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ABSTRACT: Deep learning algorithms have been rapidly incorporated into many different applications due to the
increase in computational power and the availability of massive amounts of data. Recently, both deep learning and
ensemble learning have been used to recognize underlying structures and patterns from high-level features to make
predictions/decisions. With the growth in popularity of deep learning and ensemble learning algorithms, they have
received significant attention from both scientists and the industrial community due to their superior ability to
learn features from big data. Ensemble deep learning has exhibited significant performance in enhancing learning
generalization through the use of multiple deep learning algorithms. Although ensemble deep learning has large
quantities of training parameters, which results in time and space overheads, it performs much better than traditional
ensemble learning. Ensemble deep learning has been successfully used in several areas, such as bioinformatics, finance,
and health care. In this paper, we review and investigate recent ensemble deep learning algorithms and techniques
in health care domains, medical imaging, health care data analytics, genomics, diagnosis, disease prevention, and
drug discovery. We cover several widely used deep learning algorithms along with their architectures, including deep
neural networks (DNNs), convolutional neural networks (CNNs), recurrent neural networks (RNNs), and generative
adversarial networks (GANs). Common healthcare tasks, such as medical imaging, electronic health records, and
genomics, are also demonstrated. Furthermore, in this review, the challenges inherent in reducing the burden on the
healthcare system are discussed and explored. Finally, future directions and opportunities for enhancing healthcare
model performance are discussed.

KEYWORDS: Deep learning; ensemble learning; deep ensemble learning; deep learning approaches for health care;
health care

1 Introduction
Machine learning (ML) algorithms have been rapidly incorporated into many different applications

due to the increase in computational power and the availability of massive amounts of data. Currently, the
two leading machine learning methods are advanced deep learning and ensemble learning methods. Deep
learning (DL) algorithms are a subfield of machine learning based on deep neural network structures and
have gained considerable attention in recent decades due to their ability to extract complex, hidden, high-
level features from inputs. These features are extracted from the raw data and allow the model to learn the
data representations and patterns. The input data are processed through large layers with large quantities of
neurons and parameters for automatic reasoning and decision-making. These layers receive the raw data and
transform it into a nonlinear form, which is passed to the next layer. The first layer is called the input layer,
the last layer is called the output layer, and the middle layers are called the hidden layers, which perform
the deep learning step. Moreover, deep learning layers may include a variety of layers, such as activation
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layers, normalization layers, dropout layers, cropping layers, sequence layers, max pooling layers, average
pooling layers, fully connected layers, combination layers, and generative adversarial network layers [1]. Deep
learning algorithms have a variety of different network architectures for different regression and classification
tasks, such as artificial neural networks (ANNs), convolution neural networks (CNNs), recurrent neural
networks (RNNs), and generative adversarial networks (GANs), as shown in Fig. 1. However, building and
training deep learning algorithms require expertise to tune the hyperparameters and massive amounts of
data. Therefore, training and tuning of complex models may result in many issues, such as overfitting and
gradient vanishing. Reviews of deep learning architectures have been presented in several research papers
[2–4]. By utilizing recent deep learning techniques in a variety of applications, state-of-the-art performance
has been achieved in several domains, including object recognition, speech recognition, genomics, and
drug discovery. Ensemble learning is a reliable strategy that combines several types of baseline learning
for better generalization performance. Theoretical and experimental evidence has proven that ensemble
deep learning outperforms single deep learning models [5]. The effectiveness of ensemble deep learning
has been widely proven in a variety of applications, such as computer vision, finance, bioinformatics, and
health care [6]. Ensemble learning involves different techniques, such as bagging, boosting, and stacking.
With developments in both deep learning algorithms and ensemble learning techniques, healthcare support
systems are growing rapidly and widely, especially in health informatics areas, such as medical imaging,
drug discovery, bioinformatics, health analytics, and public health [7]. In addition, with a large amount of
available patient data [8], patient information can be collected, stored, and retrieved in real-time for several
purposes, including diagnosis, monitoring, treatment, and various types of data analysis and decision-
making. Utilizing an ensemble deep learning model to process patient information improves both the
reliability and stability of the models by reducing the variance and avoiding overfitting [8]. Thus, ensemble
deep learning has outperformed physician-level accuracy in a variety of disease diagnostic and treatment
tasks, including medical imaging and cancer detection [9]. However, comparing human performance to
that of artificial intelligence algorithms has led to a lack of full clinical diagnosis, as these methods use only
images to perform the diagnosis. In the real world, physician readers have access to both medical records
and medical images and may require additional tests for successful diagnosis. Health in general refers to a
state of well-functioning behavior, and physical and mental health without any disease or health care refers
to restoring health and preventing/detecting health problems in the early stage. Early disease detection can
encourage people to change their bad habits, lousy eating habits, and lifestyles. Additionally, early chronic
disease detection helps patients to avoid complications and expedite treatment [10]. Healthcare systems offer
several high-quality services to overcome rapidly increasing and complicated issues related to elder care
and chronic diseases. Common factors such as laboratory tests and experimental results, sex, age, body
mass index (BMI), hypertension status, blood pressure (BP), lifestyle, diet, and exercise habits of patients
are utilized to detect chronic diseases, including diabetes, heart attack, hepatitis, and kidney diseases [11].
Health specialists/physicians use medical laboratory tests and diagnoses to determine whether a patient
has/suffers from a specific disease. The use of patient history and generated data from an electronic device
could help specialists/physicians predict a variety of diseases in the early stages. Many intensive studies have
been conducted on deep learning algorithms utilized in the healthcare field to enhance both prediction
and classification performance. Esteva et al. [9] presented deep learning techniques for health care. The
authors discussed deep learning in computer vision, natural language processing, reinforcement learning,
and generalized methods related to health care issues but not ensemble deep learning methods. In [12],
the authors reviewed Bayesian deep learning (BDL) techniques and their benefits and limitations in the
healthcare field. Mahajan et al. [13] reviewed the use of ensemble learning in five highly researched diseases,
i.e., diabetes, skin disease, kidney disease, liver disease, and heart conditions. Nisar et al. [1] discussed health
through deep learning, including issues, challenges and opportunities. To the best of our knowledge, this
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paper is the first comprehensive review focusing specifically on ensemble deep learning in healthcare. This
article covers only the most recent studies that integrate ensemble learning with deep learning algorithms—
referred to as ensemble deep learning while excluding those that rely solely on standard ensemble learning
or traditional deep learning approaches. An overview of ensemble learning is summarized. Moreover, deep
learning algorithms and architectures are demonstrated. The use of ensemble deep learning algorithms
in healthcare systems, including medical imaging, health data analytics, genomics, disease prediction and
prevention, and drug discovery, is discussed in detail. The contributions of this review can be summarized
as follows:

• This paper provides a comprehensive review of ensemble learning and deep learning algorithms and
architecture, including recent models such as RNNs and GANs.

• Ensemble deep learning algorithms in health care applications, such as medical imaging and its variance,
health data analytics, genomics, disease predication, and prevention and drug discovery, are covered.

• Healthcare applications based on deep ensemble learning, consisting of four significant subsections of
benchmark datasets, data preprocessing, model training, and performance metrics, are summarized.

• The limitations and solutions of ensemble deep learning in health care are discussed, and future
directions are provided.

Figure 1: Artificial intelligence family

The remainder of this paper is organized as follows: Section 2 and Section 3 provide an overview of
ensemble learning and deep learning algorithms and architectures, respectively. In Section 4, ensemble
deep learning algorithms in health care systems are comprehensively discussed. Health care applica-
tions, including datasets, data preprocessing, model training, and performance metrics, are summarized
in Section 5. Section 6 provides an in-depth discussion of the limitations and future directions. Section 7
concludes this review article.

