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ABSTRACT: Molecular dynamics (MD) is a powerful method widely used in materials science and solid-state physics.
The accuracy of MD simulations depends on the quality of the interatomic potentials. In this work, a special class of
exact solutions to the equations of motion of atoms in a body-centered cubic (bcc) lattice is analyzed. These solutions
take the form of delocalized nonlinear vibrational modes (DNVMs) and can serve as an excellent test of the accuracy
of the interatomic potentials used in MD modeling for bcc crystals. The accuracy of the potentials can be checked by
comparing the frequency response of DNVMs calculated using this or that interatomic potential with that calculated
using the more accurate ab initio approach. DNVMs can also be used to train new, more accurate machine learning
potentials for bcc metals. To address the above issues, it is important to analyze the properties of DNVMs, which is
the main goal of this work. Considering only the point symmetry groups of the bcc lattice, 34 DNVMs are found.
Since interatomic potentials are not used in finding DNVMs, they are exact solutions for any type of potential. Here,
the simplest interatomic potentials with cubic anharmonicity are used to simplify the analysis and to obtain some
analytical results. For example, the dispersion relations for small-amplitude phonon modes are derived, taking into
account interactions between up to the fourth nearest neighbor. The frequency response of the DNVMs is calculated
numerically, and for some DNVMs examples of analytical analysis are given. The energy stored by the interatomic
bonds of different lengths is calculated, which is important for testing interatomic potentials. The pros and cons of using
DNVMs to test and improve interatomic potentials for metals are discussed. Since DNVMs are the natural vibrational
modes of bcc crystals, any reliable interatomic potential must reproduce their properties with reasonable accuracy.

KEYWORDS: Interatomic potentials; molecular dynamics; bcc lattice; long-range interactions; dispersion relation;
nonlinear dynamics; exact solution; delocalized nonlinear vibrational mode

1 Introduction
Molecular dynamics (MD) method is a powerful tool for the analysis of crystal lattice defects, phase

transitions, and mechanical properties of solids. The success of the method is related to advances in the
development of accurate interatomic potentials, as reflected in the following reviews [1–4], including reactive
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potentials [5] and those for modeling ceramics, glass, and electrolytes [6]. Recently, machine learning
techniques have been used to improve the accuracy of interatomic potentials, typically by training on
first-principles results for random atomic configurations [7,8].

Since in this work the bcc lattice is analyzed, it is important to describe the works devoted to metals
with this lattice symmetry. MD method has been successfully used for modeling bcc metals, in particular,
the dislocations and Peierls barrier [9–13], diffusion properties [14–17], cleavage [13,18], properties of bcc
iron [19], vanadium [20], tungsten [21–23], tantalum [24], zirconium and uranium [25], phase transitions
in iron [26], scandium [27], lithium [28] and magnesium [29], crack propagation [30], mechanical behavior
of nanowires [31], vacancy clusters [32], structure of twin boundary [33], radiation damage [34,35], surface
energy [36], atomistic fracture [37], grain boundary structure and mobility [38,39], melting [40], and mag-
netic properties [41–43]. The accuracy of interatomic potentials has been analyzed for carbon polymorphs
and metal-graphene composites [44–47].

Work on the further improvement of interatomic potentials for metals continues [48–51], with one of
the main problems being the finding of the data set for potential training. In this paper, the properties of the
exact solutions of the equations of atomic motion in the bcc lattice are analyzed and offered for testing and
improving the interatomic potentials, as described in the works [52,53].

Crystal lattices admit exact dynamical solutions in the form of delocalized nonlinear vibrational modes
(DNVMs). Such solutions can be derived considering only the space symmetry group of the lattice [54–57]
and thus exist for any type of interatomic interactions even at large amplitudes.

Let us describe some important literature where DNVMs have been constructed and analyzed for
different lattices. An n-component DNVM represents a vibrational mode with n degrees of freedom; one-
component DNVMs are actually the Rosenberg modes [58]. DNVMs are the short wavelength vibrational
modes, they can have wave vectors at the boundary of the first Brillouin zone or inside it. In this study, only
the former are analyzed. One- and two-component DNVMs of triangular lattice have been studied in [59]
and one-component DNVMs of square lattice in [60]. More recently, DNVMs in three-dimensional lattices
have been studied, including the simple cubic [61], fcc [62], and bcc [63] lattices. In most cases, DNVMs
are studied in lattices with nearest neighbor interactions, or considering the first and second neighbors, e.g.,
for the square lattice, since this lattice is unstable if the second neighbor bonds are not involved. There is a
close relationship between DNVMs in two-dimensional [64–66] and three-dimensional [67–70] lattices and
spatially localized nonlinear vibrational modes called discrete breathers or intrinsic localized modes.

DNVMs can be used efficiently to check the quality of interatomic potentials [52,71], and to solve this
problem for metals, long-range interactions should be taken into account. This follows from the nature of
the metallic bonds, since the outermost electron shell of the metal atoms overlaps with a large number of
neighboring atoms.

An important feature of this work is that the interactions are considered up to the fourth neighbor, and
it is relevant to describe some works where the effect of long-range interactions has been studied. The long-
range interactions have been included in many papers analyzing nonlinear lattice dynamics. In particular,
long-range interactions have been taken into account in the study of discrete breathers in DNA [72–76], in
chains with Coulomb forces [77,78] and dispersive interactions [79]. The effect of long-range interactions on
heat transport in chains has been addressed in the works [80,81]. The mobility of discrete breathers increases
in the lattices with long-range interactions [82,83].

Phonon dispersion curves are very informative in characterizing crystal lattice dynamics and many
studies have been done for bcc metals, let us mention some of them. The dispersion curves are often used
to test and fit interatomic potentials, see for example the work [84,85] dealing with the bcc alkali metals Li,
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Na, K, Rb, and Cs as well as the work [86] devoted to the bcc transition metals Cr, Fe, Mo, Nb, Ta, V, and W.
Elastic anisotropy and temperature-dependent phonon dispersion for bcc Fe and W have been studied by
molecular dynamics simulations [87]. The first-principles study of the phonon spectra for highly compressed
Sb has shown that the stability of the bcc structure increases with pressure [88]. The choice of interatomic
potentials to model the metastable bcc polymorph of Mg, taking into account the phonon dispersion curves
and other properties, has been discussed in [89]. Molecular dynamics simulations with machine learning
potential have been performed for the high-temperature bcc phase of zirconium [90]. The ab initio study of
the dispersion curves of bcc transition metals (vanadium and niobium) has demonstrated the importance of
considering the supercell of sufficiently large size [91].

In view of the aforementioned interest in the phonon dispersion of the bcc lattice in metals, here we
derive analytically the phonon dispersion relation for the bcc lattice taking into account the interactions up
to the fourth neighbor. Then the 34 DNVMs are introduced, their wavevectors are given, and the frequency
in the small amplitude limit is calculated analytically. The frequency response of the DNVMs is calculated
numerically, assuming that the atoms interact via the β-Fermi-Past-Ulam-Tsingu (FPUT) potential.

The main goal of this work is to describe the properties of the DNVMs, which are the family of exact
large-amplitude vibrational solutions for the bcc lattice. These solutions can be used to test the accuracy
of the interatomic potentials of crystals with this lattice. The accuracy of the potentials can be checked by
comparing the frequency response of DNVMs calculated with this or that interatomic potential with that
calculated using the more accurate ab initio approach. The choice of the β-FPUT potential is not essential
in our work, since the DNVMs exist as exact solutions for any kind of interatomic interactions, since they
are found considering only the symmetry of the lattice. Importantly for the problem of testing and fitting
interatomic potentials, the fraction of potential energy stored by bonds of different lengths is calculated for
each DNVM in the small-amplitude and large-amplitude regimes. Some examples of the derivation of the
frequency response of DNVMs using the cubic approximation are presented.

The bcc lattice and the computational model are described in Section 2, then the DNVMs with the
wavevectors at the boundary of the first Brillouin zone are presented in Section 3, the phonon dispersion
relation for the lattice is derived and analyzed in Section 4, the distribution of the potential energy over
the bonds of different length is discussed in Section 5, the frequency response of some DNVMs in cubic
approximation is derived in Section 6. The results are discussed and summarized in Section 7.

2 Body-Centered Cubic Lattice
A three-dimensional body-centered cubic (bcc) lattice with up to the fourth nearest neighbor interac-

tions is analyzed, see Fig. 1. The lattice parameter is h; the vectors specifying the primitive translational cell
of the lattice are e1 = (h, 0, 0), e2 = (0, h, 0), and e3 = (h/2, h/2, h/2). Then the radius vectors of the lattice
points are

ξ i , j ,k = ie1 + je2 + ke3, (1)

where i, j, and k are integers.
The displacement of the particle i , j, k from its equilibrium position is defined by the vector δ i , j ,k =

(ui , j ,k , vi , j ,k , wi , j ,k). The position of this particle at time t is defined by the radius vector r i , j ,k(t) = ξ i , j ,k +
δ i , j ,k(t).
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Figure 1: Body-centered cubic lattice with lattice parameter h. The primitive translational cell of the lattice is specified
by the vectors e1, e2 and e3 (shown in magenta). The radius vectors of the first, second, third and fourth neighbors of
the particle at the origin are depicted in red

Each particle interacts with four nearest neighbors via the β-Fermi-Past-Ulam-Tsingou (β-FPUT)
potential

φl(r) =
cl

2
(r − al)2 + βl

4
(r − al)4, l = 1, . . . , 4, (2)

where r is the distance between two particles; the distances between the first four neighbors are a1 =
√

3h/2,
a2 = h, a3 =

√
2h, and a4 =

√
11h/2; cl and βl define the linear and nonlinear stiffness of the l-th nearest

bond, respectively. Using the lattice parameter as the length unit, h = 1 is set. By choosing the unit of energy,
c1 = 1 is set. In crystals the bond stiffness decreases with its length; therefore, it is assumed:

c1 = 1 > c2 > c3 > c4 > 0. (3)

In the simulations, the following values of the linear stiffness parameters are assumed to satisfy Eq. (3):

c1 = 1, c2 = 0.9, c3 = 0.8, c4 = 0.7. (4)

In crystals, anharmonicity plays a prominent role when the displacements of the atoms are about 10%
of the interparticle distance. With this in mind, the following values are used for the nonlinear stiffness
coefficients:

β1 = 10.0, β2 = 9.0, β3 = 8.0, β4 = 7.0. (5)

The particle mass is m = 1, which can always be obtained by choosing a time unit.
There are I × J × K particles in the computational cell. To mitigate the impact of free surfaces, periodic

boundary conditions are implemented r i , j ,k = r i+I , j ,k = r i , j+J ,k = r i , j ,k+K .
The Hamiltonian of the considered lattice is the sum of the kinetic energy of the particles and the

potential energies of the bonds up to the fourth neighbors:

H = K + P1 + P2 + P3 + P4 =
I
∑
i=1

J
∑
j=1

K
∑
k=1

m
2
∣ṙ i , j ,k ∣2 +

1
2

I
∑
i=1

J
∑
j=1

K
∑
k=1
[

8
∑
s=1

φ1(∣R i , j ,k ,s ∣) +
14
∑
s=9

φ2(∣R i , j ,k ,s ∣)

+
26
∑
s=15

φ3(∣R i , j ,k ,s ∣) +
50
∑

s=27
φ4(∣R i , j ,k ,s ∣)], (6)
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where derivative with respect to time is denoted by the overdot and the vectors R i , j ,k ,s connecting the atom
i , j, k with its neighbors are given by Eqs. (A1)–(A4) in Appendix A.

