance_of_ni

∧2)
35: class_of_ni = class_of(ni)
36: Membership_Scores[class_of_ni] += weight
37: END FOR
38:
39: Predicted_Class = Class with highest Membership_Score
40: RETURN Predicted_Class
41: END FUNCTION
42: Model Training and Prediction
43: Predictions = []
44: FOR each Test_Instance in Testing set DO
45: predicted_class = F_KNN(Training_Set, Test_Instance, K)
46: Predictions.append(predicted_class)
47: END FOR

3.6 Classification Model: Artificial Neural Networks (ANN)
Artificial Neural Networks (ANN) is a cornerstone of modern machine learning, inspired by the

biological neural networks that constitute animal brains. These models are particularly effective for complex
pattern recognition tasks, including classification, making them highly suitable for medical prediction tasks
such as stroke disease prediction [18]. This section provides a detailed overview of the ANNs model.

3.6.1 Core Components of ANN
• Neurons (Nodes): The basic computational unit of an ANN, analogous to biological neurons. Each

neuron receives input, processes it, and transmits output to the next layer of neurons.
• Layers: ANNs are composed of layers: an input layer, one or more hidden layers, and an output layer.

Each layer contains multiple neurons.
• Weights and Biases: Weights are the connection strengths between neurons of consecutive layers.

Biases are additional parameters added to the neuron’s weighted sum before applying the activation
function, allowing the activation function to be shifted to the left or right, which may be critical for
successful learning.

• Activation Function: A nonlinear function applied to the weighted sum of inputs and the bias. It
determines whether a neuron should be activated, introducing nonlinear properties to the model.

3.6.2 The Forward Propagation Algorithm
The process of calculating the output of an ANN for given inputs is known as forward propagation. It

involves the following steps:

• Initialization: Input values are provided to the input layer.
• Weighted Sum Calculation: For each neuron in the subsequent layers, calculate the weighted sum of its

inputs, which includes the outputs from the previous layer’s neurons, their corresponding weights, and
the neuron’s bias. The weighted sum (z) for the ith neuron in a layer is given by Eq. (5).

zi = ∑
j
(wi j ⋅ x j) + bi (5)
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where wi j is the weight from the jth neuron in the previous layer to the ith neuron, x j is the output of
the jth neuron from the previous layer, and bi is the bias of the ith neuron.

• Activation: The activation function ( f ) to the weighted sum to determine the neuron’s output. The
output (ai) of the ith neuron is calculated with Eq. (6).

ai = f (zi) (6)

Activation function sigmoid (σ(z) = 1
1+e−z ) is used in this research.

3.6.3 The Backpropagation Algorithm
ANNs learn by adjusting the weights and biases to minimize the difference between the actual and

predicted outputs. This process, known as backpropagation, involves:

• Loss Function Calculation: Calculate the loss (error) using a loss function, such as Mean Squared Error
(MSE) for regression tasks or Cross-Entropy for classification tasks. The loss function quantifies the
difference between actual and predicted output.

• Gradient Descent: Use the gradient of the loss function to each weight and bias to update these
parameters in the direction that minimally reduces the loss. It is achieved through gradient descent,
where each parameter is updated as follows with Eqs. (7) and (8).

wnew = wold − η ⋅ ∂L

∂w
(7)

bnew = bold − η ⋅ ∂L

∂b
(8)

where η is the learning rate, a small positive value determining the step size during the optimization,
and ∂L

∂w and ∂L
∂b are the partial derivatives of the loss function (L ) to the weight and bias, respectively.

In stroke disease prediction, an ANN has input neurons corresponding to risk factors like age, blood
pressure, cholesterol levels, etc. The output layer represents the probability of having a stroke. The ANN
learns to map the complex relationships between risk factors and stroke outcomes through training, making
it a robust medical diagnosis and prognosis tool. The Algorithm 2 elaborates the pseudo-code of Artificial
Neural Networks (ANN) for Stroke Prediction Chi-Square and Best First Search feature selection techniques.