2 Overview of Ensemble Learning
This section presents an overview of ensemble learning methods and techniques for building blocks

of different ensemble methods to provide efficient and reliable prediction/classification methods. Most
of the reviewed research articles on ensemble learning methods attribute the discovery of the ensemble
learning method to Dasarathy and Sheela (1979), who suggested partitioning the feature space using multiple
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classifiers [14]. Hansen et al. [15] proposed an ensemble method based on a neural network with plurality
consensus that achieved better prediction performance than a single classifier. Moreover, Schapire [16]
presented a method that converts a weak learner into a strong learner by combining weak classifiers, referred
to as a boosting technique. Ensemble learning is a widely used machine learning technique that combines
multiple base learners to form an ensemble learning model for building a robust and accurate predictive
model [16]. A base learner is a single model that may easily suffer from noise, bias, and variation in the
data when performing prediction. Thus, ensemble learning is applied to reduce the generalization error and
enhance the classifier performance. The basic idea behind the ensemble learning framework is to aggregate
the base learner classifiers C (c1, c2, ... , ch) to predict a single output by utilizing a dataset of size n
and feature dimension m, where the output prediction based on the ensemble method is calculated using
average weight, max weight, or majority voting. Fig. 2 illustrates the general framework of ensemble learning
techniques, which can be viewed and achieved through four characteristics: data sampling, combination
rules, heterogeneity, and voting. First, data sampling refers to the process of dividing a training dataset
into subsets to achieve better accuracy and diversity through independent and dependent strategies. The
independent sampling strategy involves subsets that are not dependent on each other and are not affected
by the performance of the previous subset. The dependent sampling strategy involves subsets that depend
on the performance of the previous subset. Therefore, to avoid the difficulty of achieving diversity through
data sampling techniques, the optimal size of each subset and the maximum number of samples must
be determined [17]. Second, combination rules refer to the method of combining two base classifiers
through parallel ensemble techniques and sequential ensemble techniques. Parallel ensemble techniques
are used to train base classifiers simultaneously without dependency between classifiers or data sampling
to increase the diversity between base classifiers. A popular parallel ensemble algorithm is the bagging
algorithm. Alternately, sequential ensemble techniques are used to train base classifiers sequentially due to
data resampling dependency. The sequential methods are used to correct errors made by the previous base
classifier at each iteration. A popular algorithm for sequential ensembles is the boosting algorithm. Third,
heterogeneity characteristics depend on the type of algorithms utilized for each base classifier in the ensemble
process, which can be further classified as homogeneous or heterogeneous. The homogeneous ensemble
method consists of a number of base classifiers that use the same algorithms to build the model, while
the heterogeneous ensemble method consists of a number of base classifiers that use different algorithms.
Finally, voting methods are applied at the last stage for both classification and regression tasks to enhance
the ensemble prediction. The voting methods used for bagging and boosting can be further classified into
majority voting, average voting, and weighted average voting. First, majority voting, known as max voting,
is the most popular ensemble prediction method and is based on the most votes for each labeled class. Then,
average voting is calculated by taking the mean of the sum prediction divided by the total prediction. Finally,
weighted average voting is based on assigning different weights to each base classifier.

2.1 Ensemble Learning Techniques
In this subsection, the three most popular ensemble learning techniques, i.e., bagging, boosting, and

stacking, are explored and demonstrated.
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Figure 2: General ensemble learning method

2.1.1 Bagging
Bagging, short for bootstrap aggregation, was developed by Breiman in 1996 to improve classification

performance by combining and training multiple algorithms on small random subsets [18,19]. Bagging
improves accuracy by creating a diverse model utilizing bootstrap sampling and aggregation steps. In
bootstrap sampling, the training data sample is randomly selected from a given dataset with replacement,
as shown in Fig. 3. The training data sample may be included multiple times in a subset or may not be used
at all to train the model independently. In the aggregation step, the outputs from different base classifiers
are aggregated to determine the final decision via majority voting. The data replacement and aggregation
methods introduce diversity to create a strong base classifier. The main advantage of utilizing the bagging
technique is a reduction of the variance without increasing the bias, which improves the overall prediction
performance as shown in Table 1. Thus, it solves the overfitting problem introduced by the decision tree. The
disadvantage of bagging is that it leads to large model complexity, loss of interpretability, and high bias. A
popular bagging algorithm is random forest (RF).

Figure 3: Bagging ensemble learning process



3746 Comput Mater Contin. 2025;82(3)

Table 1: Advantages and limitations of the three common ensemble methods

Ensemble methods Advantages Disadvantages/limitation
Bagging Less computational time, reduced variance Large model complexity, overfitting
Boosting Reduced overfitting, reduced bias Sensitive to outliers
Stacking Better model prediction accuracy More computation time

2.1.2 Boosting
Methods The boosting ensemble technique, which was introduced by Freund and Schapire in early

1990 [16], is based on a sequential process to correct errors made by the previous weak classifier. Boosting
techniques select the misclassified data sample from the previous base classifier and assign it more weight to
help the next base classifier boost the performance. However, the iterative learning technique makes boosting
unsuitable for learning noisy data because the high weight assigned to noisy data is usually much greater than
the weights assigned to other samples. Thus, focusing on misclassified samples causes overfitting to occur.
Boosting ensemble techniques reduce the high bias and low variance. Boost ensemble algorithms include
several techniques, namely, adaptive boosting (AdaBoost), gradient boosting, extreme gradient boosting
(XGBoost), light gradient boosting machine (LightGBM), and CatBoost [20].

2.1.3 Stacking
Stacking, sometimes known as stacked generalization, was introduced by Wolpert in 1990. It combines

different classifier algorithms to generate a meta-model to reduce the generalization error in specific tasks.
Stacking is composed of two steps. First, the base classifiers consist of different machine algorithms, such
as RF, ANN, and SVM, to train the model using the original data samples. Each algorithm is trained
independently. In the second step, the outputs of the other ML algorithms are used to train the metaclassifier
to predict the final outputs. Utilization of more than one algorithm produces more reliable predictive models
that are superior to single models [21]. Unlike bagging ensembles, which use decision tree models trained
on subsets of the training data samples, stacked ensembles use different ML algorithms and are trained on
the same training data samples [20]. Additionally, unlike the boosting ensemble, which sequentially trains
models to correct the prediction errors of previous models, stacking trains a single model to learn how to
optimally combine the predictions from the base classifiers [20].

3 Deep Learning Algorithm and Architecture
Deep learning has been used in various artificial intelligence applications. Deep learning algorithms

have been applied mainly to regression, classification, and clustering tasks. Deep learning can extract high-
level features through a hierarchical feature learning mechanism because it has a more complex architecture
than classical machine learning algorithms such as logistic regression, support vector machines, decision
trees, KNNs and naïve bays. This complex architecture requires more computational resources and more
data to train and fine-tune the hyperparameters of the models. In this section, we review the most famous
deep learning algorithm architectures that have been utilized in the context of ensemble learning for
healthcare applications. The success of deep learning applications in health care depend on finding a suitable
architecture to fit the task; thus, we explain the deep learning algorithms and architectures as follows.
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3.1 Deep Neural Networks
Deep neural networks, which are computational models, have achieved great empirical success in sev-

eral machine learning tasks, such as computer vision, speech recognition, and natural language processing.
Deep neural networks consist of multiple layers, and each layer has many artificial neurons, as shown
in Fig. 4. Each neuron receives features (inputs) that are multiplied by network weights. These weights are
randomly initialized. Then, the sum of all multiplications is passed through an activation function (generally
a nonlinear function). The output of the nonlinear function is an output of neurons. The outputs of neurons
in the previous layers are used as inputs to the next layers with the formula below:

(y = g(w(wt−1 Xt−1 + bt−1) + b) (1)

where g is the activation function, wt , bt are the weights and biases respectively, and X is the input from
previous layer. The last layer is used to output discrete values (known as classification) or continuous values
(known as regression). In the case of the multiclassification task, softmax is used as an activation function,
and in the case of binary classification, sigmoid is used to output results between 1 and 0 as defined:

Sigmoid(x) = 1
1 − e−x (2)

Figure 4: Deep neural networks

The optimal weight distribution is achieved through an iterative training process using backpropagation
algorithms [22].
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3.2 Convolution Neural Networks
Convolutional neural networks (CNNs), introduced by Lecun et al. in 1998 and inspired by visual

perception, are supervised deep learning algorithms used mainly in computer vision, NLP, drug discovery,
etc. CNNs consist of three main layers, namely, convolutional layers and pooling layers, followed by fully
connected layers. First, the convolutional layer utilizes many kernel (filter) weights to convolve the entire
input for feature extraction, such as edges, textures, objects and lines as defined:

im(x , y) = wm ,n .imx , y(x +m, y + n) + b (3)

where im(x , y)is he input image, wm ,n is the kernel, and b is the bias. The kernel weights are updated
during training via backpropagation algorithms. The outputs of the convolution layers are called feature
maps [23,24]. Second, pooling layers, often called subsampling layers, reduce the size of the feature maps
by computing the number of pixels within a small neighborhood [7]. This layer computes the feature maps
using different pooling types, such as global pooling, average pooling, and mixed pooling. Finally, the
fully connected layer flattens the two dimensions into a one-dimensional vector to perform classification
as shown inf Fig. 5. The CNN requires a large labeled dataset to train the models. The CNN has several
complex architectures for training models, such as LeNet, AlexNet, VGGNet, Inception, ResNet, DenseNet,
and MobileNet. CNNs and various CNNs are the most popular deep learning methods adopted in several
computer vision applications and have proven successful in terms of both efficiency and accuracy [25].