The following equations of motion can be derived from the Hamiltonian Eq. (6):

müi , j ,k =
8
∑
s=1

D1Ri , j ,k ,s ,x +
14
∑
s=9

D2Ri , j ,k ,s ,x +
26
∑
s=15

D3Ri , j ,k ,s ,x +
50
∑

s=27
D4Ri , j ,k ,s ,x ,

mv̈i , j ,k =
8
∑
s=1

D1Ri , j ,k ,s , y +
14
∑
s=9

D2Ri , j ,k ,s , y +
26
∑
s=15

D3Ri , j ,k ,s , y +
50
∑

s=27
D4Ri , j ,k ,s , y ,

mẅi , j ,k =
8
∑
s=1

D1Ri , j ,k ,s ,z +
14
∑
s=9

D2Ri , j ,k ,s ,z +
26
∑
s=15

D3Ri , j ,k ,s ,z +
50
∑

s=27
D4Ri , j ,k ,s ,z , (7)

where

Dl =
φ′l(∣R i , j ,k ,s ∣)
∣R i , j ,k ,s ∣

, l = 1, . . . , 4. (8)

The size of the computational cell to study the zone-boundary DNVMs is equal to 2h × 2h × 2h. The
coordinates of 16 atoms in the cell are given in Fig. 2.

Figure 2: The coordinates of the atoms within the cubic translational cell, which has dimensions of 2h × 2h × 2h. The
cell includes 16 atoms

The symplectic Störmer method of sixth order [92] is employed in this study to solve numerically the
equations of motion Eq. (7). It is sufficient to take the integration step of 0.001 time units, as found in the test
numerical runs.

3 Zone-Boundary DNVMs of bcc Lattice
A class of lattice symmetry dictated exact solutions to the nonlinear equations of motion of the bcc

lattice is presented here. In the pioneering works such solutions were called bushes of nonlinear normal modes
(BNNMs) [93], but in the context of crystal lattices the term DNVMs is often used.

The zone-boundary DNVMs are excited by giving the particles initial displacements according to
certain patterns shown in Figs. 3 through 9. The initial velocities of the particles are zero. Trajectories of
vibrating particles are shown in black. For particles represented by empty circles, the w-component of the
initial displacement is zero, and it is positive (negative) if the particle is marked with a dot (cross).

All DNVMs are single degree of freedom vibrational modes. This means that the length of the initial
displacement vector is either zero or A, the latter being the DNVM amplitude. The particles with zero initial
displacement remain at rest while other particles oscillate.
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Figure 3: Three DNVMs of group G1. The coordinates of the lattice positions of the atoms are presented in Fig. 2

Figure 4: Three DNVMs of group G2

Figure 5: Four DNVMs of group G3

Figure 6: Four DNVMs of group G4

Figure 7: Five DNVMs of group G5

Figure 8: Five DNVMs of group G6
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Figure 9: Ten DNVMs of group G7

All DNVMs are divided into seven groups, designated G1 through G7. Numerically determined
frequency responses for the DNVMs are shown in Fig. 10 (groups G1, G2, and G3), Fig. 11 (groups G4 and
G5), and Fig. 12 (groups G6 and G7) for the model parameters given by Eqs. (4) and (5). As can be seen in
Figs. 10–12, DNVMs belonging to the same group have the same vibration frequency in the small amplitude
limit. For large amplitudes, the frequency of modes in the same group is different. Different DNVMs of
the same group have the same small amplitude vibration frequencies because more complex DNVMs are
superpositions of a simple DNVM. For example, DNVM G1b in Fig. 3 is a superposition of DNVM G1a and
its rotation by π/2 around the z axis; DNVM G1c is the sum of G1b and G1a rotated by π/2 around the y axis.
All of the DNVMs demonstrate a hard-type anharmonicity, meaning that their vibration frequency increases
with amplitude.

Figure 10: Frequency response of DNVMs of groups G1, G2, and G3
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Figure 11: Frequency response of DNVMs of groups G4 and G5

Figure 12: Frequency response of DNVMs of groups G6 and G7

4 Phonon Dispersion Relation
To obtain the analytical expressions for the DNVM frequencies in the small amplitude limit, the phonon

dispersion relation is derived from the linearized equations of motion. Such equations of motion can be
derived from Eq. (7) under the assumption ∣δ i , j ,k ∣ ≪ h and are listed in Appendix A, Eqs. (A6)–(A8). The
solution of these equations is given in the standard form

ui , j ,k = U exp[i(qi + s j + pk − ωt)],
vi , j ,k = V exp[i(qi + s j + pk − ωt)],
wi , j ,k =W exp[i(qi + s j + pk − ωt)], (9)

where (U , V , W) is the eigenvector, (q, s, p) is the wavevector, and i denotes the imaginary unit. By
substituting Eq. (9) into Eqs. (A6)–(A8), one obtains the following set of linear algebraic equations:

(mω2 + P1)U + ZV + SW = 0,
ZU + (mω2 + P2)V + QW = 0,
SU + QV + (mω2 + P3)W = 0, (10)
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where

P1 = −γ1 − γ2 − γ3 − γ4 − ξ1 − ϕ1 − ϕ2 − ϕ5 − ϕ6

− 9δ1 − 9δ2 − 9δ3 − 9δ4 − δ5 − δ6 − δ7 − δ8 − δ9 − δ10 − δ11 − δ12 ,
P2 = −γ1 − γ2 − γ3 − γ4 − ξ2 − ϕ1 − ϕ2 − ϕ3 − ϕ4

− δ1 − δ2 − δ3 − δ4 − δ5 − δ6 − δ7 − δ8 − 9δ9 − 9δ10 − 9δ11 − 9δ12 ,
P3 = −γ1 − γ2 − γ3 − γ4 − ξ3 − ϕ3 − ϕ4 − ϕ5 − ϕ6

− δ1 − δ2 − δ3 − δ4 − 9δ5 − 9δ6 − 9δ7 − 9δ8 − δ9 − δ10 − δ11 − δ12 ,
Z = −γ1 + γ2 − γ3 + γ4 − ϕ1 + ϕ2 − 3δ1 + 3δ2 + 3δ3 − 3δ4 − δ5 + δ6 + δ7 − δ8 − 3δ9 + 3δ10 − 3δ11 + 3δ12 ,
S = −γ1 + γ2 + γ3 − γ4 − ϕ5 + ϕ6 − 3δ1 − 3δ2 + 3δ3 + 3δ4 − 3δ5 + 3δ6 − 3δ7 + 3δ8 − δ9 + δ10 + δ11 − δ12 ,
Q = −γ1 − γ2 + γ3 + γ4 − ϕ3 + ϕ4 − δ1 + δ2 − δ3 + δ4 − 3δ5 − 3δ6 + 3δ7 + 3δ8 − 3δ9 − 3δ10 + 3δ11 + 3δ12 , (11)

and

γ1 = 4 c1

3
sin2 p

2
, γ2 = 4 c1

3
sin2 q − p

2
, γ3 = 4 c1

3
sin2 q + s − p

2
, γ4 = 4 c1

3
sin2 s − p

2
,

ξ1 = 4c2 sin2 q
2

, ξ2 = 4c2 sin2 s
2

, ξ3 = 4c2 sin2 q + s − 2p
2

,

ϕ1 = 4 c3

2
sin2 q + s

2
, ϕ2 = 4 c3

2
sin2 q − s

2
, ϕ3 = 4 c3

2
sin2 q − 2p

2
,

ϕ4 = 4 c3

2
sin2 q + 2s − 2p

2
, ϕ5 = 4 c3

2
sin2 s − 2p

2
, ϕ6 = 4 c3

2
sin2 2q + s − 2p

2
,

δ1 = 4 c4

11
sin2 q + p

2
, δ2 = 4 c4

11
sin2 q − s + p

2
, δ3 = 4 c4

11
sin2 2q − p

2
,

δ4 = 4 c4

11
sin2 2q + s − p

2
, δ5 = 4 c4

11
sin2 q + s − 3p

2
, δ6 = 4 c4

11
sin2 2q + s − 3p

2
,

δ7 = 4 c4

11
sin2 q + 2s − 3p

2
, δ8 = 4 c4

11
sin2 2q + 2s − 3p

2
, δ9 = 4 c4

11
sin2 s + p

2
,

δ10 = 4 c4

11
sin2 −q + s + p

2
, δ11 = 4 c4

11
sin2 q + 2s − p

2
, δ12 = 4 c4

11
sin2 2s − p

2
. (12)

From the condition of zero determinant, one finds the following cubic in ω2 equation:

m3ω6 + (P1 + P2 + P3)m2ω4 + (P1P2 + P2P3 + P1P3 − Q2 − S2 − Z2)mω2

+ P1P2P3 − Q2P1 − S2P2 − Z2P3 + 2QSZ = 0. (13)

The cubic in ω2 equation, Eq. (13), has three roots, corresponding to the dispersion relations for the
three types of phonon modes of the bcc lattice.

The dispersion relations along the high symmetry lines of the first Brillouin zone are plotted in Fig. 13.
The linear stiffness coefficients here and in the following are given by Eq. (4). Frequencies of different groups
of DNVMs in the small-amplitude limit are indicated in blue. The frequencies and the wavevectors of
DNVMs are listed in Table 1.

