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ABSTRACT: Design patterns offer reusable solutions for common software issues, enhancing quality. The advent of
generative large language models (LLMs) marks progress in software development, but their efficacy in applying design
patterns is not fully assessed. The recent introduction of generative large language models (LLMs) like ChatGPT and
CoPilot has demonstrated significant promise in software development. They assist with a variety of tasks including
code generation, modeling, bug fixing, and testing, leading to enhanced efficiency and productivity. Although initial
uses of these LLMs have had a positive effect on software development, their potential influence on the application of
design patterns remains unexplored. This study introduces a method to quantify LLMs’ ability to implement design
patterns, using Role-Based Metamodeling Language (RBML) for a rigorous specification of the pattern’s problem,
solution, and transformation rules. The method evaluates the pattern applicability of a software application using the
pattern’s problem specification. If deemed applicable, the application is input to the LLM for pattern application. The
resulting application is assessed for conformance to the pattern’s solution specification and for completeness against
the pattern’s transformation rules. Evaluating the method with ChatGPT 4 across three applications reveals ChatGPT’s
high proficiency, achieving averages of 98% in conformance and 87% in completeness, thereby demonstrating the
effectiveness of the method. Using RBML, this study confirms that LLMs, specifically ChatGPT 4, have great potential
in effective and efficient application of design patterns with high conformance and completeness. This opens avenues
for further integrating LLMs into complex software engineering processes.

KEYWORDS: Design patterns; large language models; pattern application; pattern-based refactoring; quantitative
assessment

1 Introduction
Design patterns [1] offer proven solutions for recurring design problems in software development,

enhancing software quality such as reusability, maintainability, and scalability. In practice, design patterns
are used by interpreting their abstract description in the context of the application under development.
However, the abstract nature of pattern descriptions can make it difficult to have a clear interpretation in
their application, which might lead to obstacles in attaining the expected benefits of the pattern [2].

The recent advent of generative large language models (LLMs) such as ChatGPT [3], Gemini [4], and
CoPilot [5] has shown great potential in software development, providing support in various tasks such as
code generation [6], modeling [7], bug fixing [8], and testing [9], which leads to improved efficiency and
productivity. While the initial use of these LLMs indicate a positive impact on software development [10],
their potential on design pattern application has not been explored.
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In this work, we present a quantifiable approach to evaluate the capability of LLMs in applying
design patterns, focusing on pattern conformance and completeness. A prerequisite for this approach is the
rigorous specification of design patterns, which is necessary to define precise pattern properties, serving
as a quantitative measure, while facilitating checking the presence of pattern properties in UML models,
which are the representation of programs used in this work to evaluate pattern conformance. There have
been several techniques for specifying design patterns, which can be categorized into formal methods-
based approaches and UML-based approaches. Formal methods-based approaches (e.g., [11–14]) make use
of formal specification techniques to specify design patterns. While these techniques have, by virtue of
formalism, strong support for reasoning and verifying pattern properties, it is difficult to use formalized
pattern properties in checking their presence in UML models. There have also been efforts (e.g., [15–17])
to specify design patterns using the UML, a widely accepted modeling language. A major benefit of these
approaches is that because of the wide acceptance of the UML, these approaches can be easily adopted.
However, these approaches suffer from high complexity in representation. In this work, we adopt Role-Based
Metamodeling Language (RBML) [18], a UML-based pattern specification technique, to formalize design
patterns. RBML defines a design pattern in terms of roles, which capture pattern participants in a way simliar
to UML models, which facilitates the evaluation of pattern conformance in this work.

In this work, we present a quantifiable approach to evaluating the capability of large language models
(LLMs) in applying design patterns, focusing on pattern conformance and completeness. A key prerequisite
for this approach is the rigorous specification of design patterns, which enables the definition of precise
pattern properties that serve as quantitative measures and facilitate the evaluation of pattern conformance.
This is achieved by checking for the presence of these properties in UML models, which represent the
programs under evaluation. Various techniques have been proposed for specifying design patterns, broadly
categorized into formal methods-based approaches and UML-based approaches. Formal methods-based
approaches (e.g., [11–14]) use formal specification techniques, providing strong support for reasoning and
verifying pattern properties. However, applying these formalized pattern properties to check their presence
in UML models proves challenging. On the other hand, UML-based approaches (e.g., [15–17]) specify design
patterns using UML, a widely accepted modeling language. While these approaches are more accessible
due to the popularity of UML, they often suffer from high representational complexity. In this work, we
adopt the Role-Based Metamodeling Language (RBML) [18], a UML-based pattern specification technique,
to formalize design patterns. RBML defines design patterns in terms of roles, capturing pattern participants
in a manner similar to UML models, thereby simplifying the evaluation of pattern conformance and
facilitating analysis.

We define a design pattern in terms of problem specification, solution specification, and transformation
rules. The problem specification is used to check the pattern applicability of the program under consideration.
If the pattern is applicable, the program is input into the LLM, which applies the pattern and produces
a refactored version. This refactored program is then evaluated for conformance to the applied pattern
using the pattern’s solution specification and checked for the completeness of pattern realization against the
pattern’s transformation rules. We evalaute the approach using the Visitor pattern applied to three case studies
in ChatGPT 4. The evaluation results show that ChatGPT can apply design patterns with an average of 98%
pattern conformance and 87% pattern completeness, demonstrating the effectiveness of the approach.

The remainder of the paper is organized as follows: Section 2 discusses the relevant literature on utilizing
LLMs in software engineering. Section 3 provides an overview of RBML using the Visitor pattern as an
example. Section 4 details the proposed approach, illustrating the application of the Visitor pattern to a
software application in ChatGPT. Section 5 presents two additional case studies in which the Visitor pattern
is applied to other applications. Finally, Section 6 concludes the study and discusses avenues for future work.
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2 Related Work
In this section, we review relevant work on evaluating LLMs in software engineering.
Several studies have examined LLMs’ capabilities in general software development and code synthesis.

Kim et al. [10] assessed ChatGPT’s proficiency across various development phases, finding it could generate
over 90% of code while noting limitations in traceability. White et al. [19] developed systematic prompt design
techniques, introducing patterns for requirements elicitation and code quality. Dakhel et al. [20] evaluated
GitHub Copilot’s capabilities in algorithmic problem-solving, finding effective but sometimes inconsistent
solutions. Solohubov et al. [21] demonstrated significant efficiency gains with AI tools, while Nascimento
et al. [22] compared ChatGPT against human programmers on Leetcode, revealing varying performance
across different problem types.

Research on code quality and maintenance has produced significant findings. Zhang et al. [8] evaluated
ChatGPT’s bug-fixing capabilities, showing successful repair patterns through various prompting strategies.
In a follow-up study, Zhang et al. [8] introduced EvalGPTFix, a benchmark for assessing LLM-based
program repair. Kirinuki et al. [9] found ChatGPT generated test cases comparable to human testers, though
with limitations in boundary testing. Surameery et al. [23] explored ChatGPT’s debugging capabilities,
while Asare et al. [24] investigated Copilot’s potential for introducing vulnerabilities. Alshahwan et al. [25]
proposed an assured LLMSE approach using semantic filters to validate code changes.