Figure 5: Convolution deep neural networks

3.3 Recurrent Neural Networks
A recurrent neural network (RNN) is a neural network with recurrent connections used to extract

patterns from sequential or time-series data such as DNA, RNA, speech, video, time series, financial data, and
text. A simple RNN consists of three layers: input layers, recurrent hidden layers, and output layers. The main
component of RNNs is the hidden state that stores, remembers, and processes past information for long-term
dependency. This hidden state is based on a memory cell, which is updated at each time step by taking two
inputs: the current input and the previous hidden state. When training RNNs for long-range sequences of
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data, RNNs suffer from vanishing or exploding gradient problems [26]. To overcome this issue, long short-
term memory (LSTM) networks and gated recurrent unit (GRU) networks have been utilized to handle
long sequential learning problems. There are many RNN architectures, including one-to-one, one-to-many,
many-to-one, and many-to-many.

3.4 Generative Adversarial Networks
Generative adversarial networks (GANs), introduced by Goodfellow et al. [27], are a recent type of

deep learning algorithm used to capture the probability distribution of training data. GANs are designed
for unsupervised learning problems, especially in state-of-the-art transfer learning, and for tackling the data
imbalance challenge. GANs have been successfully applied to many generative tasks, such as image gener-
ation, natural language processing, data augmentation, and style transfer. GANs consist of two networks: a
generative network and a discriminative network. The generator network learns to generate realistic data such
as text or images from random noise to fool the discriminator network, where the discriminator network
is a classifier that learns to distinguish between fake data and real data. There are several GAN architecture
types, including vanilla GAN, conditional GAN (CGAN), deep convolutional GAN (DCGAN), StyleGAN,
CycleGAN, PixelRNN, and super resolution GAN (SRGAN).

3.5 Autoencoder
An autoencoder (AE) is an unsupervised learning algorithm used mostly for representation learning,

generative modeling, denoising, dimensionality reduction (compression), feature extraction, efficient cod-
ing, anomalies, etc. An AE consists of three parts: an encoder, code, and a decoder. The encoder compresses
the input data into lower dimensions through multilayer neural networks. The code, known as a latent-space
representation, is a bottleneck of the network that represents compressed input data. The decoder is used to
reconstruct the original input. There are several autoencoder types, namely, denoising (DAE), sparse (SAE),
contractive AE (CAE), and variational (VAE). DAEs are used to remove noise from partially corrupted input
where the input and output are not the same [28]. The SAE penalizes the activation function by adding a
penalty term to the loss function [29]. The CAE utilizes a regularization term to make the model robust
to slight changes in the input data. A VAE is a generative model that captures the underlying probability
distribution of the data samples to find low-dimensional representations, perform dimensionality reduction,
and extract features.

4 Ensemble Deep Learning in Healthcare System
Ensemble Deep Learning outperforms both traditional deep learning and standard ensemble learning

in healthcare systems by combining predictions from multiple classifiers, resulting in improved accuracy,
robustness, and generalization, particularly when handling noisy, imbalanced, and diverse healthcare
datasets. It mitigates overfitting and improves sensitivity and specificity in critical diagnostic applications
more effectively than standard ensemble learning. In this section, we review six of the most common
healthcare tasks that utilize deep ensemble deep learning to extract useful features and enhance performance
as shown in Fig. 6: medical imaging, electronic health records, genomics, disease prediction and prevention,
and drug discovery.
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Figure 6: (1) Low level features, (2) Middle level features, and (3) High level features

4.1 Medical Imaging
The recent success of employing ensemble deep learning has been mostly in the field of computer vision,

which utilizes images and video frames for predication/classification tasks. Computer vision algorithms
in health care, including radiology, ophthalmology, pathology, and dermatology, utilize medical images to
improve clinical diagnosis and treatment. These medical images are acquired through different imaging
modalities, including magnetic resonance imaging (MRI), computed tomography (CT), X-rays, and positron
emission tomography (PET), for early diagnosis and treatment. Medical imaging modalities are classified
into seven major tasks: classification, segmentation, detection, registration, reconstruction, retrieval, and
enhancement [30]. Medical images, known as radiography, aid specialists/physicians in reducing workload
and expediting objective opinions. In addition, specialists/physicians can easily discover hidden areas in
images by performing a variety of tasks, such as object detection, classification, registration, segmentation,
image reconstruction and enhancement, by utilizing advanced algorithms, such as ensemble deep learning
algorithms [9,12]. Due to the wide use of both deep learning and ensemble learning technologies in medical
imaging, ensemble deep learning leverages the diversity of aggregated models to significantly enhance
performance accuracy, improve robustness, and effectively address challenges such as data variability, noise,
and class imbalance inherent in medical imaging tasks. Fully intelligent medical imaging diagnosis and
prediction health care systems are hot research topics, especially medical imaging classification, medical
imaging segmentation, and medical imaging detection.

4.1.1 Medical Imaging Classification
Deep learning is applied in medical imaging classification to extract complex features from raw image

data by learning hierarchical representations of input images. By incorporating ensemble deep learning with
a diverse set of deep base classifiers, the approach can significantly enhance overall prediction accuracy
and resilience, decreasing the possibility of incorrect classifications. This, in turn, improves the reliability of
medical classification and contributes to the development of more precise and effective diagnostic outcomes.
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Yang et al. [31] proposed an ensemble deep learning model for medical image classification that comprises
two modules: a deep tree training (DTT) scheme and a two-stage selective ensemble of CNN branches. Their
proposed approach mitigates the vanishing gradient problem via DTT, which causes chain rule computation
of the backpropagation. Both the CNN and DTT are split into M classifier branches, followed by two-stage
selective ensemble, accuracy-based selection and diversity-based selection to select the optimal ensemble
members from branch classifiers to overcome the overfitting and local optima issues. Although the proposed
approach has been proven effective for medical imaging tasks, it introduces several challenges. These include
the need to fine-tune numerous hyperparameters, such as the number of branches, the splitting location,
and the number of selected base classifiers. This added complexity can significantly increase computational
demands and the effort required for model optimization. The proposed approach was proven to be effective
for medical imaging tasks. Ahn et al. [32] proposed an ensemble of different unsupervised feature learning
approaches to learn feature representations to differentiate dissimilar medical images using K-means clus-
tering and convolutional neural networks. The proposed approach jointly learns feature representations and
clustering assignments in an automated end-to-end system. Their method outperformed other unsupervised
methods and addressed the issue of the large volume of unlabeled datasets. Tandel et al. [25] developed an
efficient computer-aided diagnostic tool for brain tumor grading using MRI sequences. The authors utilized
five well-known convolutional neural models, AlexNet, VGG16, ResNet18, GoogLeNet, and ResNet50, to
extract useful features. This method employed ensemble deep learning based on majority voting with relevant
MRI sequence data to boost the tumor classification performance. The authors compared the proposed
approach with well-known models such as AlexNet, VGG16, ResNet18, GoogLeNet, and ResNet50; the results
showed a significant improvement of the proposed approach on different datasets. Gunasekaran et al. [33]
presented a deep ensemble model called GIT-Net to classify gastrointestinal (GI) diseases and disorders
utilizing endoscopic images. The proposed method consists of three pretrained models, ResNet50 (residual
network), DenseNet201 (densely connected convolutional networks), and Inception V3, which are pretrained
on the ImageNet dataset to extract complex features from the KVASIR v2 dataset with eight classes of
digestive diseases. Additionally, the authors achieved accuracies of 92.96% and 95.00% through a weighted
average ensemble model, which was used to reduce training time. The proposed method’s dependence on a
weighted average ensemble model poses a challenge, as it significantly increases computational complexity
and training time due to the integration of three large pretrained models with millions of parameters,
despite achieving high accuracy. Tajammal et al. [34] proposed a deep learning-based ensembling technique
to classify the six stages of Alzheimer’s disease using a pipeline of medical imaging processing. Their
approach is divided into two steps. First, a custom CNN, inspired by VGG-16, is used to classify the scans of
subjects into one stage. Then, VGG-16, ResNet-18, AlexNet, Inception V1, and custom CNNs are combined
for multiclass classification of Alzheimer’s disease. The results show that max voting outperforms other
ensemble techniques, such as stacking, blending, and averaging, with 98%, 94.2%, 92.5%, and 97.9% accuracy,
respectively. However, the proposed method introduces additional complexity due to ensemble techniques
like max-voting and stacking, which require meticulous tuning. Furthermore, the lack of extensive validation
raises concerns about the method’s robustness and adaptability across diverse datasets. Table 2 is a summary
of published articles that used ensemble deep learning for medical image classification.
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Table 2: A summary of published articles that used ensemble deep learning for medical image classification