Substituting the wavevectors (q, s, p) given in Table 1 into Eq. (12), one finds the relations Eq. (11), which
specify the set of equations Eq. (10) for finding the analytical expressions for the phonon frequencies. The
results are as follows:
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Figure 13: Dispersion curves along the high-symmetry lines of the first Brillouin zone: (a) s = p = 0, (b) q = s = 0, and
(c) q = π, p = π/2

Table 1: Frequencies of DNVMs of different groups in the small-amplitude limit (the multiplicity of the root is given in
parentheses) and the corresponding wavevectors in the first Brillouin zone. Results for the linear stiffness coefficients
given by Eq. (4)

Group ω/2π Wavevectors (q, s, p)
G1 0.6802(1) (0, 0,±π/2), (0,±π,±π/2),

(±π, 0,±π/2), point F
G2 0.6471(3) (0, 0,±π), point P
G3 0.6203(1) (0,±π, 0), (±π, 0, 0),

(0,±π,±π), (±π, 0,±π),
(±π,±π, 0), (±π,±π,±π),

point N
G4 0.6153(1) same as G3
G5 0.6095(1) same as G3
G6 0.5483(3) (±π,±π,±π/2), point H
G7 0.5389(2) same as G1

The group G1 DNVMs in the small-amplitude limit have frequency

mω2 = 8
3

c1 + 4c2 + 8c3 + 8c4. (14)

Similar result for the group G2 DNVMs is

mω2 = 16
3

c1 + 16c4. (15)
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For the group G3 DNVMs, one has

mω2 = 16
3

c1 + 4c2 + 4c3 +
48
11

c4. (16)

For the group G4 DNVMs, the frequency of small-amplitude vibrations is

mω2 = 4c2 + 4c3 +
128
11

c4. (17)

The group G5 DNVMs in the small-amplitude limit have frequency

mω2 = 8
3

c1 + 8c3 + 8c4, (18)

For the group G6 DNVMs, the result is

mω2 = 8
3

c1 + 4c2 + 8c4. (19)

Finally, the group G7 DNVMs in the small-amplitude limit have frequency

mω2 = 8
3

c1 + 4c3 + 8c4. (20)

It is important to note that only DNVMs from groups G1 and G3 exhibit frequencies that are contingent
on all four stiffnesses, cl , l = 1, . . . , 4. The frequencies of group G2 DNVMs depend only on c1 and c4; the
frequencies of group G4 DNVMs do not depend on c1, the frequencies of groups G5 and G7 DNVMs do not
depend on c2, and the frequencies of group G6 DNVMs do not depend on c3.

5 Energy of Different Bonds
As outlined in Section 4, the small-amplitude vibration frequencies of certain groups of DNVMs depend

not on all stiffness coefficients. To further investigate the different contributions of different bonds to the
DNVM dynamics, the fraction of the total potential energy stored by the bonds of different lengths is
calculated for all DNVMs. This is done for the two values of the displacement of the atoms from the lattice
positions, A = 10−4 and A = 0.3; the results are presented in Tables 2 and 3, respectively.

Table 2: The fraction of potential energy stored by the first-through fourth-nearest neighbor bonds due to the excitation
of DNVMs of different groups with a small amplitude of A = 10−4, calculated at the time of maximum deviation of the
atoms from their equilibrium positions

Group First Second Third Fourth
G1 0.1460 0.1971 0.3504 0.3066
G2 0.3226 0.0 0.0 0.6774
G3 0.3512 0.2370 0.2107 0.2011
G4 0.0 0.2409 0.2141 0.5450
G5 0.1818 0.0 0.4364 0.3818
G6 0.2247 0.3034 0.0 0.4719
G7 0.2326 0.0 0.2791 0.4884
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Table 3: The fraction of potential energy stored by the first- through fourth-nearest neighbor bonds due to the excitation
of different DNVMs with a large amplitude of A = 0.3, calculated at the time of maximum deviation of the atoms from
their equilibrium positions

DNVM First Second Third Fourth
G1a 0.0939 0.3150 0.3616 0.2295
G1b 0.1114 0.2210 0.4398 0.2278
G1c 0.1207 0.1877 0.4649 0.2267

G2a 0.3920 0.0 0.0 0.6080
G2b 0.2669 0.0 0.0 0.7331
G2c 0.3230 0.0 0.0 0.6770

G3a 0.2802 0.3710 0.2167 0.1321
G3b 0.4730 0.1994 0.1598 0.1677
G3c 0.4156 0.2378 0.1833 0.1633
G3d 0.3843 0.2435 0.1947 0.1775

G4a 0.02379 0.2132 0.1709 0.5921
G4b 0.02200 0.2395 0.1846 0.5538
G4c 0.01492 0.3441 0.2010 0.4400
G4d 0.03023 0.2070 0.165 0.5973

G5a 0.1333 0.02789 0.5132 0.3257
G5b 0.1402 0.01908 0.5538 0.2869
G5c 0.1670 0.02531 0.4657 0.3420
G5d 0.1462 0.01625 0.5630 0.2745
G5e 0.1558 0.02146 0.3946 0.4279

G6a 0.2220 0.3612 0.0 0.4168
G6b 0.2015 0.3864 0.0 0.4121
G6c 0.1797 0.3454 0.0 0.4749
G6d 0.1427 0.5085 0.0 0.3488
G6e 0.1642 0.3850 0.0 0.4508

G7a 0.2062 0.005375 0.2843 0.5041
G7b 0.2457 0.006879 0.2861 0.4613
G7c 0.2239 0.005087 0.3131 0.4579
G7d 0.2175 0.01985 0.3177 0.4449
G7e 0.1796 0.01879 0.3628 0.4389
G7f 0.1924 0.01759 0.2816 0.5084
G7g 0.2181 0.01652 0.3190 0.4465
G7h 0.2181 0.01652 0.3190 0.4465
G7i 0.1732 0.007764 0.4646 0.3544
G7j 0.2225 0.009971 0.3125 0.4551

As can be seen from Table 2, different bonds contribute differently to the small-amplitude vibrations of
DNVMs of different groups, and this contribution correlates with the coefficients in the analytical expressions
for DNVM frequencies, Eq. (14) through Eq. (20). The result for the DNVMs belonging to the same group is
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identical, if the vibration amplitude is small. For the large amplitude vibrations, as can be seen from Table 3,
the result is different for different DNVMs of the same group; this is the effect of anharmonicity. Nevertheless,
the second- and third-neighbor bonds are not deformed when the G2 group DNVMs are excited even at
large amplitudes. The same can be said about the third-neighbor bonds when G6 group DNVMs are excited.

6 Analytical Results for DNVMs
DNVM is an oscillatory mode with one degree of freedom. The displacement of any moving particle

from its equilibrium position, a(t), is taken as the time-dependent variable. Below, for some DNVMs,
a Hamiltonian H(ȧ, a) is derived, keeping the quartic terms in a, then the cubic equation of motion is
obtained and an approximate relationship between frequency and amplitude is derived and compared with
the numerical results. The DNVMs chosen for the analysis will help to illustrate some important features of
this class of exact dynamical solutions.

6.1 DNVM G1a
Considering a translational cell of the considered DNVM, the kinetic and potential energies per atom

are calculated taking into account the displacement pattern of the particles, see Fig. 3, when the distance of
the moving particles from the lattice positions is equal to a. The potential energy is then expanded in Taylor
series up to the fourth order terms. The result is the following Hamiltonian:

H = mȧ2

4
+ (2c1

3
+ c2 + 2c3 + 2c4) a2 + (− 8c1

27h2 −
3c3

2h2 +
104c4

1331h2 +
β1

9
+ 2β2 + 2β3 +

83β4

121
) a4. (21)

Note that in DNVM G1a only half of the atoms are vibrating and the other half are at rest, so the effective
mass is equal to m/2. From the Hamiltonian Eq. (21) the following cubic equation of motion is derived:

mä = −4(2c1

3
+ c2 + 2c3 + 2c4) a − 8(− 8c1

27h2 −
3c3

2h2 +
104c4

1331h2 +
β1

9
+ 2β2 + 2β3 +

83β4

121
) a3. (22)

An approximate solution to Eq. (22) includes the third harmonic correction to the main harmonic,
a(t) = A sin(ωt) + A1 sin(3ωt), where A1 ≪ A. Substitution of this solution into Eq. (22) yields the follow-
ing frequency response for DNVM G1a:

ω2 ≈ 4
m
(2c1

3
+ c2 + 2c3 + 2c4) +

6
m
(− 8c1

27h2 −
3c3

2h2 +
104c4

1331h2 +
β1

9
+ 2β2 + 2β3 +

83β4

121
)A2. (23)

6.2 DNVM G2b
Similarly, the Hamiltonian for DNVM G2b is

H = mȧ2

2
+ 8( c1

3
+ c4) a2 + 16(− 8c1

27h2 +
104c4

1331h2 +
β1

9
+ 83β4

121
) a4. (24)

Therefore, the cubic equation of motion is

mä = −16( c1

3
+ c4) a − 64(− 8c1

27h2 +
104c4

1331h2 +
β1

9
+ 83β4

121
) a3, (25)

and the frequency response for DNVM G2b is

ω2 ≈ 16
m
( c1

3
+ c4) +

48
m
(− 8c1

27h2 +
104c4

1331h2 +
β1

9
+ 83β4

121
)A2. (26)
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6.3 DNVM G2c
Analogously, the Hamiltonian for DNVM G2c has the form

H = mȧ2

2
+ 8( c1

3
+ c4) a2 + 8( 2c1

27h2 −
73c4

1331h2 +
4β1

9
+ 140β4

121
) a4. (27)

The cubic equation of motion is

mä = −16( c1

3
+ c4) a − 32( 2c1

27h2 −
73c4

1331h2 +
4β1

9
+ 140β4

121
) a3. (28)

The frequency response for DNVM G2c is

ω2 ≈ 16
m
( c1

3
+ c4) +

24
m
( 2c1

27h2 −
73c4

1331h2 +
4β1

9
+ 140β4

121
)A2. (29)

6.4 DNVM G6b
Finally, the Hamiltonian for DNVM G6b is

H = mȧ2

4
+ (2c1

3
+ c2 + 2c4) a2 + ( − 8c1

27h2 +
2c2

h2 +
104c4

1331h2 +
β1

9
+ 2β2 +

83β4

121
)a4. (30)

The equation of motion for DNVM G6b is

mä = −4(2c1

3
+ c2 + 2c4) a − 8( − 8c1

27h2 +
2c2

h2 +
104c4

1331h2 +
β1

9
+ 2β2 +

83β4

121
)a3. (31)

The frequency response for DNVM G6b is

ω2 ≈ 4
m
(2c1

3
+ c2 + 2c4) +

6
m
( − 8c1

27h2 +
2c2

h2 +
104c4

1331h2 +
β1

9
+ 2β2 +

83β4

121
)A2. (32)

6.5 Discussion of the Analytical Results
A comparison of the analytical expressions for the frequency response with the numerical results is

given for the four DNVMs analyzed in Fig. 14. The result is quite good, as the difference between the cubic
approximation and the numerical result is only noticeable for A > 0.1.