A significant body of work has focused on software architecture and requirements engineering. Ahmad
et al. [7] explored ChatGPT’s role in architecture-centric software engineering, developing frameworks for
requirements articulation and microservices architecture design. Marques et al. [26] evaluated ChatGPT’s
effectiveness in requirements engineering, highlighting improved stakeholder communication. Rajbhoj
et al. [27] investigated integrating generative AI across the software development lifecycle, while Ozkaya [6]
discussed both benefits and risks of LLMs in software engineering tasks.

Studies have examined LLMs’ impact on software development processes and methodologies. Bera
et al. [28] assessed ChatGPT’s capability as an agile coach, recommending cautious integration into teams.
Felizardo et al. [29] demonstrated ChatGPT’s potential in systematic literature reviews, while Özpolat
et al. [30] investigated its role in automating development tasks. Champa et al. [31] analyzed the DevGPT
dataset [32] to understand how developers utilize ChatGPT in practice.

Recent research has also explored collaborative and educational aspects of LLMs. Hassan et al. [33]
proposed developing AI pair programmers that work contextually with human developers. Pudari et al. [34]
analyzed Copilot’s adherence to programming best practices. Waseem et al. [35] investigated ChatGPT’s
effectiveness in helping students understand software development tasks while warning against over-reliance.

Several comprehensive studies have examined broader implications and practical applications. Fan
et al. [36] surveyed LLM applications across software engineering domains. Nguyen-Duc et al. [37] iden-
tified 78 research questions across 11 areas in generative AI for software engineering. Rahmaniar [38]
discussed ChatGPT’s potential to enhance software engineering efficiency, while Wang et al. [39] introduced
BurstGPT, a dataset capturing real-world LLM usage patterns. Sridhara et al. [40] evaluated ChatGPT’s
performance across fifteen distinct software engineering tasks, finding varying effectiveness across different
types of activities.

While these studies provide valuable insights into LLMs’ potential across various software engineering
tasks, they highlight both opportunities and limitations in areas such as code generation, bug fixing,
testing, and architectural design. However, the systematic application of design patterns—a crucial aspect
of software engineering—remains unexplored. Our work addresses this gap by providing a quantitative
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framework for evaluating LLMs’ pattern application abilities, using RBML for rigorous pattern specification,
and demonstrating practical effectiveness through multiple case studies.

3 Design Pattern Specifications in RBML
RBML is a UML-based notation for specifying design patterns at the meta-model level, supporting their

application at the model level [18]. RBML captures the variability of design patterns through roles which
are enacted by UML model elements. Each role defines a set of properties that the model elements must
exhibit to comply with the role. Roles are established based on a UML metaclass, representing a subset of the
instances of that base metaclass.

RBML allows for the rigorous specification of design patterns, facilitating the quantitative assessment
of pattern realizations. RBML pattern specifications are defined in terms of problem specification, solution
specification, and transformation rules. The problem specification captures the problem domain of the
pattern, defining the applicability of the pattern. A software application is considered pattern applicable if it
satisfies the properties of the problem specification. The solution specification describes the pattern’s solution
domain, establishing criteria for conformance to the pattern. A software model is deemed to be conformant to
the pattern if it satisfies the properties of the solution specification. Transformation rules define the process of
refactoring a problem model into a solution model based on the mapping between the problem specification
and the solution specification.

A pattern specification is defined by roles that encapsulate the pattern’s variability. A single role or
a combination of roles constitutes a pattern property, which extends the capacity to capture the pattern’s
variability, and a pattern specification may comprise multiple such properties. An application model is
deemed to satisfy the pattern specification if it adheres to all the defined properties. There are two types
of pattern specifications—a Structural Pattern Specification (SPS) that delineates the pattern’s structural
properties, and an Interaction Pattern Specification (IPS) that outlines the pattern’s behavioral properties.

In this study, we employ the Visitor pattern [1] to illustrate our approach. This pattern is selected due
to its complexity among the Gang of Four (GoF) patterns, making it an ideal candidate to demonstrate the
capabilities of LLMs in applying design patterns. Fig. 1 shows the problem specification for the Visitor pattern.
The SPS defines the structure of the pattern’s problem domain, including roles such as ∣Ob jectStructure,
∣AbstractEl ement, ∣Cl ient, ∣Lea f El ement, and ∣CompositeEl ement. Each role is linked to a base meta-
class, specified within <<>> above the role name. {XOR} in the diagram specifies exclusive-or constraints,
illustrating the structural variability of the pattern’s problem domain. The {XOR} constraint between the
∣Ob jectStructure block (which includes its relationship role ∣OC with the ∣Cl ient role and relationship role
∣OA with the ∣AbstractEl ement role) and the relationship role ∣CA indicates two variations—(i) the ∣Cl ient
is associated with the ∣AbstractEl ement via ∣Ob jectStructure, or (ii) the ∣Cl ient is directly associated
with the ∣AbstractEl ement without an intervening object structure. The {XOR} constraint between the
∣Lea f Real and ∣Lea f Gen roles stipulates that only one of these roles should be realized. Similarly, the
{XOR} constraint between ∣CompReal and ∣CompGen enforces the same logic. The asterisk (*) symbol
next to the ∣CompReal role, the ∣CompGen role, and the ∣CompositeEl ement indicates that these roles are
optional, introducing additional variability. Specifically, it implies that the presence of composite elements is
not mandatory.
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Figure 1: Visitor problem specification

The IPS details the interaction behaviors within the pattern’s problem domain, represented by lifeline
roles assumed by objects of classes fulfilling SPS roles. For example, the ∣o ∶ ∣Ob jectStructure lifeline role is
played by an object of the class fulfilling the ∣Ob jectStructure SPS role. The al t combined fragment with the
{XOR} constraint outlines four interaction variations aligned with the {XOR} constraint near the ∣Cl ient
role in the SPS. The first two cases specify the participation of the object structure in the interactions—the
first case describes the object structure interacting with elements via composite elements, and the second case
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involves the object structure interacting directly with leaf elements when composite elements are absent. The
remaining two cases delineate scenarios without the object structure—in the third case, the client interacts
with elements via composite elements, while the fourth case describes the client interacting directly with leaf
elements in the absence of composite elements.

A single role or a group of roles forms a pattern property. Fig. 2 illustrates the properties of the
Visitor problem specification, where Fig. 2a displays SPS properties and Fig. 2b shows IPS properties. In
the tables, the first column shows labels for properties, the second column specifies roles involved in the
property, and the third column describes the base metaclasses for the involved roles. Six SPS properties
are defined in Fig. 2a. P2 specifies two structural variations, as indicated by the {XOR} constraint near
∣Cl ient in Fig. 1a. The property is satisfied if either of the two variations is realized. P4 is fulfilled if the
∣Lea f El ement role, along with the optional ∣CompositeEl ement∗ role, is present. P6 addresses another
{XOR} constraint related to the two {XOR} constraints under ∣AbstractEl ement in Fig. 1a and is satisfied if
either (∣CompReal , ∣Lea f Real) or (∣CompGen∗, ∣Lea f Gen) exists, where the first component is linked to
the {XOR} constraint over the relationships with ∣CompositeEl ement and the second with ∣Lea f El ement.
P1, P3, and P5, each involving only one role, cover the corresponding constraints of that role. For the
IPS, three properties are defined in Fig. 2b. P3, detailing four {XOR} cases in the al t fragment in Fig. 1b,
is satisfied if any one case occurs. P2 is met if the ∣e ∶ ∣Lea f El ement role, along with the optional ∣m ∶
∣CompositeEl ement∗ role, is achieved. P1, containing only a single role, is satisfied when that role is realized.