Paper Year Task Deep learning
model

Ensemble
strategy

Dataset Performance
metrics

[35] 2020 Medical
imaging

classification

CNNs,
DenseNet-121,
GoogLeNet,
InceptionV4,

MobileNet-v2,
ResNet-50,

VGG-16

Dynamic
weights

ISIC, CheXpert,
NCT, OCT

ISIC: Acc 82.8%
CheXpert: Acc

72.4%
NCT: Acc

94.2%
OCT: Acc 98.1%

[36] 2021 COVID-19 AlexNet,
GoogLeNet, and

ResNet

Relative
majority voting

COVID-19 CT Acc: 98.25%

[37] 2024 Images of chest
CT scan

Deep CNN Majority voting
1

Skin cancer
ISIC

Acc: 98.67%

[31] 2021 Tuberculosis
detection

CNN Majority
voting, simple

averaging,
weighted

averaging, and
stacking

Shenzhen CXR Acc: 94.1%

[38] 2021 COVID-19 case
detection

CNN A weighted
average

COVID-19
radiography

database

Acc: 95%

[39] 2022 Brain tumor
detection

CNNLSTM – MRI brain
tumor dataset,
Brast2022 and

T-weighted

Acc: 99.1%

[25] 2023 Brain tumor
classification

AlexNet, VGG16,
ResNet18,

GoogLeNet, and
ResNet50

Majority vote T1W-MRI,
T2W-MRI, and

FLAIR-MRI

Acc: 8.88%,
97.98%, 94.75%,

respectively

[33] 2023 Gastrointestinal
(GI) diseases

DenseNet201,
InceptionV3, and

ResNet50

Averaging and
weighted
averaging

KVASIR v2
dataset with
eight classes

94.54%,
88.38%, and

90.58%
[40] 2023 Lung disease

detection
EfficientNet Stacking Lung disease

dataset
Acc: 98%

[34] 2023 Alzheimer’s
disease stages

VGG-16,
ResNet-18,
AlexNet,

Inception V1, and
Custom CNN

Stacking, max
voting

ADNI dataset Acc: 98.24%

(Continued)
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Table 2 (continued)

Paper Year Task Deep learning
model

Ensemble
strategy

Dataset Performance
metrics

[41] 2019 Skin lesion
segmentation

Mask R-CNN and
DeeplabV3+

Ensemble ADD
and ensemble-

comparison

ISIC-2017, PH2
dataset

Acc: 93.8%

[42] 2023 Cervical cell
cancer

U-Net, U-Net++,
DeepLabV3,

DeepLabV3Plus,
Transunet, and

Segformer

Unweighted
average

Cx22 dataset The Dice for
cytoplasm

segmentation
and nucleus

segmentation
were 0.948, and

0.750,
respectively

4.1.2 Medical Imaging Segmentation
Automatic segmentation of medical images is crucial for accurately identifying boundaries and min-

imizing potential risks to a patient’s health. Ensemble deep learning techniques significantly enhance
boundary detection and precision by aggregating outputs from multiple models, each specializing in different
aspects of image features, such as edge detection, texture analysis, and intensity variations. Additionally, these
ensemble models improve sensitivity and specificity by effectively addressing the class imbalance challenge,
which is commonly encountered in detecting rare medical conditions. By leveraging the strengths of diverse
models, ensemble deep learning ensures more robust and reliable segmentation outcomes, ultimately aiding
in better diagnosis and treatment planning. Goyal et al. [41] proposed a skin lesion segmentation system
utilizing ensemble deep learning. The authors combined Mask R-CNN and DeeplabV3+with preprocessing
and postprocessing methods to perform lesion segmentation. The proposed method outperformed other
deep learning algorithms, such as FrCN, FCNs, U-Net, and SegNet. Ji et al. [42] aimed to develop automated
cervical cell segmentation, including cytoplasm and nucleus segmentation, using deep ensemble learning.
Six different deep learning architectures were used, namely, U-Net, U-Net++, DeepLabV3, DeepLabV3Plus,
Transunet, and Segformer, which represent three different architectures, namely, encoder-decoder, dilated
convolution and vision transform architectures. The ensemble learning model was initialized using a
pretrained ImageNet. The final predictions were obtained by aggregating the results from multiple models
using the unweighted average. The proposed method relied heavily on pre- and post-processing steps,
which affected its robustness, scalability, and ease of deployment in real-world clinical applications. The
authors of [43] proposed a fast and accurate autosegmentation method for organs at risk (OARs) and
high-risk clinical tumor volume (HRCTV) in patients with gynecological cancer. The authors applied nnU-
Net, which is an automatically adapted deep convolutional neural network based on U-Net, to segment
three parts: the bladder, rectum and HRCTV on CT images. Three architectures, namely, 2D U-Net, 3D
U-Net and 3D-Cascade U-Net, were utilized for fast and reproducible autosegmentation of OARs and
HRCTVs in gynecological cancer. The proposed method suffers from high computational costs due to
resource-intensive training and testing processes, and its task-specific nature limits generalizability across
different datasets and clinical scenarios. The authors of [44] proposed two selective ensemble methods for
deep learning segmentation of major vessel areas for automated quantitative coronary analysis (QCA) via
invasive coronary angiography (ICA) to improve segmentation performance and reduce morphological
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errors in the predicted masks. The selective ensemble methods are based on the following steps: (1) obtain
prediction masks from multiple segmentation models focused on different morphological features; (2) rank
the prediction masks based on the morphological or estimated dice similarity coefficient (DSC); and (3)
combine the prediction masks with weights that vary according to the ranks. The authors applied U-Net
with DenseNet-121 to segment the three major vessels using a large database of ICA images. The proposed
method outperforms the individual models, improves the segmentation performance with DSCs up to
93.07%, and provides a better delineation of coronary lesions with local DSCs of up to 93.93%. The proposed
method should focus on side branch analysis for bifurcation lesion evaluation, angiographic sequence
analysis for comprehensive interpretation, and reducing dependency on the best-performing individual
models within selective ensembles. Rahimpour et al. [45] presented a visual ensemble selection of deep
convolutional neural networks for 3D segmentation of breast tumors on dynamic contrast-enhanced MR
images. The authors developed three 3D U-Net models for segmentation that were trained using different
strategies: postcontrast images or a combination of postcontrast and subtraction images. The proposed
method achieved segmentation results, with 77% rated as useful, demonstrating outcomes comparable to
inter-radiologist agreement.