As can be seen from Fig. 14, the vibrational frequency of DNVMs depends on the amplitude, and there
are two reasons for this. The first is the effect of the anharmonicity of the interparticle interactions, βl ≠
0, in Eq. (2). The second is the so-called geometric nonlinearity. The contributions of these two sources
of frequency variation can be seen from the analytical expressions Eqs. (23), (26), (29), and (32). It can be
seen that in the limit A→ 0 the DNVM frequency is a constant depending on the particle mass m and the
linear stiffness coefficients cl . With increasing A different scenarios are possible and we discuss them for the
frequency of the DNVM G1a by analyzing Eq. (23). If the term before A2 is positive (negative), the frequency
will increase (decrease) with increasing A. In the case of soft-type anharmonicity, when βl < 0, and for not
very large c4, the frequency ω will decrease with increasing amplitude A. Interestingly, even for βl = 0, l =
1, . . . , 4, i.e., for linear elastic bonds, the frequency can either increase or decrease with amplitude due to
geometric nonlinearity. The frequency increases when (104/1331)c4 > (8/27)c1 + (3/2)c3 and decreases in
the opposite case.
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Figure 14: Frequency response for some DNVMs found numerically (solid lines) and analytically within the cubic
approximation (dashed lines)

The deviation of the analytical results from the numerically found frequency response observed
in Fig. 14 is due to the fact that in the Hamiltonians Eqs. (21), (24), (27), and (30) the terms higher than
quartic are omitted and therefore the analytical results are approximate and their accuracy is high only for
not very large vibration amplitudes.

Note that for each DNVM, the harmonic part of the frequency response matches the result of the linear
analysis. This can be seen by comparing the harmonic part of Eq. (23) with Eq. (14), the harmonic parts
of Eqs. (26) and (29) with Eq. (15), as well as the harmonic part of Eq. (32) with Eq. (19). It can also be noticed
that the frequency responses of DNVMs belonging to the same group coincide in the small amplitude limit,
but deviate as the vibration amplitude increases, compare Eqs. (26) and (29) obtained for the two DNVMs
of group G2.

Notably, the frequency responses of the G2 group DNVMs do not depend on the parameters of the
second and third neighbor bonds even for large vibration amplitudes. Similarly, the frequency responses of
the G6 group DNVMs do not depend on c3 and β3 even for large vibration amplitudes. This is consistent
with the numerical data presented in Table 3.

7 Conclusions
In short, for the first time, the linear and nonlinear dynamics of the bcc lattice have been analyzed

considering long-range interactions, which is important for metals. The phonon dispersion relation was
derived analytically. The properties of the exact nonlinear vibrational solutions, called DNVMs, have been
analyzed analytically and numerically and offered as a dataset for training the machine learning interatomic
potentials for bcc metals.

In more detail, the exact solutions of the equations of motion of the β-FPUT lattice in the form of
DNVMs have been analyzed considering long-range interactions. The patterns of initial displacements of
the atoms for the 34 DNVMs studied are shown in Figs. 3 to 9. Atoms with such initial displacements
and zero initial velocities will oscillate, maintaining the pattern regardless of the interatomic potential used
and for any amplitude A (for a large A, the DNVMs are modulationally unstable). However, the frequency
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response of a DNVM depends on the interatomic potential, and thus it can be used to test and develop
interatomic potentials.

The linear equations of motion of the bcc lattice have been obtained taking into account up to the
fourth-neighbor interactions, see Eqs. (A6) to (A8). The phonon dispersion relation for the bcc lattice with
long-range interactions has been derived, see Eq. (13) with the coefficients defined by Eqs. (11) and (12). The
wavevectors of the DNVMs in the first Brillouin zone have been specified, see Table 1. The frequency response
of the DNVMs in a wide range of vibration amplitude has been calculated numerically and plotted in Figs. 10
to 12.

The frequencies of DNVMs in the small amplitude limit have been derived analytically, see Eq. (14)
through Eq. (20). DNVMs are classified into seven groups according to their frequency in the small-
amplitude limit. DNVMs belonging to one group deform interatomic bonds of different lengths equally in the
harmonic approximation, see Table 2, but when anharmonicity comes into play, the potential energies stored
by bonds of different lengths become different for DNVMs of the same group, see Table 3. Very important
for testing and fitting the interatomic potentials is that different DNVMs test different types of bonds, as
other types of bonds are not deformed or weakly deformed during the oscillation, see Tables 2 and 3. Several
examples of analytical analysis of DNVMs are presented in Section 6. The frequency response of DNVMs
obtained in the framework of the cubic approximation agrees well with the numerical results, see Fig. 14.

Let us describe the advantages and disadvantages of using DNVMs for testing and training interatomic
potentials. The advantages are as follows:

1. Small-amplitude DNVMs are the phonon modes. The high symmetry of DNVMs ensures that they do
not interact with other phonon modes even at high vibration amplitudes so that the accuracy of the
interatomic potentials can be assessed taking into account the effect of anharmonicity.

2. DNVMs, as natural vibrational modes of the lattice, are recommended for testing and training
interatomic potentials, as opposed to the use of random atomic configurations. Some of the random
configurations may have a small probability of being realized, and therefore their contribution should be
considered with a small weight, which is difficult to set because these probabilities are hard to estimate.

3. DNVMs have a small translational cell, and their first-principles analysis using periodic boundary
conditions is a routine task.

The disadvantages of DNVMs in testing and training of potentials include the following:

1. DNVMs have a short wavelength and they do not test the potentials with respect to the long waves.
To overcome this problem, homogeneous deformation of the crystal can be considered in addition
to DNVMs.

2. DNVMs do not provide information on crystal lattice defects. The defect configurations should be added
to the training data set based on DNVMs.

The results obtained are important because they can be used to test the existing interatomic potentials
and to develop new potentials for bcc crystals. The frequency response of the DNVMs calculated by first-
principles modeling provides a rigorous test of the interatomic potentials. The DNVMs studied are the
natural nonlinear vibrational modes of the bcc lattice and therefore any reliable interatomic potential must
reproduce the frequency response of the DNVMs. The frequency response of the DNVMs can also be used to
train the machine learning interatomic potentials. In the forthcoming work, DNVMs of fcc and hcp lattices
will be studied, as there are many metals with these lattices.
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Appendix A Auxiliary Equations
The Hamiltonian Eq. (6) is the function of the following vectors connecting the atom i , j, k with its

neighbors. The eight vectors connecting the particle i , j, k with its nearest neighbors are

R i , j ,k ,1 = r i , j ,k−1 − r i , j ,k , R i , j ,k ,2 = r i , j ,k+1 − r i , j ,k , R i , j ,k ,3 = r i+1, j ,k−1 − r i , j ,k ,
R i , j ,k ,4 = r i−1, j ,k+1 − r i , j ,k , R i , j ,k ,5 = r i+1, j+1,k−1 − r i , j ,k , R i , j ,k ,6 = r i−1, j−1,k+1 − r i , j ,k ,
R i , j ,k ,7 = r i , j+1,k−1 − r i , j ,k , R i , j ,k ,8 = r i , j−1,k+1 − r i , j ,k . (A1)

The six vectors connecting the particle i , j, k with its second neighbors are

R i , j ,k ,9 = r i−1, j ,k − r i , j ,k , R i , j ,k ,10 = r i+1, j ,k − r i , j ,k , R i , j ,k ,11 = r i , j−1,k − r i , j ,k ,
R i , j ,k ,12 = r i , j+1,k − r i , j ,k , R i , j ,k ,13 = r i+1, j+1,k−2 − r i , j ,k , R i , j ,k ,14 = r i−1, j−1,k+2 − r i , j ,k . (A2)

The twelve vectors connecting the particle i , j, k with its third neighbors are

R i , j ,k ,15 = r i−1, j−1,k − r i , j ,k , R i , j ,k ,16 = r i+1, j+1,k − r i , j ,k , R i , j ,k ,17 = r i+1, j−1,k − r i , j ,k ,
R i , j ,k ,18 = r i−1, j+1,k − r i , j ,k , R i , j ,k ,19 = r i+1, j ,k−2 − r i , j ,k , R i , j ,k ,20 = r i−1, j ,k+2 − r i , j ,k ,
R i , j ,k ,21 = r i+1, j+2,k−2 − r i , j ,k , R i , j ,k ,22 = r i−1, j−2,k+2 − r i , j ,k , R i , j ,k ,23 = r i , j+1,k−2 − r i , j ,k ,
R i , j ,k ,24 = r i , j−1,k+2 − r i , j ,k , R i , j ,k ,25 = r i+2, j+1,k−2 − r i , j ,k , R i , j ,k ,26 = r i−2, j−1,k+2 − r i , j ,k . (A3)

The twenty four vectors connecting the particle i , j, k with its fourth neighbors are

R i , j ,k ,27 = r i+1, j ,k+1 − r i , j ,k , R i , j ,k ,28 = r i−1, j ,k−1 − r i , j ,k , R i , j ,k ,29 = r i+1, j−1,k+1 − r i , j ,k ,
R i , j ,k ,30 = r i−1, j+1,k−1 − r i , j ,k , R i , j ,k ,31 = r i+2, j ,k−1 − r i , j ,k , R i , j ,k ,32 = r i−2, j ,k+1 − r i , j ,k ,
R i , j ,k ,33 = r i+2, j+1,k−1 − r i , j ,k , R i , j ,k ,34 = r i−2, j−1,k+1 − r i , j ,k , R i , j ,k ,35 = r i−1, j−1,k+3 − r i , j ,k ,
R i , j ,k ,36 = r i+1, j+1,k−3 − r i , j ,k , R i , j ,k ,37 = r i−2, j−1,k+3 − r i , j ,k , R i , j ,k ,38 = r i+2, j+1,k−3 − r i , j ,k ,
R i , j ,k ,39 = r i−1, j−2,k+3 − r i , j ,k , R i , j ,k ,40 = r i+1, j+2,k−3 − r i , j ,k , R i , j ,k ,41 = r i−2, j−2,k+3 − r i , j ,k ,
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R i , j ,k ,42 = r i+2, j+2,k−3 − r i , j ,k , R i , j ,k ,43 = r i , j+1,k+1 − r i , j ,k , R i , j ,k ,44 = r i , j−1,k−1 − r i , j ,k ,
R i , j ,k ,45 = r i−1, j+1,k+1 − r i , j ,k , R i , j ,k ,46 = r i+1, j−1,k−1 − r i , j ,k , R i , j ,k ,47 = r i+1, j+2,k−1 − r i , j ,k ,
R i , j ,k ,48 = r i−1, j−2,k+1 − r i , j ,k , R i , j ,k ,49 = r i , j+2,k−1 − r i , j ,k , R i , j ,k ,50 = r i , j−2,k+1 − r i , j ,k . (A4)