Algorithm 2: ANN algorithm for stroke prediction Chi-Square and best first search feature selection
techniques

1: PREPROCESS_DATA(D)
2: - Normalize continuous features
3: - Handle missing values
4: SELECT_FEATURES(D, N_ f eatures)
5: For each feature in D:
6: - Calculate Chi-Square value with the stroke label
7: Select top N_ f eatures based on Chi-Square values
8: Reduce D to include only selected features
9: Best First Search (BFS) for feature selection

10: Initialize open list with all features.
11: Initialize closed list as empty.

(Continued)
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Algorithm 2 (continued)
12: While open list is not empty
13: Select the feature with the best heuristic value from the open list.
14: Expand its neighboring features based on the BFS heuristic.
15: Add the feature to the closed list.
16: If desired number of features selected
17: Stop.
18: End If.
19: End while.
20: SPLIT_DATASET(D)
21: Split D into training and test sets (e.g., 70% training, 30% test)
22: INITIALIZE_ANN(N_ f eatures, N_hidden_l ayers, Neurons_per_l ayer)
23: Create input layer with size N_ f eatures
24: For each layer in N_hidden_l ayers:
25: Create layer with Neurons_per_l ayer[i] neurons
26: Create an output layer with 1 neuron (binary classification)
27: Initialize weights and biases randomly
28: TRAIN_ANN(training_set, Epochs, Learning_rate)
29: For epoch in E pochs:
30: For each instance in training_set:
31: - Forward propagate inputs through the network
32: - Compute loss
33: - Backpropagate errors, update weights and biases
34: EVALUATE_ANN(test_set)
35: Predictions = []
36: For each instance in test_set:
37: - Forward propagate to get output
38: - Record prediction based on output threshold.

4 Results and Discussion

4.1 Analysis of F-KNN with Chi-Square with Test and Training Data Set
Fig. 2 presents the results of the Fuzzy K-Nearest Neighbors (F-KNN) algorithm classifier on a training

dataset. The model achieved high accuracy in classifying the instances, with 97.5% of them being correctly
classified and only 2.5% misclassified. The Kappa statistic of 0.9409 indicates a strong agreement between
the predicted and actual classifications, suggesting the model performs well. The Root Mean Squared Error
(RMSE) is 0.1581, which indicates that the model’s predictions are generally quite close to the actual values.
Additionally, the Root Relative Squared Error (RRSE) of 34.50% shows a relatively low level of error in the
predictions compared to the overall data variance. The model’s performance on individual classes achieved
high precision and recall values, especially for the “yes” class, with a precision of 0.988 and recall of 0.982,
resulting in a high F-measure score of 0.985. These metrics suggest that the model identifies true positives
and minimizes false negatives for the “yes” class. The ROC area score of 0.974 further confirms that the model
can distinguish between the classes, providing confidence in its effectiveness. Overall, these results indicate
that the FuzzyKNN classifier is a reliable and accurate tool for this dataset.

Fig. 3 presents the results of re-evaluating the Fuzzy K-Nearest Neighbors (F-KNN) classifier on a test
dataset. The model correctly classified 95% of the instances, with only 5% misclassified. The Kappa statistic of
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0.886 shows a strong agreement between the predicted and actual classifications, indicating that the model
performs well overall. The Mean Absolute Error (MAE) of 0.05 and the Root Mean Squared Error (RMSE) of
0.2236 both suggest that the model’s predictions are quite accurate, with a low level of error. In terms of class-
specific performance, the model achieved a high precision and recall of 0.923 for the “no” class and 0.963
for the “yes” class, demonstrating its ability to accurately identify both classes. Additionally, the F-measure
values of 0.923 for “no” and 0.963 for “yes” show that the model maintains a good balance between precision
and recall for both classes. The ROC area score of 0.943 for both classes further reinforces the model’s strong
discriminative ability, ensuring it effectively distinguishes between them. These results suggest that F-KNN
with Chi-Square applied to the test dataset provides a reliable and high-performance classification model.