4.1.3 Medical Imaging Detection
Ensemble deep learning has transformed medical imaging detection by effectively tackling key chal-

lenges, including noise, variations in imaging modalities, class imbalance, and the demand for precise
anomaly identification. By aggregating predictions from multiple models, these methods improve robust-
ness, sensitivity, and specificity, making them highly effective for identifying intricate patterns in medical
images. This approach is particularly valuable for detecting subtle anomalies, such as nodules in CT scans,
lesions in MRIs, and markers of COVID-19 in chest X-rays. Zhou et al. [36] proposed an ensemble deep
learning model for novel COVID-19 detection from CT images. Transfer learning was applied to the
initialization parameters of the models, and three well-known convolutional neural network models were
pretrained—AlexNet, GoogLeNet, and ResNet—followed by softmax as the classification layer. The proposed
method achieved 99.054% detection of COVID-19 on a public dataset utilizing a relative majority vote
algorithm as an ensemble classifier. Rajaraman et al. [46] proposed a modality-specific deep learning strategy
to improve the generalizability of the transferred knowledge gained through modality-specific features. The
authors designed and evaluated the performance of a baseline, custom, sequential CNN model for detecting
tuberculosis (TB) in chest X-ray (CXR) images. Pretrained CNNs, namely, InceptionResNet-V2, Inception-
V3, and DenseNet-121, were employed to learn modality-specific features. Different ensemble methods, such
as majority voting, simple averaging, weighted averaging, and stacking, were used to reduce the detection
variance and training data sensitivity and improve the detection performance. Tang et al. [38] proposed an
ensemble deep learning model, called EDL-COVID, for detecting COVID-19 cases from chest X-ray images.
Their model consists of two steps. First, multiple COVID-Net snapshot models, which are based on deep
CNNs, are combined, especially for COVID-19 case detection. Second, an ensemble method called weighted
averaging ensembling (WAE) is utilized. Compared with the original COVID-Net, the proposed method
achieved 95% accuracy on the COVIDx dataset (93%). Alsubai et al. [39] presented a hybrid ensemble deep
learning method for brain tumor detection. This ensemble model includes two deep learning algorithms—
a convolutional neural network (CNN) and long short-term memory (LSTM)—for extracting features and
classifying brain tumors utilizing magnetic resonance imaging (MRI) (no image detection). The proposed
model achieved an accuracy of 99.1%, a precision of 98.8%, a recall of 98.9%, and an F1-measure of 99.0%.
However, the variability in tumor shapes and sizes presented significant challenges. Terzi [47] proposed an
ensemble of deep learning object detection models based on anatomical and pathological regions in brain
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MR images. The proposed detection methods used nine different state-of-the-art object detection models,
namely, RetinaNet, YOLOv3, FCOS, NAS-FPN, VFNet, Faster R-CNN, Dynamic R-CNN, Cascade R-CNN,
and ATSS. The proposed models were used to detect 12 anatomical and pathological regions simultaneously,
including the brain ROI (brain tissue and orbital CSF), eyes, optic nerves, lateral ventricles, third ventricle
peritumoral edema, contrast-enhancing region, tumor necrosis, hemorrhage, and no contrast-enhancing
region. The proposed models achieved significant performance improvements, including up to 10% higher
mean average precision (mAP), 18% better class-based precision for anatomical structures, and a 3.3%
mAP enhancement over the best individual model. Ravi et al. [40] proposed a multichannel EfficientNet
deep learning approach for detecting lung diseases such as pneumonia, tuberculosis (TB), and COVID-
19 using chest X-ray images. Three multichannel pretrained models, EfficientNetB0, EfficientNetB1, and
EfficientNetB2, are used for feature extraction. The stacked ensemble classification approach has two stages:
first, a random forest and support vector machine are used for prediction; second, logistic regression is
used for classification. Table 3 provides a summary of published articles that employ ensemble deep learning
techniques for medical image detection.

Table 3: A summary of published articles that used ensemble deep learning for medical image detection

Paper Application
disease

Deep learning Ensemble Year Dataset Performance
metrics

[48] Pneumonia
disease

(InceptionResNet_V2,
ResNet50 and
MobileNet_V2

Voting
fusion

2021 Chest X-ray,
and CT
dataset

Acc: 90%

[49] Kidney disease (DBN), kernel
extreme learning

machine (KELM), and
(CNN-GRU)

Weight
average

2021 CKD dataset Acc: 96.9%

[50] Cardiovascular
diseases

ResNet-50 Average
ensemble

and stacking
ensemble

2023 1 12-lead ECG
database

Acc: 99.6%

[51] Heart disease
detection

Deep Neural Network
(DNN) and Fine

Tuned Deep Neural
Network(FT-DNN)

Stacked
ensemble

2023 Framingham
heart

Acc: 94.14%

[52] Pediatric
pneumonia
diagnosis

MobileNet,
DenseNet121,

DenseNet169, and
DenseNet201

Stacked
ensemble

2023 Chest X-ray
images

Acc: 99%

[53] Pediatric
pneumonia
diagnosis

Xception Stacked
ensemble

2022 Pediatric
pneumonia

dataset

Acc: 98.3%

[54] Diabetic
retinopathy

VGG19, ResNet50,
and DenseNet

Majority soft
voting and

stacking
techniques

2020 OCTA dataset Acc: 90.71%

(Continued)
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Table 3 (continued)

Paper Application
disease

Deep learning Ensemble Year Dataset Performance
metrics

[55] Diabetic
retinopathy

Modified DenseNet101
and ResNeXt

Stacked
ensemble

2022 DIARETDB1,
and

APTOS2019
diabeticretino
pathydataset

Acc: 86.08
for five

classes and
96.98% for
two classes

[56] Diabetes risk
prediction

Deep belief neural
networks

Voting
ensemble

feature
selection

2023 Diabetes
dataset

F1-measure,
precision

and recall of
1.00, 0.92
and 1.00,

respectively
[56] Kidney disease Neural Networks Bagging

classifier and
voting

approaches

2023 CKD dataset
sourced at the

UCI-ML
warehouse

Acc: 99.17%

[57] Diabetes
miletus

Convolutional gated
recurrent neural

network (CGRNN)
Metamodel algorithm

Stacked
ensemble

2022 The Austin
Public Health

Diabetes
database

Acc: 91.33%

[58] Skin cancer
classification

ResNet, Inception V3,
DenseNet,

InceptionRes Net V2,
and VGG-19

Majority
voting and
weighted
majority
voting

2021 ISIC 2019
dataset

Acc: 98%
and 98.6%,
respectively

4.2 Electronic Health Record
Electronic health records (EHRs) are collections of patient data records that are stored electronically

in both structured form (e.g., diagnosis, medication, laboratory test) and unstructured form (e.g., image
scanning, free clinic notes) and are utilized through machine learning and deep learning algorithms to
predict diseases from patient clinical status [59]. These records are utilized to monitor the patient’s health
status, which results in a large amount of data, including personal and physical information, patient medical
histories, radiological images, treatments, medication/drugs, laboratory test results, immunization dates and
allergies [12]. The collected data are raw data that need to be data-mined to extract knowledge through
both machine learning and deep learning to save time and lives [12]. Deep EHR learning applications
can be divided into five categories: information extraction, representation learning, outcome prediction,
computational phenotyping, and clinical data deidentification [60]. Among these, ensemble deep learning
methods have gained significant attention for their ability to integrate multiple models, leading to enhanced
predictive performance across diverse tasks. In particular, stacking is considered the most effective ensemble
deep learning approach for EHR applications, as it seamlessly combines models designed for both structured
and unstructured data while effectively reducing bias and variance. Murugadoss et al. [61] presented an
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ensemble method for automated deidentification of unstructured HERs and clinical notes. These unstruc-
tured HERs and notes often contain personally identifiable information, including names, dates of birth,
phone numbers, or residential addresses of patients, which restricts their utilization in research development.
The authors employed an ensemble architecture, integrating attention-based deep-learning models and rule-
based methods, supported by heuristics for detecting PII in EHR data. The proposed method was tested on
the i2b2 2014 and Mayo Clinic datasets and achieved a recall of 0.992% and precision of 0.979% on the former
and a recall of 0.994% and precision of 0.967% on the latter. Christopoulou et al. [62] proposed an ensemble
approach for relation extraction and classification between drugs and medication-related entities in EHRs.
The proposed method utilized both weighted bidirectional long short-term memory (BiLSTM) networks
and Walk-based models for intra- and intersentence relation extraction in EHRs and combined them using
an ensemble method based on majority voting. Wang et al. [63] aimed to utilize imbalanced EHRs to predict
acute kidney injury (AKI) through a fast, simple and less costly binary classification model based on an
ensemble learning algorithm called the Ensemble Time Series Model (ETSM). Luo et al. [64] proposed a deep
learning-based ensemble approach to automatically identify heart disease risk factors, including smoking,
obesity, and diabetes, from EHRs. The proposed method utilizes bidirectional encoder representations from
transformers (BERT) to extract high-level semantic information from EHRs and automates risk factor
identification, which is then fed to conditional random fields (CRFs) to identify all possible risk factor
indicators. The trained BERT-CRF models use majority voting. Zhang et al. [65] introduced PheME, a deep
ensemble framework using multimodal data from structured EHRs and unstructured clinical notes, which is
used for robust and accurate phenotype prediction. First, they employed multiple deep learning algorithms,
including multilayer perceptron (MLP) and Blue-BERT algorithms, to learn reliable representations from
sparse structured EHR data and clinical notes. A multimodal model then aligns multimodal features onto
the same latent space to predict phenotypes. Second, the authors employed two ensemble methods, majority
voting and a label model strategy, to improve phenotype prediction. Although the application of ensemble
deep learning in EHRs has greatly advanced, especially in prescreening undiagnosed individuals who are
more likely to have a given disease based on their available demographic, clinical and lifestyle factors, the
limitations of ensemble deep learning in this field still exist [66,67].