Figure 2: Visitor problem properties

Fig. 3 illustrates the solution specification of the Visitor pattern. The SPS defines the solution structure
which encompasses ∣AbstractVisitor and ∣ConcreteVisitor, along with the roles specified in the problem
SPS. {XOR} in the diagram specifies exclusive-or constraints, illustrating the structural variability of the
pattern’s solution domain. The IPS delineates the solution behaviors of the pattern through four variations
specified in the al t fragment. Each variation describes the double dispatch mechanism where the client or
the object structure conveys the visitor through the ∣accept() message sent to an individual component,
which in turn, invites the visitor by passing itself via the visit()message sent to the visitor.

Fig. 4 illustrates the solution properties of the Visitor pattern, with Fig. 4a detailing the SPS prop-
erties and Fig. 4b outlining the IPS properties. In Fig. 4a, properties P2, P6, P7, and P8 relate to specific
visitor-related aspects, while P13 defines the {XOR} constraint governing the relationships between
∣AbstractVisitor and ∣ConcreteVisitor, as depicted in Fig. 3a. In Fig. 4b, P3 identifies the participating
visitor, and P4 details the four variations of double-dispatch interactions, as specified in the al t fragment
in Fig. 3b.
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Figure 3: Visitor solution specification
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Figure 4: Visitor solution properties

The problem specification and solution specification of a pattern are mapped to establish transformation
rules. These rules define the necessary conditions that must be met during the transformation from a problem
model to a solution model when the pattern is applied. Let ẽ represent an element e in the problem domain,
and let ê represent a corresponding element e in the solution domain. Then, the following mapping is defined
between the problem SPS and the solution SPS of the Visitor pattern:
[̃∣Cl ient ↦ ̂∣Cl ient,

̃∣Ob jectStructure ↦ ̂∣Ob jectStructure ,
̃∣AbstractEl ement ↦ ̂∣AbstractEl ement,
̃∣CompositeEl ement ↦ ̂∣CompositeEl ement ,

̃∣Lea f El ement ↦ ̂∣Lea f El ement]
Based on the mapping, let R represent the set of elements that fulfill the role ∣R. Then, õp() is the set

of operations fulfilling the role ∣̃op(), and v̂ isit() is the set of operations fulfilling the role ̂∣visit(). The
function getVisit(c) produces a visit operation v ∈ v̂ isit() for class c. Similarly, getO perations(c) returns
the set of operations in class c, and getConcreteVisitor(o) provides a concrete visitor cv ∈ ̂ConcreteVisitor
associated with operation o. Using these functions, we define the following SPS transformation rules:

S1. For every concrete element e ∈ ̃CompositeEl ement ∪ ̃Lea f El ement, there exists a corresponding
visit operation o ∈ v̂ isit() in every abstract visitor class v ∈ ̂AbstractVisitor.
∀e ∶ ̃CompositeElement ∪ ̃LeafElement,∃o ∶ v̂isit()⋅
o = getVisit(e) ∧ (∀v ∶ ̂AbstractVisitor ⋅ o ∈ getOperations(v))

S2. For every operation p ∈ õp(), there exists a corresponding concrete visitor class c ∈ ̂ConcreteVisitor.
∀p ∶ õp(), ∃c ∶ ̂ConcreteVisitor ⋅ c = getConcreteVisitor(p)

S3. The operations of õp() no longer exist in classes of ̂AbstractEl ement and ̂ConcreteEl ement.
∀p ∶ õp(),∀e ∶ ̂AbstractElement ∪ ̂ConcreteElement ⋅ p ∉ getO perations(e)

For IPS transformation, the following defines the mapping between problem IPS roles and solution
IPS roles:
[ ̃∣c ∶ ∣Cl ient ↦ ̂∣c ∶ ∣Cl ient,

̃∣o ∶ ∣Ob jectStructure ↦ ̂∣o ∶ ∣Ob jectStructure ,
̃∣m ∶ ∣CompositeEl ement ↦ ̂∣m ∶ ∣CompositeEl ement ,
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̃∣e ∶ ∣Lea f El ement ↦ ̂∣e ∶ ∣Lea f El ement]
Let us denote ∣m()[∶ ∣cal l er, ∶ ∣cal l ee] as a message role where ∶ ∣cal l er calls ∣m() on ∶ ∣cal l ee.

Then, m()[cal l er, cal l ee] is the set of messages playing the ∣m()[∶ ∣cal l er, ∶ ∣cal l ee] role. In the context
of IPS mapping, ∣̃op() represents the union of message sets ̃∣op()[∣o, ∣m] ∪ ̃∣op()[∣m, ∣e] ∪ ̃∣op()[∣o, ∣e] ∪
̃∣op()[∣c, ∣m] ∪ ̃∣op()[∣m, ∣e] ∪ ̃∣op()[∣c, ∣e]. Similarly, ∣accept() represents the union of ̂∣accept()[∣o, ∣m] ∪
̂∣accept()[∣m, ∣e] ∪ ̂∣accept()[∣o, ∣e] ∪ ̂∣accept()[∣c, ∣m] ∪ ̂∣accept()[∣m, ∣e] ∪ ̂∣accept()[∣c, ∣e]. seq(s) de-

notes the set of all elements for sequence diagram s. The function match(m̂1, m̃2) returns true if the caller
and callee of m1 play the roles that correspond to the caller and callee of m2. With these definitions, we can
establish the following IPS transformation rules:

I1. For every message op ∈ õp(), there exists a corresponding message accept ∈ ̂accept() whose caller
and callee matches those of op.
∀op ∶ õp(), ∃accept ∈ ̂accept() ⋅match(op, accept)

I2. The messages of õp() no longer exist in the solution sequence diagram ŝ.
∀m ∶ õp() ⋅m ∉ seq(̂s)

4 Quantifying LLMs’ Capability on Design Pattern Application
In this section, we describe the proposed approach for quantitatively assessing LLMs in design pattern

application using RBML pattern specifications. Fig. 5 illustrates the process where rectangles represent
data, ellipses denote operations, diamonds indicate conditions, and arrows depict control flow. The process
involves the following steps:

1. A program that does not yet implement the intended design pattern is considered, referred to as the
problem program. To ensure a fair assessment, we focus on programs that are suitable candidates for the
intended pattern application, as those not conforming to the pattern may not adequately demonstrate
the LLM’s full potential.

2. The problem program is reverse-engineered into a model, termed the problem model.
3. The problem model is checked for pattern applicability against the problem specification of the desired

pattern. The degree of applicability is quantified as p′

p × 100 where p′ represents the number of satisfied
problem properties and p denotes the total number of problem properties. Each problem property is
assigned equal weight.

4. After confirming pattern applicability, the problem program is input into the LLM to apply the pattern
with the following prompt:
prompt: Apply [Target Pattern] to the given program.