Linearized equations of motion can be derived from Eq. (7) assuming that ∣ui j∣, ∣vi j∣, ∣wi j ∣ ≪ h. The
following second-order finite difference operators are introduced to shorten the equations:

Δ2ui+a , j+b ,k+c = ui+a , j+b ,k+c − 2ui , j ,k + ui−a , j−b ,k−c ,
Δ2vi+a , j+b ,k+c = vi+a , j+b ,k+c − 2vi , j ,k + vi−a , j−b ,k−c ,
Δ2wi+a , j+b ,k+c = wi+a , j+b ,k+c − 2wi , j ,k +wi−a , j−b ,k−c . (A5)

The linear equations of motion are

müi , j ,k =
c1

3
Δ2ui , j ,k−1 +

c1

3
Δ2vi , j ,k−1 +

c1

3
Δ2wi , j ,k−1 +

c1

3
Δ2ui+1, j ,k−1 −

c1

3
Δ2vi+1, j ,k−1 −

c1

3
Δ2wi+1, j ,k−1

+ c1

3
Δ2ui+1, j+1,k−1 +

c1

3
Δ2vi+1, j+1,k−1 −

c1

3
Δ2wi+1, j+1,k−1 +

c1

3
Δ2ui , j+1,k−1 −

c1

3
Δ2vi , j+1,k−1

+ c1

3
Δ2wi , j+1,k−1 + c2Δ2ui−1, j ,k +

c3

2
Δ2ui−1, j−1,k +

c3

2
Δ2vi−1, j−1,k +

c3

2
Δ2ui+1, j−1,k −

c3

2
Δ2vi+1, j−1,k

+ c3

2
Δ2ui , j+1,k−2 +

c3

2
Δ2wi , j+1,k−2 +

c3

2
Δ2ui+2, j+1,k−2 −

c3

2
Δ2wi+2, j+1,k−2

+ 9c4

11
Δ2ui+1, j ,k+1 +

3c4

11
Δ2vi+1, j ,k+1 +

3c4

11
Δ2wi+1, j ,k+1 +

9c4

11
Δ2ui+1, j−1,k+1 −

3c4

11
Δ2vi+1, j−1,k+1

+ 3c4

11
Δ2wi+1, j−1,k+1 +

9c4

11
Δ2ui+2, j ,k−1 −

3c4

11
Δ2vi+2, j ,k−1 −

3c4

11
Δ2wi+2, j ,k−1 +

9c4

11
Δ2ui+2, j+1,k−1

+ 3c4

11
Δ2vi+2, j+1,k−1 −

3c4

11
Δ2wi+2, j+1,k−1 +

c4

11
Δ2ui−1, j−1,k+3 +

c4

11
Δ2vi−1, j−1,k+3 +

3c4

11
Δ2wi−1, j−1,k+3

+ c4

11
Δ2ui−2, j−1,k+3 −

c4

11
Δ2vi−2, j−1,k+3 −

3c4

11
Δ2wi−2, j−1,k+3 +

c4

11
Δ2ui−1, j−2,k+3 −

c4

11
Δ2vi−1, j−2,k+3

+ 3c4

11
Δ2wi−1, j−2,k+3 +

c4

11
Δ2ui−2, j−2,k+3 +

c4

11
Δ2vi−2, j−2,k+3 −

3c4

11
Δ2wi−2, j−2,k+3 +

c4

11
Δ2ui , j+1,k+1

+ 3c4

11
Δ2vi , j+1,k+1 +

c4

11
Δ2wi , j+1,k+1 +

c4

11
Δ2ui−1, j+1,k+1 −

3c4

11
Δ2vi−1, j+1,k+1 −

c4

11
Δ2wi−1, j+1,k+1

+ c4

11
Δ2ui+1, j+2,k−1 +

3c4

11
Δ2vi+1, j+2,k−1 −

c4

11
Δ2wi+1, j+2,k−1 +

c4

11
Δ2ui , j+2,k−1

− 3c4

11
Δ2vi , j+2,k−1 +

c4

11
Δ2wi , j+2,k−1 , (A6)

mv̈i , j ,k =
c1

3
Δ2ui , j ,k−1 +

c1

3
Δ2vi , j ,k−1 +

c1

3
Δ2wi , j ,k−1 −

c1

3
Δ2ui+1, j ,k−1 +

c1

3
Δ2vi+1, j ,k−1 +

c1

3
Δ2wi+1, j ,k−1

+ c1

3
Δ2ui+1, j+1,k−1 +

c1

3
Δ2vi+1, j+1,k−1 −

c1

3
Δ2wi+1, j+1,k−1 −

c1

3
Δ2ui , j+1,k−1 +

c1

3
Δ2vi , j+1,k−1

− c1

3
Δ2wi , j+1,k−1 + c2Δ2vi , j−1,k +

c3

2
Δ2ui−1, j−1,k +

c3

2
Δ2vi−1, j−1,k −

c3

2
Δ2ui+1, j−1,k

+ c3

2
Δ2vi+1, j−1,k +

c3

2
Δ2vi+1, j ,k−2 +

c3

2
Δ2wi+1, j ,k−2 +

c3

2
Δ2vi+1, j+2,k−2 −

c3

2
Δ2wi+1, j+2,k−2

+ 3c4

11
Δ2ui+1, j ,k+1 +

c4

11
Δ2vi+1, j ,k+1 +

c4

11
Δ2wi+1, j ,k+1 −

3c4

11
Δ2ui+1, j−1,k+1 +

c4

11
Δ2vi+1, j−1,k+1

− c4

11
Δ2wi+1, j−1,k+1 −

3c4

11
Δ2ui+2, j ,k−1 +

c4

11
Δ2vi+2, j ,k−1 +

c4

11
Δ2wi+2, j ,k−1 +

3c4

11
Δ2ui+2, j+1,k−1
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+ c4

11
Δ2vi+2, j+1,k−1 −

c4

11
Δ2wi+2, j+1,k−1 +

c4

11
Δ2ui−1, j−1,k+3 +

c4

11
Δ2vi−1, j−1,k+3 +

3c4

11
Δ2wi−1, j−1,k+3

− c4

11
Δ2ui−2, j−1,k+3 +

c4

11
Δ2vi−2, j−1,k+3 +

3c4

11
Δ2wi−2, j−1,k+3 −

c4

11
Δ2ui−1, j−2,k+3 +

c4

11
Δ2vi−1, j−2,k+3

− 3c4

11
Δ2wi−1, j−2,k+3 +

c4

11
Δ2ui−2, j−2,k+3 +

c4

11
Δ2vi−2, j−2,k+3 −

3c4

11
Δ2wi−2, j−2,k+3 +

3c4

11
Δ2ui , j+1,k+1

+ 9c4

11
Δ2vi , j+1,k+1 +

3c4

11
Δ2wi , j+1,k+1 −

3c4

11
Δ2ui−1, j+1,k+1 +

9c4

11
Δ2vi−1, j+1,k+1 +

3c4

11
Δ2wi−1, j+1,k+1

+ 3c4

11
Δ2ui+1, j+2,k−1 +

9c4

11
Δ2vi+1, j+2,k−1 −

3c4

11
Δ2wi+1, j+2,k−1 −

3c4

11
Δ2ui , j+2,k−1

+ 9c4

11
Δ2vi , j+2,k−1 −

3c4

11
Δ2wi , j+2,k−1 , (A7)

mẅi , j ,k =
c1

3
Δ2ui , j ,k−1 +

c1

3
Δ2vi , j ,k−1 +

c1

3
Δ2wi , j ,k−1 −

c1

3
Δ2ui+1, j ,k−1 +

c1

3
Δ2vi+1, j ,k−1 +

c1

3
Δ2wi+1, j ,k−1

− c1

3
Δ2ui+1, j+1,k−1 −

c1

3
Δ2vi+1, j+1,k−1 +

c1

3
Δ2wi+1, j+1,k−1 +

c1

3
Δ2ui , j+1,k−1 −

c1

3
Δ2vi , j+1,k−1

+ c1

3
Δ2wi , j+1,k−1 + c2Δ2wi+1, j+1,k−2 +

c3

2
Δ2vi+1, j ,k−2 +

c3

2
Δ2wi+1, j ,k−2 −

c3

2
Δ2vi+1, j+2,k−2

+ c3

2
Δ2wi+1, j+2,k−2 +

c3

2
Δ2ui , j+1,k−2 +

c3

2
Δ2wi , j+1,k−2 −

c3

2
Δ2ui+2, j+1,k−2 +

c3

2
Δ2wi+2, j+1,k−2

+ 3c4

11
Δ2ui+1, j ,k+1 +

c4

11
Δ2vi+1, j ,k+1 +

c4

11
Δ2wi+1, j ,k+1 +

3c4

11
Δ2ui+1, j−1,k+1 −

c4

11
Δ2vi+1, j−1,k+1

+ c4

11
Δ2wi+1, j−1,k+1 −

3c4

11
Δ2ui+2, j ,k−1 +

c4

11
Δ2vi+2, j ,k−1 +

c4

11
Δ2wi+2, j ,k−1 −

3c4

11
Δ2ui+2, j+1,k−1

− c4

11
Δ2vi+2, j+1,k−1 +

c4

11
Δ2wi+2, j+1,k−1 +

3c4

11
Δ2ui−1, j−1,k+3 +

3c4

11
Δ2vi−1, j−1,k+3 +

9c4

11
Δ2wi−1, j−1,k+3

− 3c4

11
Δ2ui−2, j−1,k+3 +

3c4

11
Δ2vi−2, j−1,k+3 +

9c4

11
Δ2wi−2, j−1,k+3 +

3c4

11
Δ2ui−1, j−2,k+3 −

3c4

11
Δ2vi−1, j−2,k+3

+ 9c4

11
Δ2wi−1, j−2,k+3 −

3c4

11
Δ2ui−2, j−2,k+3 −

3c4

11
Δ2vi−2, j−2,k+3 +

9c4

11
Δ2wi−2, j−2,k+3 +

c4

11
Δ2ui , j+1,k+1

+ 3c4

11
Δ2vi , j+1,k+1 +

c4

11
Δ2wi , j+1,k+1 −

c4

11
Δ2ui−1, j+1,k+1 +

3c4

11
Δ2vi−1, j+1,k+1 +

c4

11
Δ2wi−1, j+1,k+1

− c4

11
Δ2ui+1, j+2,k−1 −

3c4

11
Δ2vi+1, j+2,k−1 +

c4

11
Δ2wi+1, j+2,k−1 +

c4

11
Δ2ui , j+2,k−1

− 3c4

11
Δ2vi , j+2,k−1 +

c4

11
Δ2wi , j+2,k−1 . (A8)

References
1. Wen T, Zhang L, Wang H, Weinan E, Srolovitz DJ. Deep potentials for materials science. Mater Futures.