4.3 Genomic
Genomics is a branch of molecular biology concerned with mapping the structure, evolution, and

function of genomes (e.g., DNA sequencing and RNA measurements) [59]. The implementation of genomics
in health care can be categorized into four broad groups: infectious disease, rare disease, cancer, and
common or chronic disease. These diseases can be identified in clinical use, and there is a considerable
overlap in human biology. Each human has unique biological DNA, which consists of between 20,000 and
25,000 genes, where each gene is composed of between a few hundred and 2 million DNA bases. The use
of genomic sequencing of pathogens for diagnosing infectious disease is rapidly increasing, especially in
health care systems and medical applications. One of these applications is pharmacogenomics, which allows
specialists/doctors to prescribe a specific medication and corresponding dosage based on the patient’s genetic
biomarkers. Another application is clustered regularly interspaced short palindromic repeats (CRISPR),
which allows for efficient gene modification in a variety of organisms and makes it possible to potentially
treat chronic diseases such as cancers, HIV, β-thalassemia, and sickle cell anemia [68–70]. With the rapid
development of many new ensemble deep learning approaches in several innovation and discovery domains,
such as bioinformatics and genome data analysis [71], ensemble deep learning has improved performance
over traditional models, increased interpretability and provided additional understanding of the structure of
biological data. Boosting techniques improve feature importance estimation and predictive performance in
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gene expression analysis, aiding in the identification of regulatory genes. Bagging reduces variance in high-
throughput sequencing data, enhancing the classification of gene functions and the prediction of regulatory
elements. Stacking integrates models like CNNs, RNNs, and support vector machines through meta-models,
proving effective in gene-essentiality predictions for greater accuracy. Ali Shah et al. [72] proposed an
ensemble-based deep learning model, called the bidirectional encoder-decoder long short-term memory
(BEDLM-CMS) model, to detect mutations in cutaneous melanoma by integrating long short-term memory
(LSTM), bidirectional long short-term memory (BLSTM) and gated recurrent unit (GRU) architectures
utilizing 75 types of genes. The proposed method was tested using a genomic dataset containing 2608 human
samples and 6778 mutations in total along with 75 different types, outperforming other methods with an
accuracy of 98%. Albaradei et al. [73] developed an ensemble of deep convolutional neural networks, called
Splice2Deep models, for improving splice site (ss) prediction in genomic DNA. The authors evaluated the
performance of the Splice2Deep model on five different organisms: Homo sapiens, Oryza sativa japonica,
Arabidopsis thaliana, Drosophila melanogaster, and Caenorhabditis elegans. Their approach reduced the
average error rates by 41.97% and 28.51% for acceptor and donor SS, respectively. Singh et al. [74] built an
ensemble of two-dimensional deep neural networks and transfer learning called SPOT-RNA to predict RNA
secondary structures, including noncanonical and nonnested base pairs stabilized by tertiary interactions.
The proposed method was trained using an ensemble of ResNets and LSTM on the bpRNA dataset with
automated annotation of the secondary structure. Le et al. [75] implemented ensemble deep learning based
on a combination of five machine learning and deep learning classifiers (kNN, RF, SVM, MLP, and CNN) to
identify essential genes using sequence information. The authors achieved 76.3% accuracy while identifying
essential genes. The proposed method was tested on a generalized dataset by Chen et al. and achieved a
sensitivity of 60.2%, a specificity of 84.6%, an accuracy of 76.3%, an MCC of 0.449, and an AUC of 0.814.
Yu et al. [76] proposed SnapCCESS, an ensemble clustering framework that uses VAE and the snapshot
ensemble learning technique to generate a multiview of multimodality-integrated embeddings for clustering
multimodal single-cell omics data using an unsupervised ensemble deep learning framework. The proposed
method outperforms other state-of-the-art multimodal embedding generation methods in integrating data
modalities for clustering cells.

4.4 Disease Prediction and Prevention
Recently, global public health crises have increasingly occurred, and early prediction and prevention of

such diseases can reduce the burden on the health care system [77]. Disease diagnosis refers to the process of
identifying a specific disease that is associated with a person’s symptoms. Therefore, ensemble deep learning
can help in anticipating a wide range of diseases and expedite early treatment based on prior training data.
Due to the vast amount of data available, numerous studies have utilized ensemble deep learning approaches
for disease prediction and prevention. Ensemble deep learning methods mitigate overfitting, improve
generalization, and provide more reliable predictions across various medical applications like pneumonia,
diabetic retinopathy, and cardiovascular diseases. These approaches incorporate advanced preprocessing
techniques, transfer learning, and feature extraction to achieve state-of-the-art results in clinical decision
support systems, often outperforming individual models. These studies help in early diagnosis and timely
treatment to lower disease-related mortality rates. Diabetes, skin cancer, kidney disease, Alzheimer’s disease,
COVID-19, and heart disease are the most common diseases that can significantly affect patient’s health [13].
Almulihi et al. [78] proposed an ensemble learning method based on a hybrid deep learning model for early
heart disease prediction. Their model is based on two hybrid models with heterogeneous architectures, CNN-
LSTM and CNN-GRU, which were optimized using the stacking ensemble method. The proposed model
outperformed the other ML methods on two benchmark heart disease datasets. Su et al. [77] proposed an
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innovative deep learning model, the Whale Optimization Convolutional Neural Network (CNN), Long Short
Term Memory (LSTM) and Artificial Neural Network (ANN), called the WOCLSA, which incorporates
three models, ANN, CNN and LSTM. The WOCLSA model utilizes the whale optimization algorithm to
optimize the neuron number, dropout and batch size parameters in the integrated ANN, CNN and LSTM
models. Their model is used to predict various public health diseases and provides aid for medical disease
diagnosis and prediction. Park et al. [79] aimed to build a new optimized ensemble model by blending
a DNN (deep neural network) model with two ML models for disease prediction using laboratory test
results. They selected 86 attributes and collected sample datasets on 5145 cases, including 326,686 laboratory
samples, to investigate 39 specific diseases. Their model achieved an accuracy of 92% for the five most
common diseases using different feature-selection methods. Alsekait et al. [80] developed a novel stacking
ensemble deep learning method based on LSTM, CNNs, and GRUs to detect chronic kidney disease (CKD).
They used multiple methods of feature selection, including mutual information, chi-squared, RFE, and tree-
based (RF) methods. Their model was tested using 400 patient records from the UCI machine learning
repository and achieved an accuracy of 99.69%. An et al. [81] presented stacking ensemble deep learning
for Alzheimer’s disease classification. The authors utilized two sparse autoencoders for feature leaning
at the voting layer and a nonlinear feature-weighted method at the stacking layers. They used a neural
network as a meta classifier, which achieved great results. The authors in [82] introduced a novel deep
learning model named Deep Ensemble of Adaptive Architectures, designed to address critical challenges
in healthcare during the COVID-19 pandemic. The proposed method adopts a twofold approach: firstly,
it employs an ensemble deep learning technique to detect COVID-19 patients; secondly, a soft robot is
utilized to perform basic assessment tests on the identified patients. This method outperformed baseline
approaches, including Faster-RCNN, R-FCN variants, and CNN+LSTM, in both precision and recall with
an impressive accuracy of 98.32%. Zeng et al. [83] proposed efficient and accurate ear disease identification
using an ensemble deep learning model. They utilized a transfer learning model based on DensNet-BC169
and DensNet-BC1615 with two ensemble classifiers and achieved an accuracy of 95.59%. Tian et al. [84]
proposed ViTCNX, a deep ensemble learning model for detecting COVID-19 using lung CT images based
on two advanced architectures: Vision Transformer (ViT) and ConvNeXt. The Vision Transformer was
applied for robust feature extraction using self-attention mechanisms. Their method achieved outstanding
results, with an accuracy of 98.21%, a recall of 99.07%, and an F1 score of 98.55%. Additionally, the authors
in [85] explored ensemble deep learning techniques by combining pre-trained convolutional neural network
(CNN) models with Vision Transformers (ViT) and XGBoost for carcinoma detection. They developed
two ensemble models: the first model used Vision Transformers to capture long-range spatial relationships
in medical images, while the second model integrated CNNs with XGBoost to enhance structured data
classification. The proposed approach achieved a remarkable 98.95% accuracy on the modified CHKHC-22
dataset, demonstrating its effectiveness in carcinoma detection.