5. The resulting program from the LLM, to which the pattern has been applied, is reverse-engineered into
what is termed the solution model.

6. The solution model is evaluated for its conformance to the pattern’s solution specification. The degree
of conformance is quantified as s′

s × 100 where s′ represents the number of satisfied solution properties
and s denotes the total number of solution properties. Each solution property is assigned equal weight.

7. The solution model is checked for completeness regarding the pattern transformation rules. The degree
of completeness is quantified as t′

t × 100 where t′ represents the number of satisfied transformation
rules and t denotes the total number of transformation rules. Each transformation rule is assigned
equal weight.
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Figure 5: Quantitative assessment process

To demonstrate the approach, we use the Visitor pattern described in Section 3, applied to a drawing
application, which is one of the three case studies conducted in this work. The other two case studies are
presented in Section 5. The source code of the applications used in the case studies, both before and after
pattern application, is available on GitHub [41]. The drawing application is designed for rendering a variety
of graphical objects such as points, lines, rectangles, and composite images, which can be composed of
multiple shapes. In a drawing session, each object is capable of being drawn individually, allowing for a
complex assembly of shapes to create detailed pictures. The application’s functionality caters to structuring
and manipulating these objects to form a visual representation.

The application is reverse-engineered to derive its model which is used to check for pattern applica-
bility. Fig. 6 illustrates the reverse-engineered model, referred to as the problem model. The model includes
the VisitorDrawingProbl em class serving as the driver class, the Ob jectStructure class capturing the
structure of the drawing objects, and a hierarchy of object classes such as Picture, Rectangl e, Line, and
Point. Composite relationships within this hierarchy allow for the creation of complex structures where
a picture may contain other objects, including other pictures. The sequence diagram details the drawing
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behavior for rendering a picture that encompasses a line connected by two points. The client interacts with the
object structure, invoking the draw() operation recursively across the composite arrangement of elements.

Figure 6: Drawing objects problem model

The problem model is evaluated for pattern applicability against the problem specification of the pattern.
The model is considered pattern-applicable if it satisfies the properties defined in the problem specification.
Pattern properties are specified in terms of roles and are evaluated based on the mapping of the roles to the
model elements in the problem model. Fig. 7 presents the mapping of SPS roles to class diagram elements.
In the mapping, the ∣AbstractEl ement role corresponds to two abstract classes, namely DrawOb ject and
Shape, demonstrating the role’s variability, where more than one class can fulfill the role. Similarly, the
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∣CompositeEl ement role corresponds to three concrete classes, Picture, Rectangl e, and Line, which are
composite objects.

Figure 7: Visitor problem SPS mapping to drawing objects problem class diagram

Fig. 8 shows the mapping of IPS roles to sequence diagram elements. In the figure, the ∣m ∶
∣CompositeEl ement role is fulfilled by two lifelines, ∶ Picture and ∶ Line, demonstrating the role’s variabil-
ity. Similarly, the ∣e ∶ ∣Lea f El ement role is played by two other lifelines, p1 ∶ Point and p2 ∶ Point. These
mappings illustrate the third case in the al t fragment of the IPS. Note that although the ∶ Ob jectStructure
lifeline fulfills the ∣o ∶ ∣Ob jectStructure role, the getOb jectStructure() operation in the ∣Ob jectStructure
role does not delegate the draw() message to drawing objects, rendering the first and second cases in the
al t fragment invalid.
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Figure 8: Visitor problem IPS mapping to Draw problem sequence diagram

Based on the mappings in Figs. 7 and 8, the pattern applicability of the problem model is evaluated
as depicted in Fig. 9. In the figure, pattern properties are evaluated based on the roles involved (SPS/IPS
Roles), the base metaclasses of these roles, and the model elements that enact these roles. The base
metaclass of an involved role dictates that model elements playing the role must be instances of the specified
metaclass. If this condition is not met, the roles cannot be properly enacted, and consequently, the pattern
property cannot be satisfied. Fig. 9a indicates that all six SPS properties are satisfied, demonstrating 100%
SPS applicability. Property P1 involves the ∣AbstractEl ement role, whose base type is the Cl assi f ier
metaclass, and is satisfied by the DrawOb ject and Shape classes which are instances of the Cl assi f ier
metaclass, denoted as Y. Property P2 involves two exclusive-or cases and is satisfied by the first case,
which captures the relationship between the VisitorDrawingProbl em client and the Ob jectStructure
class. This case includes the ∣Ob jectStructure, ∣OC, and ∣OA roles, whose base types are the Cl ass,
Association, and Association metaclasses, respectively. The ∣Ob jectStructure role is fulfilled by the
Ob jectStructure class, which is an instance of the Cl ass metaclass. The ∣OC role is enacted by the <
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Ob jectStructure , VisitorDrawingProbl em > association, an instance of the Association metaclass, and
the ∣OA role is fulfilled by the < Ob jectStructure , DrawOb ject > association, also an instance of the
Association metaclass. The second case does not satisfy the property as there are no model elements playing
the ∣CA role. Property P3 pertains to the ∣Cl ient role, whose base type is the Cl ass metaclass. This property
is satisfied by the VisitorDrawingProbl em class, which is an instance of the Cl ass metaclass, and is
therefore denoted as Y. Property P4 involves the ∣CompositeEl ement∗ and ∣Lea f El ement roles, both of
which have the base type of the Cl ass metaclass. The ∣CompositeEl ement∗ role is played by the Picture∗,
Rectangl e∗, and Line∗ classes, each an instance of the Cl ass metaclass. Similarly, the ∣Lea f El ement role
is enacted by the Line class. Consequently, the property is satisfied, denoted as Y. Property P5 relates
to the ∣opt() role, which is associated with the ∣O peration metaclass. This property is fulfilled by the
draw() operation, an instance of the O peration metaclass, thereby denoted as Y. Property P6 involves
two exclusive-or scenarios, with the second case being satisfied through the generalization hierarchy among
elements, represented by the ∣CompGen∗ and ∣Lea f Gen roles. Both roles are based on the General ization
metaclass. The ∣CompGen∗ role is played by the generalization relationships < DrawOb ject, Picture >∗,
< Shape , Rectangl e >∗, and < Shape , Line >∗, each an instance of the General ization metaclass. The
∣Lea f Gen role is satisfied by the < DrawOb ject, Point > generalization relationship, also an instance of the
∣General ization metaclass. Fig. 9b demonstrates that all three IPS properties are satisfied, leading to 100%
IPS applicability. Property P1 involves the ∣c ∶ ∣Cl ient role whose base type is the Li f el ine metaclass, and is
satisfied by the ∶ VisitorDrawingProbl em lifeline which is an instance of the Li f el ine metaclass, denoted
as Y. Property P2 relates to the ∣m ∶ ∣CompositeEl ement∗ and ∣e ∶ ∣Lea f El ement roles, both of which have
the base type of the Li f el ine metaclass. The ∣m ∶ ∣CompositeEl ement∗ role is played by the ∶ Picture∗ and
∶ Line∗ lifelines which are instances of the Li f el ine metaclass, denoted as Y. Property P3, which involves
four exclusive-or cases, is satisfied by the third case where the client directly handles the draw() calls on the
drawing objects. The first case is not met, as there is no model element fulfilling the ∣op() role on ∣m called
by ∶ ∣o; the second case is not met because there is no operation enacting the ∣op() role on ∣e called by ∶ ∣o;
and the fourth case is not met as there is no operation fulfilling the ∣op() role on ∣e called by ∣c.