2022;1(2):022601. doi:10.1088/2752-5724/ac681d.
2. Wang F, Wu HH, Dong L, Pan G, Zhou X, Wang S, et al. Atomic-scale simulations in multi-component alloys

and compounds: a review on advances in interatomic potential. J Mater Sci Technol. 2023;165:49–65. doi:10.1016/
j.jmst.2023.05.010.

3. Martin-Barrios R, Navas-Conyedo E, Zhang X, Chen Y, Gulin-Gonzalez J. An overview about neural networks
potentials in molecular dynamics simulation. Int J Quantum Chem. 2024;124(11):e27389. doi:10.1002/qua.27389.

4. Kocer E, Ko TW, Behler J. Neural network potentials: a concise overview of methods. Annu Rev Phys Chem.
2022;73(1):163–86. doi:10.1146/annurev-physchem-082720-034254.

5. Yang Y, Zhang S, Ranasinghe KD, Isayev O, Roitberg AE. Machine learning of reactive potentials. Annu Rev Phys
Chem. 2024;75(1):371–95. doi:10.1146/annurev-physchem-062123-024417.

https://doi.org/10.1088/2752-5724/ac681d
https://doi.org/10.1016/j.jmst.2023.05.010
https://doi.org/10.1016/j.jmst.2023.05.010
https://doi.org/10.1002/qua.27389
https://doi.org/10.1146/annurev-physchem-082720-034254
https://doi.org/10.1146/annurev-physchem-062123-024417


3816 Comput Mater Contin. 2025;82(3)

6. Urata S, Bertani M, Pedone A. Applications of machine-learning interatomic potentials for modeling ceramics,
glass, and electrolytes: a review. J Am Ceram Soc. 2024;107(12):7665–91. doi:10.1111/jace.19934.

7. Smith JS, Isayev O, Roitberg AE. ANI-1: an extensible neural network potential with DFT accuracy at force field
computational cost. Chem Sci. 2017;8(4):3192–203. doi:10.1039/C6SC05720A.

8. Naghdi AD, Pellegrini F, Kucukbenli E, Massa D, Dominguez-Gutierrez FJ, Kaxiras E, et al. Neural network
interatomic potentials for open surface nano-mechanics applications. Acta Mater. 2024;277(17):120200. doi:10.
1016/j.actamat.2024.120200.

9. Zotov N, Gubaev K, Worner J, Grabowski B. Moment tensor potential for static and dynamic investigations of
screw dislocations in bcc Nb. Model Simul Mater Sci Eng. 2024;32(3):035032. doi:10.1088/1361-651X/ad2d68.

10. Aitken ZH, Sorkin V, Gen Yu Z, Chen S, Leong Tan T, Wu Z, et al. Controlling screw dislocation core structure
and Peierls barrier in BCC interatomic potentials. Int J Solids Struct. 2024;303:113004. doi:10.1016/j.ijsolstr.2024.
113004.

11. Romaner L, Pradhan T, Kholtobina A, Drautz R, Mrovec M. Theoretical investigation of the 70.5
○

mixed
dislocations in body-centered cubic transition metals. Acta Mater. 2021;217:117154. doi:10.1016/j.actamat.2021.
117154.

12. Bertin N, Cai W, Aubry S, Bulatov VV. Core energies of dislocations in bcc metals. Phys Rev Mater.
2021;5(2):025002. doi:10.1103/PhysRevMaterials.5.025002.

13. Suzudo T, Ki Ebihara, Tsuru T, Mori H. Cleavages along {110} in bcc iron emit dislocations from the curved crack
fronts. Sci Rep. 2022;12(1):19701. doi:10.1038/s41598-022-24357-5.

14. Maksimenko VN, Lipnitskii AG, Saveliev VN, Nelasov IV, Kartamyshev AI. Prediction of the diffusion charac-
teristics of the V-Cr system by molecular dynamics based on N-body interatomic potentials. Comput Mater Sci.
2021;198:110648. doi:10.1016/j.commatsci.2021.110648.

15. Konov DA, Sidnov KP, Sinyakov RI, Belov MP. Effect of deformation on the diffusion properties of β-Zr at high
temperatures. Phys Met Metallography. 2024;125(8):843–50. doi:10.1134/S0031918X24601173.

16. Magomedov MN. Parameters of the vacancy formation and self-diffusion in the iron. J Phys Chem Solids.
2023;172(1):111084. doi:10.1016/j.jpcs.2022.111084.

17. Yuan XJ, Chen NX, Shen J. Construction of embedded-atom-method interatomic potentials for alkaline metals
(Li, Na, and K) by lattice inversion. Chin Phys B. 2012;21(5):053401. doi:10.1088/1674-1056/21/5/053401.

18. Suzudo T, Ebihara KI, Tsuru T, Mori H. Large-scale atomislic simulations of cleavage in BCC Fe using machine-
learning potential. Zairyo/J Soc Mat Sci. 2024;73(2):129–35. doi:10.2472/jsms.73.129.

19. Zhang M, Hibi K, Inoue J. Highly accurate and efficient potential for bcc iron assisted by artificial neural networks.
Phys Rev B. 2024;110(5):054110. doi:10.1103/PhysRevB.110.054110.

20. Wang R, Ma X, Zhang L, Wang H, Srolovitz DJ, Wen T, et al. Classical and machine learning interatomic potentials
for BCC vanadium. Phys Rev Mater. 2022;6(11):113603. doi:10.1103/PhysRevMaterials.6.113603.

21. Goryaeva AM, Deres J, Lapointe C, Grigorev P, Swinburne TD, Kermode JR, et al. Efficient and transfer-
able machine learning potentials for the simulation of crystal defects in bcc Fe and W. Phys Rev Mater.
2021;5(10):103803. doi:10.1103/PhysRevMaterials.5.103803.

22. Kazakov A, Babicheva RI, Zinovev A, Terentyev D, Zhou K, Korznikova EA, et al. Interaction of edge dislocations
with voids in tungsten. Tungsten. 2024;6(3):633–46. doi:10.1007/s42864-023-00250-0.

23. Kramynin SP. Theoretical study of the size dependencies of the thermodynamic properties of tungsten at various
pressures and temperatures. J Phys Chem Solids. 2021;152(3):109964. doi:10.1016/j.jpcs.2021.109964.

24. Lin YS, Pun GPP, Mishin Y. Development of a physically-informed neural network interatomic potential for
tantalum. Comput Mater Sci. 2022;205(148):111180. doi:10.1016/j.commatsci.2021.111180.

25. Yin WQ, Bo T, Zhao YB, Zhang L, Chai ZF, Shi WQ. Deep learning of accurate interatomic potentials for uranium,
zirconium and uranium-zirconium alloy. He-Huaxue Yu Fangshe Huaxue/J Nucl Radiochem. 2024;46(5):450–61.

26. Slooter RJ, Sluiter MHF, Kranendonk WGT, Bos C. A reference-free MEAM potential for α-Fe and γ-Fe. J Phys
Condens Matter. 2022;34(50):505901. doi:10.1088/1361-648X/ac9d14.

https://doi.org/10.1111/jace.19934
https://doi.org/10.1039/C6SC05720A
https://doi.org/10.1016/j.actamat.2024.120200
https://doi.org/10.1016/j.actamat.2024.120200
https://doi.org/10.1088/1361-651X/ad2d68
https://doi.org/10.1016/j.ijsolstr.2024.113004
https://doi.org/10.1016/j.ijsolstr.2024.113004
https://doi.org/10.1016/j.actamat.2021.117154
https://doi.org/10.1016/j.actamat.2021.117154
https://doi.org/10.1103/PhysRevMaterials.5.025002
https://doi.org/10.1038/s41598-022-24357-5
https://doi.org/10.1016/j.commatsci.2021.110648
https://doi.org/10.1134/S0031918X24601173
https://doi.org/10.1016/j.jpcs.2022.111084
https://doi.org/10.1088/1674-1056/21/5/053401
https://doi.org/10.2472/jsms.73.129
https://doi.org/10.1103/PhysRevB.110.054110
https://doi.org/10.1103/PhysRevMaterials.6.113603
https://doi.org/10.1103/PhysRevMaterials.5.103803
https://doi.org/10.1007/s42864-023-00250-0
https://doi.org/10.1016/j.jpcs.2021.109964
https://doi.org/10.1016/j.commatsci.2021.111180
https://doi.org/10.1088/1361-648X/ac9d14


Comput Mater Contin. 2025;82(3) 3817

27. Xue HT, Li J, Chang Z, Yang YH, Tang FL, Zhang Y, et al. Deep-learning potential molecular dynamics simulations
of the structural and physical properties of rare-earth metal scandium. Comput Mater Sci. 2024;242:113072. doi:10.
1016/j.commatsci.2024.113072.

28. Qin Z, Wang R, Li S, Wen T, Yin B, Wu Z. MEAM interatomic potential for thermodynamic and mechanical
properties of lithium allotropes. Comput Mater Sci. 2022;214:111706. doi:10.1016/j.commatsci.2022.111706.

29. Jian Z, Chen Y, Xiao S, Wang L, Li X, Wang K, et al. Shock-induced plasticity and phase transformation in
single crystal magnesium: an interatomic potential and non-equilibrium molecular dynamics simulations. J Phys
Condens Matter. 2022;34(11):115401. doi:10.1088/1361-648X/ac443e.