4.5 Drug Discovery
Drug discovery is the process of discovering, developing, and testing a new candidate medication

through a combination of computational and experimental methods to identify therapeutically active
molecules [86]. Artificial Intelligence -based approaches are increasingly being utilized in all phases of drug
discovery and development as both AI technology advances and the size of drug big data expands [87]. AI
has been used in various drug discovery applications, including the prediction of drug–protein interactions
and the discovery of drug efficacy, ensuring the safety of biomarkers [88]. Due to the increase in the
collection of pharmacological data, deep ensemble learning is expected to accelerate new drug development
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and innovative new drugs. It integrates diverse features, mitigates overfitting, and excels in handling high-
dimensional data such as molecular fingerprints and protein structures, leading to better performance in
tasks like drug-target interactions and high-throughput drug screening. Vo et al. [89]proposed a novel
ensemble deep neural network model to improve the accuracy of predicting drug–drug interactions (DDI).
Their proposed model can predict interactions between 86 types of drugs with an average accuracy of 93.80%.
Their constructed model is based on the DDN, RF and XGBoost models, where the final output of the
proposed model was the stacking result of the individual outputs. Syahid et al. [90] proposed a stacking
ensemble learning framework for the accurate prediction of B-rapidly accelerated fibrosarcoma (BRAF)
inhibitors. The authors utilized three machine learning algorithms, namely, extreme gradient boosting
(XGB), support vector regression (SVR), and multilayer perceptron (MLP), to construct new predictive
features (PFs). The first layer of the StackBRAF model receives outputs from 36 PFs and is constructed by
combining 12 molecular fingerprints trained using XGB, SVR, and a deep neural network. The final layer
of StackBRAF used a random forest (RF) regressor that takes the 36 PFs as input. The StackBRAF model
has been proven to be a drug design algorithm for BRAF inhibitor drug discovery and drug development.
Although AI technology, such as deep ensemble learning, is utilized to accelerate the development of new
and innovative drugs, several types of drugs and their proteins have different structures, which makes it
difficult to predict effective drug-protein combinations with high performance [91].

5 Healthcare Applications
Deep ensemble learning techniques have surpassed other learning techniques in healthcare application

tools and provide state-of-the-art solutions. In general, the history of clinical decision-making by physicians
and specialists is utilized to train deep ensemble learning algorithms to develop efficient and accurate
healthcare applications. Most of the published works on ensemble deep learning in healthcare applications
have been intensively reviewed in this article. In this section, healthcare applications based on deep ensemble
learning consist of four significant subsections for building and deploying a reliable system: benchmark
datasets, data preprocessing, model training, and performance metrics.

5.1 Benchmark Dataset
In this subsection, we summarize the datasets most commonly used in health care applications for

training deep ensemble learning models. There are several attributes that encourage researchers to utilize
benchmark datasets, including sequential, image, and statistical attributes. Table 4 reviews the most utilized
benchmark datasets for health care applications.

Table 4: List of public healthcare datasets

Dataset Year Reference Total sampling Applications Data type
HDU 2 1988 [8] 303 Heart disease Statistical

CHMNIST (156) 2016 [92] 5000 Colorectal
cancer

Image

ADNI database
(704,708)

2003 [93] 805 Alzheimer’s
disease

Image

CKD dataset – [49] 400 Kidney disease Statistical
DIARETDB1 database 2007 [55] 89 Diabetic

retinopathy
Image

(Continued)
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Table 4 (continued)

Dataset Year Reference Total sampling Applications Data type
Skin Imaging Cancer

(ISIC) (402, p6)
2019 [58] 25,331 Skin cancer Dermoscopic

images
SARS-CoV-2 2020 [94] 2482 COVID-19 CT scan image

Consensus coding
sequence (CCDS)

database

2009 [75] 35,608 CCDS
IDs

Genetic testing Sequence
information

bpRNA-1 m dataset 2018 [74] 102,348 RNA secondary
structure

Sequence data

Mayo Clinic dataset – [61] 104 million
notes for
477,000

patients’ EHR

Electronic
health records

EHR data

i2b2 2014 dataset 2006 [61] 19,498 PHI Deidentification EHR data
MIMIC-III 2015 [95] 60,000

Intensive Care
Unit

Mortality
prediction

Comma
separated value

(CSV) files
BraTS2012 2012 [39] 65

multicontrast
MR

Brain tumor
detection

Image

KVASIR v2 dataset 2017 [33] 8000 samples Gastrointestinal
(GI) diseases

Images

OAI dataset 2006 [96] 8260 posterior-
anterior (PA)
fixed flexion

Knee Image

Gazi Brains 2020
dataset

2020 [47] 2209 slice with
100 patients

Anatomical and
pathological

regions in brain

Image

LUNA 16 dataset 2016 [97] 888 CT scans Lung cancer
detection

Image

LIDC/IDRI 2020 [97] 1010CTscans Nodule
identification

Image

5.2 Data Preprocessing
Data preprocessing is the most critical phase and plays a large role in developing robust and effective

ML applications. Real data cannot be directly utilized to build and train healthcare models due to redundant,
noisy, incomplete, inconsistent, and undesired data. Thus, data preprocessing is applied to enhance the data
representation and generalization performance. The data preprocessing steps include missing data, noise
removal, normalization, and feature selection [98] as follows.
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5.2.1 Missing Data and Removing the Noise Step
Missing data is a common issue in numerical data and can affect the training process. It is extremely

important to address this issue by inserting values via one of the imputation methods, such as the KNN
imputation method, or deleting the entire entity [99]. Noise data are considered a negative feature that
can affect model performance, especially in image processing, and they are usually removed or reduced by
applying a nonlinear filter [100] or synthetic region area.

5.2.2 Normalization Step
During the data preparation, the dataset may have high ranging values and independent data, which

cause larger values to be weighted more and smaller values to be weighted less by the machine learning
approach. Thus, scaling features to a specific range, known as normalization or standardization, is a vital
step in data preprocessing and can be applied through min–max normalization, maximum absolute scaling,
standardization, or robust scaling [101].

• Min–max normalization is a common linear method that transforms features between 0 and 1.

Xscal e =
(X − X_min)

(X_max − X_min) (4)

• Maximum absolute scaling: This method divides each feature by its maximum value in the dataset, which
ranges between +1 and −1.

Xscal e =
X

max(∣X∣) (5)

• Standardization: This is a widely used method that rescales features to a mean of 0 and a standard
deviation of 1.

Xscal e =
X − μ

σ
(6)

• Robust scaling: This method is robust to outliers by removing the median and scaling the features using
the interquartile range (IQR).

Xscal e =
X − Xmed i an

IQR
(7)

5.2.3 Feature Selection Step
Most datasets have many features for multiple purposes; not all features are relevant and helpful

for a specific task, and computing many features can cause overfitting. The process of selecting appro-
priate features, known as feature selection, is crucial before constructing a model to eliminate irrelevant
data and reduce the data dimensionality. Feature selection is helpful for avoiding noise and improving
model performance [11,95,98] used different methods, such as filter methods, embedded methods, or
wrapper methods.