Figure 2: Training model of F-KNN with Chi-Square

Figure 3: Re-evaluation and outcomes of F-KNN with chi-square on test dataset
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4.2 Analysis of ANN with Chi-Square with Test and Training Data Set
Fig. 4 presents the evaluation results of the Artificial Neural Network (ANN) model on a training

dataset. The model achieved perfect performance with 100% of the instances correctly classified, indicating
that it could predict all cases perfectly. The Kappa statistic is 1, which confirms a perfect agreement between
the predicted and actual classes, meaning there were no discrepancies in classification. The Mean Absolute
Error (MAE) is 0.0055, which is extremely low, suggesting the model’s predictions were very close to the
actual values. The Root Mean Squared Error (RMSE) is also low at 0.0063, further demonstrating the
accuracy of the model. Looking at the performance in detail for individual classes, the model shows an
impressive precision, recall, and F-measure of 1.0 for both the “no” and “yes” classes. It means that the model
perfectly identifies both classes without any false positives or false negatives. Additionally, the ROC Area
for both classes is 1, which indicates that the model has perfect discrimination between the classes, correctly
distinguishing between the “no” and “yes” outcomes. Overall, these results suggest that the MLP model, when
applied with Chi-Square feature selection, is highly effective and capable of achieving flawless classification
performance on the training dataset.

Figure 4: Training of ANN with chi-square

Fig. 5 shows the re-evaluation results of the Artificial Neural Network (ANN) model on a test dataset.
The model correctly classified 91.25% of the instances, with only 8.75% misclassified. The Kappa statistic
of 0.8064 reflects a strong agreement between the predicted and actual values, indicating that the model
performs well but leaves room for improvement. The Mean Absolute Error (MAE) is 0.1034, which is
relatively low, suggesting that the model’s predictions are generally accurate. The Root Mean Squared Error
(RMSE) of 0.2686 is higher than the MAE, indicating slightly more variation in the model’s errors. For class-
specific performance, the model shows a precision of 0.828 and a recall of 0.873 for the “no” class, meaning
that it is good at identifying the “no” instances but might miss a few true negatives. For the “yes” class,
the precision is higher at 0.961 and recall at 0.907, indicating that the model is more precise in classifying
“yes” instances and has a slightly higher chance of missing them compared to the “no” class. The F-measure
scores for both classes are also relatively high, with 0.873 for “no” and 0.914 for “yes”, indicating a good
balance between precision and recall. The ROC Area score of 0.905 for both classes indicates the model has
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strong discriminatory ability. Overall, the results suggest that while the ANN model performs well on the
test dataset, there is still room for refinement to improve its classification capabilities.

Figure 5: Re-evaluation and outcomes of the ANN Chi-Square on the test dataset

4.3 Analysis of F-KNN with Best First Search on Test and Training Data Set
Fig. 6 presents the evaluation results of the Fuzzy K-Nearest Neighbor (F-KNN) model on a training

dataset. The model achieved a high level of accuracy, correctly classifying 98.33% of the instances, with only
1.67% of instances being misclassified. The Kappa statistic of 0.9597 indicates a strong agreement between
the predicted and actual classifications, showing that the model performs very well. The Mean Absolute
Error (MAE) is 0.0167, which is quite low, indicating that the model’s predictions are very close to the true
values. Additionally, the Root Mean Squared Error (RMSE) of 0.1291 and the Relative Absolute Error (RAE)
of 3.95% suggest that the model performs with high accuracy and minimal error. Looking at class-specific
performance, the model shows excellent results for both classes. The “no” class achieved a precision of 0.977
and a recall of 0.944, resulting in an F-measure of 0.971. It indicates the model’s ability to correctly identify
“no” instances while balancing precision and recall. For the “yes” class, the precision is slightly higher at
0.988, with a recall of 0.983 and an F-measure of 0.986. The ROC Area for both classes is very high, 0.972,
demonstrating the model’s excellent ability to distinguish between the two classes. Overall, these results
suggest that the F-KNN model, when applied to the training set with Best-First Search, is a highly effective
and accurate classifier.