Figure 9: Visitor pattern applicability of drawing objects problem model

After ensuring pattern applicability, the problem model is input to the LLM for the application of the
desired pattern. In this work, we chose ChatGPT 4 for the LLM, due to its increasing popularity in software
engineering as discussed in Section 2. ChatGPT is instructed with the following prompt without any further
instructions such as the information about the pattern or the context of the program.

Prompt: “Apply the Visitor design pattern to the given program.”
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ChatGPT produces a refactored program with the Visitor pattern applied. The resulting program is
reverse-engineered to create the corresponding solution model as shown in Fig. 10. The solution class
diagram retains most of the classes from the problem model with the exception of the Shape class which was
removed during the transformation. Upon further analysis of the deletion, ChatGPT indicates that the class
was removed because it was not directly related to the Visitor pattern. Indeed, the removal did not affect the
application’s external behaviors, and can be seen as a design simplification. However, since the class played an
integral part in the element hierarchy—fulfilling the ∣CompositeEl ement role in the problem domain and
the corresponding role in the solution domain—it should have been included in the transformation. This
particular instance demonstrates a case where the LLM made an unexpected decision on its own, highlighting
the need for human verification of an LLM’s output. The pattern application has removed the draw()
operation from the drawing classes and introduced a new accept() operation to them. The transformation
has also introduced a visitor hierarchy that includes the Visitor interface and the DrawingVisitor class,
encapsulating the semantics of the removed draw() operations. The solution sequence diagram exhibits
behaviors quite distinct from the problem sequence diagram with the new visitor ∶ DrawingVisitor lifeline
and new message calls to accept() and visit() operations which together realize the double dispatch
behavior, which is a key characteristic of the Visitor pattern.

The solution model is checked for its conformance to the solution specification of the Visitor pattern.
Pattern conformance is evaluated based on how elements in the solution model correspond the pattern
solution roles. Fig. 11 displays the correspondence of the elements in the solution class diagram to the
solution SPS roles. In this alignment, the new Visitor interface and the DrawingVisitor class fulfill the
∣AbstractVisitor and ∣ConcreteVisitor roles, respectively. For other classes present in the problem class
diagram, their mappings remain unchanged.

Fig. 12 presents the alignment of elements in the solution sequence diagram with their respective IPS
roles. A notable aspect of this alignment is the correspondence of the visitor ∶ DrawingVisitor lifeline with
the ∣v ∶ ∣ConcreteVisitor role, enabling the double dispatch behavior through accept() and visit()methods
among composite elements, leaf elements, and the visitor.
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Figure 10: Drawing objects solution model with visitor pattern applied by ChatGPT



Comput Mater Contin. 2025;82(3) 3859

Figure 11: Visitor solution SPS conformance of drawing objects solution class diagram
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Figure 12: Visitor solution IPS conformance of Draw solution sequence diagram

Based on the mapping in Figs. 11 and 12, the conformance of the solution model to the solution
specification of the Visitor pattern is evaluated as depicted in Fig. 13. Fig. 13a illustrates the SPS confor-
mance where all thirteen SPS properties are satisfied. P1 is satisfied by the DrawOb ject class fulfilling
the ∣AbstractEl ement role; P2 is satisfied by the Visitor class enacting the ∣AbstractVisitor role; P3
is satisfied by the first case where the client accesses drawing objects via the object structure, with the
second case failing due to the absence of model elements that can fulfill the ∣CA role; P4 is satisfied by
the VisitorDrawingSolutionChatGPT class playing the ∣Cl ient role; P5 is satisfied by the Picture∗,
Rectangl e∗, and Line∗ classes fulfilling the ∣CompositeEl ement∗ role, and the Point class enacting
the ∣Lea f El ement role; P6 is satisfied by the DrawingVisitor class fulfilling the ∣ConcreteVisitor role;
P7 is satisfied by the visit() operation in the Visitor class, which plays the ∣visit() role within the
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∣AbstractVisitor role; P8 is satisfied by the visit() operation in the DrawingVisitor class, which plays the
∣visit() role in the ∣ConcreteVisitor role; P9 is satisfied by the accept() operation in the DrawOb ject class,
which enacts the ∣accept() role in the ∣AbstractEl ement role; P10 is satisfied by the accept() operation in
the Picture∗, Rectangl e∗, and Line∗ classes, which play the ∣accept() role in the ∣CompositeEl ement∗
role, and the accept() operation in the Point class, which fulfills the ∣accept() role in the ∣Lea f El ement
role; P11 is satisfied by the < VisitorDrawingSolutionChatGPT , Visitor > relationship, which enacts the
∣CV role; P12 is satisfied by the second case, which captures the generalization relationships among the
drawing object hierarchy, with the first case failing due to the absence of model elements that can fulfill the
∣CompReal∗ and ∣Lea f Real roles; P13 is satisfied by the first case capturing the realization relationship in
the visitor hierarchy, with the second case failing due to the absence of model elements that can play the
∣VisGen role. This results in full SPS conformance. Fig. 13b confirms the IPS conformance where all four IPS
properties are satisfied. P1 is satisfied by the ∶ VisitorDrawingSolutionChatGPT lifeline, which plays the
∣c ∶ ∣Cl ient role; P2 is satisfied by the ∶ Picture∗ and ∶ Line∗ lifelines enacting the ∣m ∶ ∣CompositeEl ement∗
role and the p1 ∶ Point and p2 ∶ Point lifelines fulfilling the ∣e ∶ ∣Lea f El ement role; P3 is satisfied by the
visitor ∶ DrawingVisitor lifeline playing the ∣v ∶ ∣ConcreteVisitor role; P4, which involves four exclusive-
or cases, is satisfied by the first case where the object structure facilitates the recursive call to the accept()
operation on composing objects. The second case fails due to the absence of model elements fulfilling the
∣init() role, and the third case fails due to the absence of model elements playing the ∣accept() role on ∣m
called by ∣c. This leads to full IPS conformance, resulting in 100% conformance ( 13+4

13+4 × 100) to the pattern’s
solution specification.

Figure 13: Visitor pattern conformance of drawing objects solution model

Pattern conformance ensures that the model possesses the pattern properties. However, it does not
necessarily indicate that the model has a complete realization of the pattern. For instance, if the elements in
the object structure involve more than one common operation across the element hierarchy, there should
be a separate concrete visitor class and visit operation for each operation. If not all common operations are
covered, the pattern is not fully realized. The completeness of the pattern realization can be checked using the
pattern’s transformation rules, as presented in Section 3. Fig. 14 demonstrates the completeness of the pattern
realization, checking the enforcement of transformation rules. Fig. 14a indicates that all three SPS rules are
fully enforced over all relevant elements, leading to a complete realization of the SPS. S1 requires the creation
of a visit operation for every drawing element, and the table confirms that a corresponding visit operation
exists for all four elements. If any element had been omitted, the enforcement of the rule would have been
incomplete. Fig. 14b shows that both of the two IPS rules are enforced over all relevant lifelines, resulting in
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a complete realization of the IPS. Overall, all 5 transformation rules ( 3+2
3+2 × 100) are fully enforced, leading

to 100% completeness in the pattern realization.