30. Ji H, Wang Y, Yin J, Hou H, Lai W, Mei J, et al. Comparison of interatomic potentials on crack propagation
properties in bcc iron. Int J Press Vessel Piping. 2021;194:104524. doi:10.1016/j.ijpvp.2021.104524.

31. Sajad Mousavi Nejad Souq S, Ashenai Ghasemi F, Masoud Seyyed Fakhrabadi M. Performance of different
traditional and machine learning-based atomistic potential functions in the simulation of mechanical behavior of
Fe nanowires. Comput Mater Sci. 2022;215(7):111807. doi:10.1016/j.commatsci.2022.111807.

32. Hou J, You YW, Kong XS, Song J, Liu CS. Accurate prediction of vacancy cluster structures and energetics in bcc
transition metals. Acta Mater. 2021;211:116860. doi:10.1016/j.actamat.2021.116860.

33. Faisal AHM, Weinberger CR. Modeling twin boundary structures in body centered cubic transition metals.
Comput Mater Sci. 2021;197:110649. doi:10.1016/j.commatsci.2021.110649.

34. Manna M, Pal S. Investigation of primary radiation damage in nanocrystalline tantalum using machine-learning
interatomic potential: an atomistic simulation study. In: Advances in risk and reliability modelling and assessment.
Singapore: Springer; 2024;167–82. doi:10.1007/978-981-97-3087-2.

35. Wang Y, Liu J, Li J, Mei J, Li Z, Lai W, et al. Machine-learning interatomic potential for radiation damage effects
in bcc-iron. Comput Mater Sci. 2022;202:110960. doi:10.1016/j.commatsci.2021.110960.

36. Magomedov MN. Calculation of the surface energy of a crystal and its temperature and pressure dependence. J
Surf Investig. 2020;14(6):1208–20. doi:10.1134/s1027451020060105.

37. Zhang L, Csanyi G, van der Giessen E, Maresca F. Atomistic fracture in bcc iron revealed by active learning of
Gaussian approximation potential. npj Comp Mater. 2023;9(1):217. doi:10.1038/s41524-023-01174-6.

38. Sun H, Samanta A. Exploring structural transitions at grain boundaries in Nb using a generalized embedded atom
interatomic potential. Comput Mater Sci. 2023;230:112497. doi:10.1016/j.commatsci.2023.112497.

39. French J, Bai XM. Molecular dynamics studies of grain boundary mobility and anisotropy in BCC γ-uranium. J
Nucl Mater. 2022;565:153744. doi:10.1016/j.jnucmat.2022.153744.

40. Oren E, Kartoon D, Makov G. Machine learning-based modeling of high-pressure phase diagrams: anomalous
melting of Rb. J Chem Phys. 2022;157(1):014502. doi:10.1063/5.0088089.

41. Kotykhov AS, Gubaev K, Hodapp M, Tantardini C, Shapeev AV, Novikov IS. Constrained DFT-based magnetic
machine-learning potentials for magnetic alloys: a case study of Fe-Al. Sci Rep. 2023;13(1):19728. doi:10.1038/
s41598-023-46951-x.

42. Novikov I, Grabowski B, Kormann F, Shapeev A. Magnetic moment tensor potentials for collinear spin-polarized
materials reproduce different magnetic states of bcc Fe. npj Comp Mater. 2022;8(1):13. doi:10.1038/s41524-022-
00696-9.

43. Chapman JBJ, Ma PW. A machine-learned spin-lattice potential for dynamic simulations of defective magnetic
iron. Sci Rep. 2022;12(1):22451. doi:10.1038/s41598-022-25682-5.

44. Akhunova AK, Murzaev RT, Baimova JA. Graphene with dislocation dipoles: wrinkling and defect nucleation
during tension. Comput Mater Sci. 2024;244(5887):113230. doi:10.1016/j.commatsci.2024.113230.

45. Safina LR, Krylova KA, Murzaev RT, Shcherbinin SA, Baimova JA. Graphene/Ni composite coating for enhanced
strength of Ni surface. Surf Interfaces. 2024;53(18):105011. doi:10.1016/j.surfin.2024.105011.

46. Polyakova PV, Murzaev RT, Lisovenko DS, Baimova JA. Elastic constants of graphane, graphyne, and graphdiyne.
Comput Mater Sci. 2024;244:113171. doi:10.1016/j.commatsci.2024.113171.

47. Safina LR, Rozhnova EA, Krylova KA, Murzaev RT, Baimova JA. Interatomic potentials for graphene reinforced
metal composites: optimal choice. Comput Phys Commun. 2024;301:109235. doi:10.1016/j.cpc.2024.109235.

https://doi.org/10.1016/j.commatsci.2024.113072
https://doi.org/10.1016/j.commatsci.2024.113072
https://doi.org/10.1016/j.commatsci.2022.111706
https://doi.org/10.1088/1361-648X/ac443e
https://doi.org/10.1016/j.ijpvp.2021.104524
https://doi.org/10.1016/j.commatsci.2022.111807
https://doi.org/10.1016/j.actamat.2021.116860
https://doi.org/10.1016/j.commatsci.2021.110649
https://doi.org/10.1007/978-981-97-3087-2
https://doi.org/10.1016/j.commatsci.2021.110960
https://doi.org/10.1134/s1027451020060105
https://doi.org/10.1038/s41524-023-01174-6
https://doi.org/10.1016/j.commatsci.2023.112497
https://doi.org/10.1016/j.jnucmat.2022.153744
https://doi.org/10.1063/5.0088089
https://doi.org/10.1038/s41598-023-46951-x
https://doi.org/10.1038/s41598-023-46951-x
https://doi.org/10.1038/s41524-022-00696-9
https://doi.org/10.1038/s41524-022-00696-9
https://doi.org/10.1038/s41598-022-25682-5
https://doi.org/10.1016/j.commatsci.2024.113230
https://doi.org/10.1016/j.surfin.2024.105011
https://doi.org/10.1016/j.commatsci.2024.113171
https://doi.org/10.1016/j.cpc.2024.109235


3818 Comput Mater Contin. 2025;82(3)

48. Chen X, Wang LF, Gao XY, Zhao YF, Lin DY, Chu WD, et al. Machine learning enhanced empirical potentials for
metals and alloys. Comput Phys Commun. 2021;269:108132. doi:10.1016/j.cpc.2021.108132.

49. Shapeev AV, Podryabinkin EV, Gubaev K, Tasnadi F, Abrikosov IA. Elinvar effect in β-Ti simulated by on-the-fly
trained moment tensor potential. New J Phys. 2020;22(11):113005. doi:10.1088/1367-2630/abc392.

50. Dickel D, Nitol M, Barrett CD. LAMMPS implementation of rapid artificial neural network derived interatomic
potentials. Comput Mater Sci. 2021;196:110481. doi:10.1016/j.commatsci.2021.110481.

51. Poul M, Huber L, Bitzek E, Neugebauer J. Systematic atomic structure datasets for machine learning potentials:
application to defects in magnesium. Phys Rev B. 2023;107(10):104103. doi:10.1103/PhysRevB.107.104103.

52. Dmitriev SV, Kistanov AA, Kosarev IV, Scherbinin SA, Shapeev AV. Construction of machine learning interatomic
potentials for metals. Russ Phys J. 2024;67(9):1408–13. doi:10.1007/s11182-024-03261-7.

53. Ryabov DS, Bezuglova GS, Korznikova EA, Dmitriev SV. Testing interatomic potentials for binary alloys using
exact solutions to the equations of atomic motion. Procedia Struct Integr. 2024;65(11):209–14. doi:10.1016/j.prostr.
2024.11.032.

54. Chechin GM, Dzhelauhova GS. Discrete breathers and nonlinear normal modes in monoatomic chains. J Sound
Vib. 2009 May;322(3):490–512. doi:10.1016/j.jsv.2008.04.002.

55. Chechin G, Bezuglova G. Resonant excitation of the bushes of nonlinear vibrational modes in monoatomic chains.
Commun Nonlinear Sci. 2023;126(6):107509. doi:10.1016/j.cnsns.2023.107509.

56. Chechin GM, Sizintsev DA, Usoltsev OA. Nonlinear atomic vibrations and structural phase transitions in strained
carbon chains. Comp Mater Sci. 2017;138(19):353–67. doi:10.1016/j.commatsci.2017.07.004.

57. Chechin GM, Shcherbinin SA. Delocalized periodic vibrations in nonlinear LC and LCR electrical chains.
Commun Nonlinear Sci. 2015;22(1–3):244–62. doi:10.1016/j.cnsns.2014.09.028.

58. Rosenberg RM. The normal modes of nonlinear n-degree-of-freedom systems. J Appl Mech T ASME.
1960;29(1):7–14. doi:10.1115/1.3636501.

59. Ryabov DS, Chechin GM, Upadhyaya A, Korznikova EA, Dubinko VI, Dmitriev SV. Delocalized nonlin-
ear vibrational modes of triangular lattices. Nonlinear Dyn. 2020;102(4):2793–810. doi:10.1007/s11071-020-
06015-5.

60. Ryabov DS, Chechin GM, Naumov EK, Bebikhov YV, Korznikova EA, Dmitriev SV. One-component
delocalized nonlinear vibrational modes of square lattices. Nonlinear Dyn. 2023;111(9):8135–53. doi:10.1007/s11071-
023-08264-6.

61. Shcherbinin SA, Kazakov AM, Bebikhov YV, Kudreyko AA, Dmitriev SV. Delocalized nonlinear vibrational
modes and discrete breathers in β-FPUT simple cubic lattice. Phys Rev E. 2024;109(1):014215. doi:10.1103/
PhysRevE.109.014215.

62. Shcherbinin SA, Krylova KA, Chechin GM, Soboleva EG, Dmitriev SV. Delocalized nonlinear vibrational modes
in fcc metals. Commun Nonlinear Sci. 2022;104:106039. doi:10.1016/j.cnsns.2021.106039.

63. Shcherbinin SA, Bebikhov YV, Abdullina DU, Kudreyko AA, Dmitriev SV. Delocalized nonlinear vibrational
modes and discrete breathers in a body centered cubic lattice. Commun Nonlinear Sci. 2024;135:108033. doi:10.
1016/j.cnsns.2024.108033.

64. Bezuglova GS, Chechin GM, Goncharov PP. Discrete breathers on symmetry-determined invariant manifolds for
scalar models on the plane square lattice. Phys Rev E. 2011;84(3):036606. doi:10.1103/PhysRevE.84.036606.