Fig. 7 illustrates the re-evaluation of the Fuzzy K-Nearest Neighbor (F-KNN) model on a test dataset.
The model demonstrated strong performance by correctly classifying 96.25% of the instances, leaving only
3.75% misclassified. The Kappa statistic of 0.9137 indicates a substantial agreement between the predicted
and actual classifications, suggesting that the model is highly reliable. The Mean Absolute Error (MAE) is
0.0375, which is low, showing that the model’s predictions are very close to the true values. Additionally,
the Root Mean Squared Error (RMSE) of 0.1936 reflects the model’s accuracy, with a relatively low error.
For individual class performance, the F-KNN model achieved a precision of 0.923 and a recall of 0.964 for
the “no” class, resulting in an F-measure of 0.941. It indicates that the model effectively identifies the “no”
instances with a good balance between false positives and false negatives. For the “yes” class, the precision is
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0.964, and the recall is 0.923, with an F-measure of 0.942. The ROC Area for both classes is 0.962, suggesting
that the model has a strong discriminatory ability and can effectively distinguish between the two classes.
These results demonstrate that the F-KNN model, with Best-First Search, applied to the test dataset, is an
efficient and accurate classifier.

Figure 6: Training of F-KNN with best first search

Figure 7: Re-evaluation and outcomes of F-KNN with best first search
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4.4 Analysis of F-KNN with Best First Search on Test and Training Data Set
Fig. 8 presents the evaluation results of the Artificial Neural Networks (ANN) model on a training

dataset. The model achieved perfect accuracy by correctly classifying all instances, as indicated by 100%
correct classifications and 0% misclassifications. The Kappa statistic 1 reflects a perfect agreement between
the predicted and actual classifications, highlighting that the model made no errors. The Mean Absolute
Error (MAE) is 0.0061, which is very low, indicating that the model’s predictions are incredibly close to the
true values. Similarly, the Root Mean Squared Error (RMSE) is 0.0069, confirming minimal error in the
predictions. Looking at class-specific performance, the model shows perfect precision, recall, and F-measure
values of 1 for both classes (“no” and “yes”), which means it correctly identified all instances for both classes
without any false positives or false negatives. The ROC Area score for both classes is also 1, suggesting that the
model has excellent discriminatory ability and can perfectly distinguish between the two classes. These results
demonstrate that the ANN model, trained with the Best-First Search feature selection, is highly effective and
performs flawlessly on the training dataset.

Figure 8: Training ANN with best first search

Fig. 9 shows the re-evaluation results of the Artificial Neural Networks (ANN) model on a test dataset.
The model performed excellently, correctly classifying 97.5% of the instances, with only 2.5% misclassified.
The Kappa statistic of 0.9418 indicates a strong agreement between the predicted and actual classifications,
suggesting the model is highly reliable. The Mean Absolute Error (MAE) is 0.031, which is very low,
confirming the model’s accuracy. The Root Mean Squared Error (RMSE) of 0.1571 also indicates a relatively
low level of error in the predictions. Regarding class-specific performance, the model shows high precision
and recall values of 0.96 for the “no” class and 0.982 for the “yes” class, indicating that it effectively identifies
both classes with minimal errors. The F-measure, which balances precision and recall, is 0.96 for “no” and
0.982 for “yes,” highlighting the model’s consistency. The ROC Area score for both classes is 0.979, indicating
the model has a strong discriminatory ability and can accurately distinguish between the “no” and “yes”
classes. These results demonstrate that the ANN model, applied with Best-First Search, is highly effective
and reliable in classifying instances in the test dataset.
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Figure 9: Re-evaluation and outcomes of ANN with BFS