Figure 14: Visitor pattern completeness of drawing objects solution model

5 Case Studies
In this section, we present two additional case studies to evaluate the approach, applying the Visitor

pattern to a widget application and a node application using ChatGPT. These applications are small in
size, written in Java. We deliberately chose small applications for two main reasons—i) to adapt to LLMs’
limitations on processing large inputs, and ii) to examine how the LLM applies the pattern comprehensively
across the application. The source code for these applications, both before and after pattern application, is
available on GitHub [41].

5.1 Widget Application
The widget application is concerned with building a widget assembly consisting of a set of widgets. A

widget assembly may contain other widget assemblies as well. After a widget assembly is built, the application
processes each comprising widget and widget assembly to display their names and determine the price of
individual widgets, which is used for computing the total price of the widget equipment. Fig. 15 shows the
widget problem model reserve-engineered from the application and its applicability to the Visitor pattern’s
problem specification. In the model, the simpl e() operation is used to display the name of composing
components and the price() operation is used to access the price of components. The sequence diagram
captures the price() behavior, and a similar diagram can be specified for the simpl e() behavior. Fig. 15a,b
shows that the model exhibits applicability to the Visitor pattern in both SPS and IPS. In the SPS applicability
in Fig. 15b, P1 is satisfied by the Component class fulfilling the ∣AbstractEl ement role; P2 is satisfied by the
second case where no separate object structure exists, while the first case fails due to the absence of model
elements that can play the ∣OC and ∣OA roles; P3 is satisfied by the VisitorWidgetProbl em class enacting the
∣Cl ient role; P4 is satisfied by the WidgetAssembl y∗ class fulfilling the ∣CompositeEl ement∗ role and the
Widget class playing the ∣Lea f El ement role; P5 is satisfied by the simpl e() and price() operations, both
of which enact the ∣op() role; P6 is satisfied by the second case, which captures a generalization hierarchy
among component elements. The first case fails due to the absence of model elements that can fulfill the
∣CompReal∗ and ∣Lea f Real roles.

With respect to IPS applicability in Fig. 15c, P1 is satisfied by the ∶ VisitorDrawingProbl em life-
line playing the ∣c ∶ ∣Cl ient role; P2 is satisfied by the wa ∶WidgetAssembl y∗ lifeline enacting the ∣m ∶
∣CompositeEl ement∗ role and the w1 ∶Widget and w2 ∶Widget lifelines fulfilling the ∣e ∶ ∣Lea f El ement
role; P3 is fulfilled by the third case, which involves the client delegating the price() message through
composite components (widget assemblies), bypassing the object structure. The first case fails due to the
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absence of model elements that can play the ∣o ∶ ∣Ob jectStructure and ∣init() roles. Similarly, the second
case fails due to the absence of model elements that can enact the ∣o ∶ ∣Ob jectStructure and ∣init() roles.
The fourth case fails due to the absence of model elements that can fulfill the ∣op() role on ∣e called by ∣c.

Figure 15: Visitor pattern applicability of widget problem model

After ensuring pattern applicability, the problem model is input to ChatGPT to apply the Visitor
pattern. Fig. 16 displays the model refactored by the Visitor pattern application and its conformance
to the pattern’s solution specification. The model possesses the visitor hierarchy, consisting of the
ComponentVisitor interface and the PriceCheckingVisitor class corresponding to the price() operation
in the problem model. However, the hierarchy does not include a visitor class for the simpl e() operation in
the problem model because ChatGPT thinks it is a trivial and self-contained behavior that simply prints a
message, making the use of the Visitor pattern unnecessary and overly complex. Additionally, the simpl e()
operation naturally aligns with the responsibilities of each class (e.g., Widget or WidgetAssembl y) and does
not require external context or extensibility. ChatGPT believes that keeping the logic within the respective
classes adheres to the Single Responsibility Principle, ensuring clarity and avoiding unnecessary abstraction.
This reasoning makes sense, as introducing a visitor for such a simple operation would add needless complex-
ity without providing significant benefits. The sequence diagram shows the behavior of computing the price
of components using the price visitor. Fig. 16b,c shows that all thirteen SPS properties and all four IPS prop-
erties are satisfied. For the SPS conformance in Fig. 16b, P1 is satisfied by the Component class enacting the
∣AbstractEl ement role; P2 is satisfied by the ComponentVisitor class playing the ∣AbstractVisitor role; P3
is satisfied by the second case, in which the client directly accesses widgets without involving the object struc-
ture. The first case fails due to the absence of model elements capable of fulfilling the roles ∣Ob jectStructure,
∣OC, and ∣OA; P4 is satisfied by the VisitorWidgetSolutionChatGPT class fulfilling the ∣Cl ient role; P5 is
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satisfied by the WidgetAssembl y∗ class playing the ∣CompositeEl ement∗ role and the Widget class play-
ing the ∣Lea f El ement role; P6 is satisfied by the PriceCheckingVisitor class playing the ∣ConcreteVisitor
role; P7 is satisfied by the visit() operation in CompositeVisitor which fulfills the ∣visit() role in
∣AbstractVisitor; P8 is satisfied by the visit()operation in PriceCheckingVisitor which enacts the ∣visit()
role in ∣ConcreteVisitor; P9 is satisfied by the accept() operation in Component which plays the ∣accept()
operation in ∣AbstractEl ement; P10 is satisfied by the accept() operation in WidgetAssembl y∗ playing
the ∣accept() role in ∣CompositeEl ement∗ and the accept() operation in Widget fulfilling the ∣accept()
role in ∣Lea f El ement; P11 is satisfied by the < VisitorWidgetSolutionChatGPT , ComponentVisitor >
relationship playing the ∣CV role; P12 is satisfied by the second case where elements are in a generalization
hierarchy, with the < Component, WidgetAssembl y > relationship playing the ∣CompGen∗ role and the
< Component, Widget > relationship fulfilling the ∣Lea f Gen role. The first case fails due to the absence
of model elements enacting the ∣CompReal∗ and ∣Lea f Real roles; P13 is satisfied by the first case where
visitors are in a realization hierarchy, with the < ComponentVisitor, PriceCheckingVisitor > relationship
playing the ∣VisReal role. The second case fails due to the absence of generalization relationships that can
play the ∣VisGen role.