65. Ilgamov MA, Aitbaeva AA, Pavlov IS, Dmitriev SV. Carbon nanotube under pulsed pressure. Facta Univ, Ser:
Mech Eng. 2024;22(2):275–92. doi:10.22190/FUME230820049I.

66. Bachurina OV, Murzaev RT, Shcherbinin SA, Kudreyko AA, Dmitriev SV, Bachurin DV. Delocalized nonlinear
vibrational modes in Ni3Al. Commun Nonlinear Sci. 2024;132:107890. doi:10.1016/j.cnsns.2024.107890.

67. Bachurina OV, Kudreyko AA. Two-dimensional discrete breathers in fcc metals. Comp Mater Sci. 2020;182:109737.
doi:10.1016/j.commatsci.2020.109737.

68. Bachurina OV. Linear discrete breather in fcc metals. Comp Mater Sci. 2019;160:217–21. doi:10.1016/j.commatsci.
2019.01.014.

69. Bachurina OV, Murzaev RT, Bachurin DV. Molecular dynamics study of two-dimensional discrete breather in
nickel. J Micromech Mol Phys. 2019;4(2):1950001. doi:10.1142/S2424913019500012.

https://doi.org/10.1016/j.cpc.2021.108132
https://doi.org/10.1088/1367-2630/abc392
https://doi.org/10.1016/j.commatsci.2021.110481
https://doi.org/10.1103/PhysRevB.107.104103
https://doi.org/10.1007/s11182-024-03261-7
https://doi.org/10.1016/j.prostr.2024.11.032
https://doi.org/10.1016/j.prostr.2024.11.032
https://doi.org/10.1016/j.jsv.2008.04.002
https://doi.org/10.1016/j.cnsns.2023.107509
https://doi.org/10.1016/j.commatsci.2017.07.004
https://doi.org/10.1016/j.cnsns.2014.09.028
https://doi.org/10.1115/1.3636501
https://doi.org/10.1007/s11071-020-06015-5
https://doi.org/10.1007/s11071-020-06015-5
https://doi.org/10.1007/s11071-023-08264-6
https://doi.org/10.1007/s11071-023-08264-6
https://doi.org/10.1103/PhysRevE.109.014215
https://doi.org/10.1103/PhysRevE.109.014215
https://doi.org/10.1016/j.cnsns.2021.106039
https://doi.org/10.1016/j.cnsns.2024.108033
https://doi.org/10.1016/j.cnsns.2024.108033
https://doi.org/10.1103/PhysRevE.84.036606
https://doi.org/10.22190/FUME230820049I
https://doi.org/10.1016/j.cnsns.2024.107890
https://doi.org/10.1016/j.commatsci.2020.109737
https://doi.org/10.1016/j.commatsci.2019.01.014
https://doi.org/10.1016/j.commatsci.2019.01.014
https://doi.org/10.1142/S2424913019500012


Comput Mater Contin. 2025;82(3) 3819

70. Bachurina OV. Plane and plane-radial discrete breathers in fcc metals. Model Simul Mater Sc. 2019;27(5):055001.
doi:10.1088/1361-651X/ab17b7.

71. Kosarev IV, Shcherbinin SA, Kistanov AA, Babicheva RI, Korznikova EA, Dmitriev SV. An approach to evaluate
the accuracy of interatomic potentials as applied to tungsten. Comp Mater Sci. 2024;231(1):112597. doi:10.1016/j.
commatsci.2023.112597.

72. Cuevas J, Archilla JFR, Gaididei YB, Romero FR. Moving breathers in a DNA model with competing short-and
long-range dispersive interactions. Physica D. 2002;163(1–2):106–26. doi:10.1016/S0167-2789(02)00351-2.

73. Gorbach AV, Flach S. Compactlike discrete breathers in systems with nonlinear and nonlocal dispersive terms.
Phys Rev E. 2005;72(5):056607. doi:10.1103/PhysRevE.72.056607.

74. Koukouloyannis V, Kevrekidis PG, Cuevas J, Rothos V. Multibreathers in Klein-gordon chains with interactions
beyond nearest neighbors. Physica D. 2013;242(1):16–29. doi:10.1016/j.physd.2012.08.011.

75. Gninzanlong CL, Ndjomatchoua FT, Tchawoua C. Forward and backward propagating breathers in a DNA model
with dipole-dipole long-range interactions. Phys Rev E. 2020;102(5):052212. doi:10.1103/PhysRevE.102.052212.

76. Christodoulidi H, Bountis A, Drossos L. The effect of long-range interactions on the dynamics and statistics of 1D
Hamiltonian lattices with on-site potential. Eur Phys J Spec Top. 2018;227(5–6):563–73. doi:10.1140/epjst/e2018-
00003-9.

77. Bonart D. Intrinsic localized modes in linear chains with Coulomb interaction. Phys Lett A. 1997;231(3–4):201–7.
doi:10.1016/S0375-9601(97)00298-3.

78. Bonart D, Rossler T, Page JB. Intrinsic localized modes in complex lattice dynamical systems. Physica D. 1998;
113(2–4):123–8. doi:10.1016/S0167-2789(97)00259-5.

79. Kevrekidis PG, Gaididei YB, Bishop AR, Saxena A. Effects of competing short- and long-range dispersive
interactions on discrete breathers. Phys Rev E. 2001;64:66606/1–8. doi:10.1103/PhysRevE.64.066606.

80. Bagchi D. Energy transport in the presence of long-range interactions. Phys Rev E. 2017;96(4):042121. doi:10.1103/
PhysRevE.96.042121.

81. Iubini S, Di Cintio P, Lepri S, Livi R, Casetti L. Heat transport in oscillator chains with long-range interactions
coupled to thermal reservoirs. Phys Rev E. 2018;97(3):032102. doi:10.1103/PhysRevE.97.032102.

82. Doi Y, Yoshimura K. Construction of nonlinear lattice with potential symmetry for smooth propagation of discrete
breather. Nonlinearity. 2020;33(10):5142–75. doi:10.1088/1361-6544/ab9498.

83. Yamaguchi YY, Doi Y. Low-frequency discrete breathers in long-range systems without on-site potential. Phys
Rev E. 2018;97(6):062218. doi:10.1103/PhysRevE.97.062218.

84. Xie Y, Zhang JM. Atomistic simulation of phonon dispersion for body-centred cubic alkali metals. Can J Phys.
2008;86(6):801–5. doi:10.1139/p07-200.

85. Wilson RB, Riffe DM. An embedded-atom-method model for alkali-metal vibrations. J Phys Condens Mat.
2012;24(33):335401. doi:10.1088/0953-8984/24/33/335401.

86. Jong GB, Song P, Jin HS. Phonon and thermodynamic properties of bcc transition metals using MEAM potentials.
Indian J Phys. 2020;94(6):753–66. doi:10.1007/s12648-019-01497-5.

87. Mei H, Wang F, Li J, Kong L. Elastic anisotropy and its temperature dependence for cubic crystals revealed by
molecular dynamics simulations. Model Simul Mater Sc. 2023;31(6):065013. doi:10.1088/1361-651X/ace541.

88. Geshi M, Funashima H, Hettiarachchi GP. First-principles study of highly-compressed Sb: a stubborn body-
centered cubic structure. Jpn J Appl Phys. 2022;61(8):012011. doi:10.35848/1347-4065/ac8035.

89. Troncoso JF, Turlo V. Evaluating the applicability of classical and neural network interatomic potentials for
modeling body centered cubic polymorph of magnesium. Model Simul Mater Sc. 2022;30(4):045009. doi:10.1088/
1361-651X/ac5ebc.

90. Qian X, Yang R. Temperature effect on the phonon dispersion stability of zirconium by machine learning driven
atomistic simulations. Phys Rev B. 2018;98(22):224108. doi:10.1103/PhysRevB.98.224108.

91. Pandey P, Pandey SK. Ab initio investigation of the lattice dynamics and thermophysical properties of bcc
vanadium and niobium. J Phys Condens Mat. 2024;36(16):165602. doi:10.1088/1361-648X/ad1bf4.

https://doi.org/10.1088/1361-651X/ab17b7
https://doi.org/10.1016/j.commatsci.2023.112597
https://doi.org/10.1016/j.commatsci.2023.112597
https://doi.org/10.1016/S0167-2789(02)00351-2
https://doi.org/10.1103/PhysRevE.72.056607
https://doi.org/10.1016/j.physd.2012.08.011
https://doi.org/10.1103/PhysRevE.102.052212
https://doi.org/10.1140/epjst/e2018-00003-9
https://doi.org/10.1140/epjst/e2018-00003-9
https://doi.org/10.1016/S0375-9601(97)00298-3
https://doi.org/10.1016/S0167-2789(97)00259-5
https://doi.org/10.1103/PhysRevE.64.066606
https://doi.org/10.1103/PhysRevE.96.042121
https://doi.org/10.1103/PhysRevE.96.042121
https://doi.org/10.1103/PhysRevE.97.032102
https://doi.org/10.1088/1361-6544/ab9498
https://doi.org/10.1103/PhysRevE.97.062218
https://doi.org/10.1139/p07-200
https://doi.org/10.1088/0953-8984/24/33/335401
https://doi.org/10.1007/s12648-019-01497-5
https://doi.org/10.1088/1361-651X/ace541
https://doi.org/10.35848/1347-4065/ac8035
https://doi.org/10.1088/1361-651X/ac5ebc
https://doi.org/10.1088/1361-651X/ac5ebc
https://doi.org/10.1103/PhysRevB.98.224108
https://doi.org/10.1088/1361-648X/ad1bf4


3820 Comput Mater Contin. 2025;82(3)

92. Bakhvalov NS. Numerical methods: analysis, algebra, ordinary differential equations. Moscow: MIR Publishers;
1977.

93. Chechin GM, Sakhnenko VP. Interactions between normal modes in nonlinear dynamical systems with discrete
symmetry. Exact results. Physica D. 1998;117(1–4):43–76. doi:10.1016/S0167-2789(98)80012-2.

https://doi.org/10.1016/S0167-2789(98)80012-2

	Delocalized Nonlinear Vibrational Modes in Bcc Lattice for Testing and
obreakspace Improving Interatomic Potentials
	1 Introduction
	2 Body-Centered Cubic Lattice
	3 Zone-Boundary DNVMs of bcc Lattice
	4 Phonon Dispersion Relation
	5 Energy of Different Bonds
	6 Analytical Results for DNVMs
	7 Conclusions
	Appendix A Auxiliary Equations
	References