4.5 Discussion
The results in Table 1 highlight a comparative analysis between the Fuzz K-Nearest Neighbor (F-KNN)

algorithm and the Artificial Neural Network (ANN), evaluated with two preprocessing techniques: Chi-
Square and Best First Search (BFS). The comparison provides critical insights into the performance of
these algorithms across multiple metrics, including accuracy, precision, recall, F-measure, ROC area, Time
complexiy, and memory consumption. The results show that ANN achieves its best performance when
combined with the Best First Search preprocessing technique. Specifically, ANN with BFS preprocessing
achieves an impressive accuracy of 97.5%, significantly higher than the 91.4% achieved with Chi-Square. This
trend extends across all other metrics, including precision, recall, and F-measure, where ANN consistently
scores 97.5 with BFS compared to 91.7–91.4 with Chi-Square. Additionally, the ROC area shows a substantial
improvement (97.9 for BFS vs. 90.5 for Chi-Square), reflecting superior classification capability with reduced
false positives when BFS is used.

Table 1: Results comparison of F-KNN and ANN with Chi-Square and BFS along with other approaches

Algorithms Preprocessing Accuracy Precision Recall F-measure ROC area Time
complexity
(s)

Memory
consumption
(KB)

F-KNN Chi-Square 95% 95.1% 95% 95% 94.3% 9.1 984.6
F-KNN Best first search 96.3% 96.3% 96.3% 96.3% 96.2% 6.4 s 567.4
ANN Chi-Square 91.4% 91.7% 91.3% 91.4% 90.5% 17.8 342.1
ANN Best first search 97.3% 97.5% 97.9% 97.6% 97.9% 3.9 114.6

Random forest – 84.2% 84.7% 81.9% % 82.1% 9.6 741.6
Support vector

machine
– 81.5% 82.4% 79.4% % 80.6% 14.4 241.7

The Best First Search (BFS) method selects the best 4 features from the dataset, whereas the Chi-Square
method selects 8 features. The reduction in the number of features chosen by BFS directly contributes to the
observed decrease in time complexity. With fewer features, the algorithms are able to perform calculations
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faster, resulting in a shorter processing time. For both F-KNN and ANN, the time complexity is lower when
using BFS (F-KNN with BFS: 6.4 s, ANN with BFS: 3.9 s) compared to using the Chi-Square method (F-
KNN with Chi-Square: 9.1 s, ANN with Chi-Square: 17.8 s). The smaller number of features selected by BFS
reduces the computational load, allowing the algorithms to run more efficiently and in less time. The memory
consumption for F-KNN with Chi-Square is 984.6 KB, while for F-KNN with BFS it is reduced to 567.4 KB.
Similarly, for ANN, the memory consumption with Chi-Square is 342.1 KB, whereas with BFS it decreases
to 114.6 KB. The reason for this reduction in memory usage is directly tied to the number of features selected
by each method. Since Chi-Square selects 8 features and BFS selects only 4, the reduced number of features
with BFS results in lower memory requirements. Each feature requires a certain amount of memory to store,
so by selecting fewer features, the algorithm needs less memory to process the data.

The superiority of ANN with BFS can be attributed to the inherent strengths of the Best First Search
approach. BFS is a greedy search algorithm that selects the most relevant features by evaluating them
iteratively, ensuring that only the most informative inputs are passed to the model. This process significantly
reduces noise and irrelevant data, which can otherwise dilute the effectiveness of a complex algorithm like
ANN. Neural networks thrive on high-quality input data, and BFS enhances this by narrowing the feature
space to the most critical attributes. On the other hand, while Chi-Square is effective for ranking features
based on their statistical relevance, it might overlook certain nonlinear relationships that BFS captures
more effectively. Comparatively, F-KNN also performs well, especially with BFS preprocessing, achieving
96.3% accuracy. However, its commendable performance falls short of the ANN-BFS combination. It is
likely because F-KNN relies on distance-based similarity measures, which are inherently less adaptable to
complex patterns in data. As a deep learning algorithm, ANN is inherently better at capturing and learning
intricate patterns, provided the input data is well-optimized-a condition BFS fulfills. These results underline
the critical role of preprocessing in optimizing algorithm performance. They also reinforce the suitability
of ANN as a robust algorithm for data classification tasks, particularly when paired with effective feature
selection methods like BFS. This finding is pivotal, as it validates the choice of ANN for complex classification
problems and demonstrates the importance of preprocessing in achieving state-of-the-art results.