Figure 16: Visitor pattern conformance of widget solution model

With respect to IPS conformance in Fig. 16c, P1 is satisfied by the ∶ VisitorWidgetSolutionChatGPT
lifeline playing the ∣c ∶ ∣Cl ient role; P2 is satisfied by the wa ∶WidgetAssembl y∗ lifeline fulfilling the ∣m ∶
∣CompositeEl ement∗ role and the w1 ∶Widget and w2 ∶Widget lifelines enacting the ∣e ∶ ∣Lea f El ement
role; P3 is satisfied by the v ∶ PriceCheckingVisitor lifeline playing the ∣v ∶ ∣ConcreteVisitor role; P4 is
satisfied by the third case where the double-dispatch mechanism is performed via the client and composite
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elements. The accept() operation on wa is initiated by ∶ VisitorWidgetSolutionChatGPT , fulfilling the
∣accept() role on ∣m called by ∣c. The visit() operation on v by wa plays the ∣visit() role on ∣v called by ∣m.
Similarly, the accept() operations on w1 and w2, called by wa, enact the ∣accept() role on ∣e called by ∣m.
Lastly, the visit() operations on v called by w1 and w2 fulfill the ∣visit() role on ∣v called by ∣e. The first case
fails due to the absence of model elements that can fulfill the ∣o ∶ ∣Ob jectStructure role, the ∣init() role, and
the ∣accept() role on ∣m called by ∣o. The second case fails due to the absence of model elements that can
enact the ∣o ∶ ∣Ob jectStructure role, the ∣init() role, and the ∣accept() role on ∣e called by ∣o. The fourth
case fails due to the absence of model elements that can fulfill the ∣accept() role on ∣e called by ∣c. The SPS
and IPS conformance leads to 100% ( 13+4

13+4 × 100) conformance to the pattern’s solution specification.
Fig. 17 illustrates the evaluation of pattern completeness for the widget application. Fig. 17a indicates

that only two out of the three SPS rules are fully enforced, with S2 not being fully enforced for the simpl e()
operation. This results in the absence of the corresponding visitor in the visitor hierarchy. Fig. 17b shows that
only one of the two IPS rules is fully enforced, with I1 not fully enforced due to the missing visitor for the
simpl e() operation in S2. This results in 60% ( 2+1

3+2 × 100) completeness of the pattern realization.

Figure 17: Visitor pattern completeness of widget solution model

5.2 Node Application
The node application is concerned with constructing and manipulating a hierarchical structure of

nodes in the syntax of a programming language. Fig. 18 shows the node problem model and its applicability
to the Visitor pattern. The class diagram in (a) defines specific node classes such as AssignmentNode,
Ex pressionNode, and Variabl eRe f Node which inherit from the base Node class, suggesting a design
that accommodates a tree-like structure typical in abstract syntax trees used in compilers or inter-
preters. AssignmentNode represents assignment statements, linking a reference variable captured by
Variabl eRe f Node with an expression denoted by Ex pressionNode. Node classes include methods for type
checking, code generation, and pretty printing which are used in language processing. The sequence diagram
specifies the type checking behavior which verifies the type of involved variables and their compatibility.
Similar sequence diagrams can be defined for code generation and pretty printing. Fig. 18b shows that all six
SPS properties are satisfied, leading to a successful establishment of SPS applicability. P1 is satisfied by the
Node class fulfilling the ∣AbstractEl ement role; P2 is satisfied by the first case where an object structure
exists. However, the second case fails due to the absence of model elements that can play the ∣OA role; P3 is sat-
isfied by the VisitorNodeProbl em class enacting the ∣Cl ient role; P4 is satisfied by the Ex pressionNode∗
class fulfilling the ∣CompositeEl ement∗ role, with the Variabl eRe f Node and AssignmentNode classes
playing the ∣Lea f El ement role; P5 is satisfied by the typeCheck(), generateCode(), and prettyPrint()
operations, each of which enacts the ∣op() role; P6 is satisfied by the second case, capturing a generalization
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hierarchy among node elements, while the first case fails due to the absence of model elements that can fulfill
the ∣CompReal∗ and ∣Lea f Real roles.

Figure 18: Visitor pattern applicability of node problem model

Fig. 18c shows that all three IPS properties are satisfied, leading to successful IPS applicability. P1
is satisfied by the ∶ VisitorNodeProbl em lifeline playing the ∣c ∶ ∣Cl ient role; P2 is satisfied by the a ∶
Assignment∗ and e ∶ Ex pressionNode∗ lifelines enacting the ∣m ∶ ∣CompositeEl ement∗ role and the x ∶
Variabl eRe f Node and y ∶ Variabl eRe f Node lifelines fulfilling the ∣e ∶ ∣Lea f El ement role; P3 is fulfilled
by the first case, which involves the client delegating the typeCheck()message through the object structure
and composite components (assignment and expression nodes). This corresponds to the first case described
in P2 of Fig. 15b. However, the second case fails due to the absence of model elements that can play the ∣op()
role on ∣e called by ∣c. Similarly, the third case fails due to the absence of model elements that can enact the
∣op() role on ∣m called by ∣c. The fourth case fails due to the absence of model elements that can fulfill the
∣op() role on ∣e called by ∣c. The evaluation of both the SPS applicability and IPS applicability yields a 100%
applicability rate for the Visitor pattern, calculated as 6+3

6+3 × 100.
Fig. 19 displays the solution model with the application of the Visitor pattern. In the class diagram,

the Visitor pattern introduces a visitor hierarchy that includes NodeVisitor, TypeCheckingVisitor,
GenerateCodeVisitor, and PrettyPrintVisitor. Each visitor class has a set of operations carrying
out the semantics of the visitor on different node types. The sequence diagram illustrates the type-
checking behavior, specifying how the accept() and visit() messages are dispatched recursively across
node objects by the visitor. Fig. 19b indicates full SPS conformance with all thirteen properties sat-
isfied. P1 is satisfied by the Node class enacting the ∣AbstractEl ement role; P2 is satisfied by the
NodeVisitor class playing the ∣AbstractVisitor role; P3 is satisfied by the first case, where the
client accesses nodes via the object structure. The second case fails due to the absence of model
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elements that can fulfill theCA role; P4 is satisified by the VisitorNodeSolutionChatGPT class ful-
filling the ∣Cl ient role; P5 is satisfied by the AssignmentNode∗ and Ex pressionNode∗ classes playing
the ∣CompositeEl ement∗ role, and the Variabl eRe f Node class playing the ∣Lea f El ement role; P6
is satisfied by the TypeCheckingVisitor, CodeGeneratorVisitor, and PrettyPrintVisitor classes,
each playing the ∣ConcreteVisitor role; P7 is satisfied by the operations visitAssignmentNode(),
visitEx pressionNode(), and visitVariabl eRe f Node() in NodeVisitor, fulfilling the ∣visit() role within
∣AbstractVisitor; P8 is satisfied by the operations visitAssignmentNode(), visitEx pressionNode(), and
visitVariabl eRe f Node() in TypeCheckingVisitor, CodeGeneratorVisitor, and PrettyPrintVisitor,
which enact the ∣visit() role within ∣ConcreteVisitor; P9 is satisfied by the accept() operation in the
Node class, which plays the ∣accept() role in ∣AbstractEl ement; P10 is satisfied by the accept() opera-
tion in AssignmentNode∗ and Ex pressionNode∗, playing the ∣accept() role in ∣CompositeEl ement∗,
and the accept() operation in Variabl eRe f Node, fulfilling the ∣accept() role in ∣Lea f El ement;
P11 is satisfied by the < VisitorNodeSolutionChatGPT , NodeVisitor > relationship, playing the ∣CV
role; P12 is satisfied by the second case where elements are in a generalization hierarchy, with the <
Node , AssignmentNode >∗ and < Node , Ex pressionNode >∗ relationships playing the ∣CompGen∗ role
and the < Node , Variabl eRe f Node > relationship fulfilling the ∣Lea f Gen role. The first case fails due
to the absence of model elements enacting the ∣CompReal∗ and ∣Lea f Real roles; P13 is satisfied by the
first case where visitors are in a realization hierarchy, with the < NodeVisitor, TypeCheckingVisitor >, <
NodeVisitor, Variabl eRe f Visitor >, and < NodeVisitor, Ex pressionNodeVisitor > relationships play-
ing the ∣VisReal role. The second case fails due to the absence of generalization relationships that can play
the ∣VisGen role.