The proposed methodology excels compared to existing schemes by integrating Fuzzy K-Nearest
Neighbor (F-KNN) and Artificial Neural Networks (ANN) with advanced feature selection techniques like
Chi-Square and Best First Search (BFS). Unlike traditional approaches that often prioritize accuracy alone,
this framework ensures a comprehensive evaluation of key metrics, including precision, recall, F1-score,
and ROC area. The BFS technique stands out for its iterative and heuristic evaluation, selecting only the
most relevant features and thereby reducing noise and computational overhead. This refinement enables
the ANN model, in particular, to capture complex nonlinear relationships more effectively than previous
methods. Compared to models that rely on broader, less targeted feature selection like Principal Component
Analysis (PCA) or simpler statistical techniques, the proposed approach delivers superior predictive per-
formance with a notable accuracy of 97.5%. By addressing dataset imbalances and optimizing input quality,
the proposed approach ensures reliable and interpretable stroke prediction, a critical improvement over
existing schemes.

5 Conclusion
The research presented in this paper explores the application of machine learning algorithms, partic-

ularly Fuzzy K-Nearest Neighbors (F-KNN) and Artificial Neural Networks (ANN), in predicting stroke
diseases. It demonstrates the effectiveness of integrating these methods with advanced feature selection
techniques, such as Chi-Square and Best First Search, to improve classification models’ precision, recall, and
overall accuracy. The study emphasizes the critical role of preprocessing in refining datasets and highlights
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how the choice of preprocessing method directly impacts model performance. The results show that F-
KNN and ANN are effective classifiers for stroke prediction. F-KNN, when combined with Best First Search,
achieved high accuracy and demonstrated robust performance, particularly in balancing precision and recall
across classes. It provided reliable results and maintained strong discriminatory ability, as evidenced by
its high ROC scores. However, ANN emerged as the superior model when paired with Best First Search,
achieving the highest accuracy, precision, recall, and F-measure levels among all tested configurations. The
careful selection of features significantly enhanced ANN’s ability to learn complex patterns and relationships
in the data, making it a highly effective tool for medical predictions. The comparison between Chi-Square and
Best First Search preprocessing methods highlights the importance of feature selection in optimizing model
performance. While Chi-Square proved effective in ranking features based on statistical significance, Best
First Search offered a more refined approach by identifying the most informative features through iterative
evaluation. This improvement in data quality allowed the models, especially ANN, to achieve higher accuracy
and reduced error rates. These findings underscore the need for tailored preprocessing strategies that align
with the specific characteristics of the data and the chosen machine learning algorithm.

Future Research Directions
Future research can focus on integrating more extensive and diverse datasets, including data from

different regions, healthcare systems, and demographics. It will help address potential biases and improve
the models’ generalizability across various patient populations. Including additional features such as genetic
markers, lifestyle factors, and detailed medical histories can further refine the predictions. Secondly, devel-
oping hybrid models that combine the strengths of multiple machine learning algorithms could enhance
performance. For instance, integrating Fuzzy K-Nearest Neighbors (F-KNN) with Artificial Neural Networks
(ANN) or other advanced techniques like ensemble learning or deep learning could lead to higher accuracy
and robustness models.
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Appendix A

Table A1: Attributes selection by Chi-Squared

No. Attribute
1 Gender
2 Blood pressure
3 Cholesterol
4 Smoke
5 Family history
6 Arrhythmia
7 FND (Functional Neurological Disorder)
8 Stroke type

Table A2: Attributes selection by best first search

No. Attribute
1 Blood pressure
2 Cholesterol
3 FND (Functional Neurological Disorder)
4 Stroke type
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