Fig. 19c reveals that only three out of four properties are fulfilled, resulting in 75% IPS conformance. P1
is satisfied by the ∶ VisitorNodeSolutionChatGPT lifeline playing the ∣c ∶ ∣Cl ient role; P2 is satisfied by
the a ∶ AssignmentNode∗ and e ∶ Ex pressionNode∗ lifelines fulfilling the ∣m ∶ ∣CompositeEl ement∗ role,
and the x ∶ Variabl eRe f Node and y ∶ Variabl eRe f Node lifelines enacting the ∣e ∶ ∣Lea f El ement role;
P3 is satisfied by the ∶ TypeCheckingVisitor, ∶ CodeGeneratorVisitor, and ∶ PrettyPrintVisitor lifelines
playing the ∣v ∶ ∣ConcreteVisitor role; P4 is not satisfied, as none of the required conditions are met. The
first case fails due to the absence of model elements capable of fulfilling the ∣o ∶ ∣Ob jectStructure role, the
∣init() role, and the ∣accept() role on ∣m called by ∣o. The second case fails due to the absence of model
elements that can play ∣o ∶ ∣Ob jectStructure role, the ∣init() role, and the ∣accept() role on ∣e called by
∣o. The third case fails due to the absence of model elements that can fulfill the ∣accept() role on ∣e called
by ∣m. The third case fails due to the absence of model elements that can enact the ∣accept() role on ∣e
called by ∣c. The non-conformance of P4 arises from the visitor-driven recursion depicted in the sequence
diagram. Typically, such recursion is managed by the object structure or the client, as outlined in P4’s four
cases, which offers better traversal control, particularly in complex structures. Overall, the evaluation of SPS
and IPS conformance results in 94.12% ( 13+3

13+4 × 100) conformance to the pattern solution specification.
Fig. 20 demonstrates that the transformation rules for both SPS and IPS are fully enforced. Fig. 20a

shows that for each of the three common operations in the node hierarchy—typeCheck(),
generateCode(), prettyPrint()—a corresponding visitor class is created, ensuring the creation of all
necessary visitor classes. Fig. 20b confirms that the double dispatch mechanism involving accept() and
visit() is incorporated for each visitor, leading to a complete realization of the pattern behavior. This results
in 100% ( 3+2

3+2 × 100) completeness of the pattern realization.
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Figure 19: Visitor pattern conformance of node solution model

Figure 20: Visitor pattern completeness of node solution model
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5.3 Discussion
In this subsection, we discuss the findings from the three case studies—the drawing application

in Section 4, and the widget and node applications in Section 5. Fig. 21 presents the quantitative results
of ChatGPT’s capability in applying the Visitor pattern to these applications. The table indicates that
ChatGPT achieves an average of 98% pattern conformance and 87% pattern completeness. In terms of
pattern conformance, the sole instance of non-conformance occurred in the node application where the
recursive behavior of accept() and visit() was managed by the visitor instead of the object structure or
the client, as delineated in the Visitor solution IPS. Although this behavior is atypical, it might be seen as a
variant. Nevertheless, it was marked as non-conformance since the pattern specification does not encompass
this variation. Regarding pattern completeness, the only oversight was the absence of a visitor for the
simpl e() operation in the widget application, which could be attributed to a minor oversight by ChatGPT. In
contrast, in the node application where there are three common operations in the node hierarchy, ChatGPT
successfully generated three visitor classes, one for each operation. Besides the two non-conformance cases,
the quantitative outcomes reveal ChatGPT’s proficiency in design pattern application, which conclusively
demonstrates the effectiveness of the proposed approach. Note that the case studies are not intended to
provide statistical insight into ChatGPT, but to evaluate the approach’s effectiveness.

Figure 21: The results of three case studies

The study’s findings reveal that modern LLMs can effectively understand and apply complex software
design patterns. However, the instances of non-conformance provide particularly interesting insights.
For example, ChatGPT’s decision to remove the Shape class in the drawing application highlights how
LLMs might make unexpected design decisions that, while functionally sound, may deviate from pattern
specifications. Furthermore, ChatGPT’s choice not to create a visitor for a simpl e() operation demonstrates
a sophisticated judgment about when the application of a pattern might introduce unnecessary complexity.
These observations suggest that LLMs are capable of more than mechanically applying design patterns;
they exhibit nuanced decision-making capabilities. However, this can sometimes lead to deviations from
established pattern specifications. This delicate balance between adhering to patterns and making practical
implementation decisions provides valuable insights for both the automated application of design patterns
and the evolution of design pattern applications in practice.

This study introduces a novel quantitative framework for evaluating LLMs’ capabilities in design pattern
implementation, addressing a gap in current LLM’a capabili5y research in software engineering. Its key
innovation lies in the systematic use of Role-Based Metamodeling Language (RBML) to create measurable
criteria for pattern application, moving beyond subjective assessments to provide concrete metrics for
conformance and completeness of design pattern implementation. For academia, this framework offers a
methodology for comparing different LLMs to automated design pattern implementation, enabling more
rigorous empirical studies in assessing LLMs’ capability in design pattern tasks. On the practical side,
software developers and organizations can use these metrics to make informed decisions about incorporating
LLMs into their development workflows, particularly for design pattern-related tasks. The framework’s
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ability to quantify pattern applicability (through problem specification), conformance (through solution
specification), and completeness (through transformation rules) provides a comprehensive evaluation tool
that bridges theoretical understanding with practical implementation, benefiting both researchers studying
AI-assisted software engineering and practitioners seeking to optimize their development processes.

6 Conclusion
This paper has presented a quantitative approach to evaluating an LLM’s ability to implement a design

pattern within software applications. The approach utilizes RBML to formalize design patterns rigorously,
which then serves as the basis for verifying pattern applicability, conformance, and completeness. Initially,
an application without the pattern implementation is assessed for the applicability of the designated pattern.
If deemed applicable, the problem model of the application is input into the LLM for pattern application.
Subsequently, the LLM’s output, a solution model with the pattern applied, is evaluated against the pattern’s
solution specification to determine the levels of pattern conformance and completeness. Through three
case studies, ChatGPT was found to exhibit an average of 98% pattern conformance and 87% pattern
completeness, thus demonstrating the efficacy of the proposed approach. Future work will extend this
approach to additional LLMs, such as Gemini and CoPilot, for a comparative analysis, aiming for an
unbiased comparison. Such expansion would help determine whether the observed performance metrics
are model-specific or represent a general capability level of current LLMs in design pattern tasks. By
examining variations in pattern implementation across models, researchers could better understand the
relationship between an LLM’s ability to apply design patterns. This cross-model analysis would be valuable
for both developing specialized LLMs for design pattern tasks and refining prompting strategies for design
pattern application.
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