5.3 Training Model
• Data splitting: The dataset can be split into three parts: training, validation, and test data.
• Types of networks: Several networks can be utilized in health care tasks, such DNN, CNN, RNN, LSTM,

GRU, GAN, and Transformers.



Comput Mater Contin. 2025;82(3) 3763

• Weights: The initial weight is essential for accelerating convergence and enhancing model performance
via one of the following methods: random initialization, Xavier initialization, or He initialization.

• Optimizers: An optimizer is used to minimize the loss function and update weight parameters until
model convergence using SGD, Adam, AdaMax, RMSprop, and Nadam.

• Loss function: This function is used to evaluate how well deep learning algorithms model a dataset.
Several loss functions can be utilized for regression and classification tasks, such as the mean square
error (MSE), mean absolute error (MAE), binary cross-entropy loss, categorical cross-entropy loss, and
hinge loss.

• Learning rate: This is a hyperparameter used to control the size of the steps taken during the optimiza-
tion.

• The number of epochs is the number of iterations needed to train the entire dataset to update the
hyperparameters. Selecting an optimal number of epochs can help in generalized learning and increase
performance, whereas a large number of epochs can lead to overfitting problems.

• Batch size: The entire dataset used to train the model in one epoch is called batch gradient descent, while
the dataset is divided into subsets called minibatches, and a single training sample is utilized to update
the parameters called stochastic batches.

• Pooling technique: This technique is used to downsample feature maps in CNNs via max pooling,
average pooling, global pooling, or stochastic pooling.

• The activation function is a function that determines whether the output of the neuron should be
activated, such as sigmoid, Tanh, ReLU, or softmax.

5.4 Performance Metrics
Several performance metrics are used to assess the effectiveness and robustness of the abovementioned

deep ensemble learning models on unseen test data for regression and classification challenges. The most
commonly used performance metrics are accuracy, precision, recall, F1 score, and MCC. All of the matrices
are derived from the confusion matrix and its derived matrix, as shown in Table 5. The confusion matrices
consist of four matrices: first, the true positive (TP) matrix, where the prediction and the actual outputs are
both positive. Second, for a false-positive (FP), the prediction is positive, but the actual output is negative.
True negative (TN) represents the number of negative cases classified correctly [102]. Finally, there is a false-
negative (FN) where there is a negative prediction, while the actual result is positive.

Table 5: Confusion matrix

Predicted

Actual
Negative Positive

Negative NT FP
Positive FT PT

The following is the mathematical definition of the abovementioned metrics:
Accuracy is the most common evaluation metric and is the percentage of correct classifications. It is

calculated as in Eq. (8):

Accuracy = TP
TP + TN + FP + FN

(8)
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Precision measures the model’s ability to recognize the positive samples to a total number of classified
positive samples. It is calculated as in Eq. (9):

Precision = TP
TP + FP

(9)

Recall measures the model’s ability to recognize the positive samples to the actual number (correct or
incorrect) of “positive” cases. It is calculated as in Eq. (10):

Recall = TP
TP + FN

(10)

The F1 score is the weighted average of the precision and recall. Its value ranges between [0, 1], and the
best value is 1. It is computed as in Eq. (11):

F1 score = 2 Precision × Recall
Precision * Recall

(11)

The Matthews correlation coefficient (MCC) is a correlation coefficient that is used for binary
classification. It is calculated as in Eq. (12):

MCC = TP × TN − FP × FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(12)

6 Discussion and Future Direction
This section reviews the challenges of ensemble deep learning for health care and highlights the

solutions. These challenges can be categorized into three subsections as follows: ensemble deep learning
model issues, health care issues, and data quality issues. Ensemble deep learning model issues can be divided
into three categories: First, we address the choice of model architecture. Employing the correct deep learning
model in health care is crucial for performance enhancement; however, incorporating suitable ensemble
learning methods with deep learning models makes it difficult to choose a specialized model architecture
that can capture hidden, complex features and perform joint predictions [28]. In addition, boosting methods
are not feasible for computer vision in health care tasks and are sensitive to outliers. Bagging methods are
computationally expensive [13]. Moreover, more hybrid multimodal and AutoML techniques can be utilized
to overcome the choice of the best ensemble learning model architecture. Second, there is a computational
expense. Ensemble deep learning models require large amounts of data to train large quantities of parameters,
which consumes considerable computational resources [28]. Thus, employing advanced hardware resources
such as GPTs and TPUs can help handle the computational load more efficiently. Third is interpretability.
Ensemble deep learning has achieved great performance in health care classification and regression tasks
due to its ability to extract complex, hidden features; however, in many health care issues, it is treated as
a black box and cannot explain why such a model works perfectly on a specific task. The lack of model
interpretability leads to unreliability of the results and brings risks. However, few studies have utilized
explainable AI (XAI) to increase model interpretability and clinician understanding and trust [28,59,103–
105]. Data quality issues: Unlike other areas where the data samples are clean and well structured, health care
data samples are highly ambiguous, noisy, incomplete, and heterogeneous. Training ensemble deep learning
models with massive amounts of such samples is a major challenge and requires many preprocessing steps,
such as resampling, replacing missing values, and removing redundant data [59]. First, the small data sizes
create challenges. Ensemble deep learning models are known for their exceptional performance with large
data samples; however, most health care tasks do not have sufficient confirmed experiments for positive
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or negative cases, which leads to a small size of suitable data samples for training ensemble deep learning.
However, transfer learning and generative processes might be used to overcome these issues [9,22,28,71].
Second, class imbalance occurs when one of the classes has more samples than the other. This causes the
ensemble deep learning model to classify new samples into the majority class. Because fewer people are sick
than people who are not, the number of samples from positive patients will always be less than that from
negative patients; for instance, the number of samples from people without tumors is much greater than
that from people with tumors [12,22,28]. Therefore, these issues could be solved through data resampling,
in which a generative model is used to generate minority class samples that are close to the majority sample
class. Third, because of the lack of annotations, ensemble deep learning models are trained using supervised
learning and thus require large amounts of labeled samples [104]. Many health care tasks have limited
availability of labeled data due to the amount of experimentally confirmed positive and negative cases, which
sometimes require permissions and experts in the field [71]. In the case of large numbers of available samples,
both time and experts are needed to annotate the samples to be useful, and automated annotators, which are
sometimes controversial, are needed to ensure the reliability of the labeled samples. Finally, for heterogeneity,
most samples used for training in health care tasks consist of diverse data types, such as statistical data,
image-based data, sequential data [28,71], and synthetic samples [106]. In the future, we believe that ensemble
deep learning will be further utilized to create more accurate and efficient solutions for health care. One
promising direction for overcoming the limited available data is to utilize deep generative methods such
as GANs to generate more samples [59]. In addition, another promising solution for large dependencies in
health care is natural language processing models, including advanced models such as large language models
(LLMs) and transformers. Reinforcement learning and quantum computing based on deep learning could
be utilized for new discoveries and robust solutions in health care systems. In the future, researchers may
consider developing both hardware requirements and software technologies to address sophisticated health
care issues that may appear in enhancing ensemble deep learning models.

7 Conclusion
Ensemble deep learning has been utilized in a variety of healthcare applications to provide solutions

to computer vision, natural language processing, and sequence issues. Ensemble deep learning enhances
the learning generalization and prediction performance due to the utilization of multiple deep learning
models. This article provides a comprehensive overview of deep learning algorithms and architectures and
ensemble learning techniques in health care systems. Six common healthcare tasks have been reviewed,
including medical imaging, electronic health records, genomics, disease prediction and prevention, and drug
discovery. In addition, healthcare applications based on deep ensemble learning consist of four significant
subsections for building and deploying a reliable system: benchmark datasets, data preprocessing, model
training, and performance metrics. This review article discusses three of the most challenging issues in
healthcare systems: ensemble deep learning model issues, healthcare issues, and data quality issues. It
includes the high computational costs associated with training large models, the lack of interpretability
of ensemble models, and the difficulties posed by heterogeneous, noisy, and imbalanced healthcare data.
Recent advancements such as explainable AI (XAI), transfer learning, and generative adversarial networks
(GANs) have begun to address some of these issues, enabling better model interpretability, handling class
imbalance, and generating synthetic data for small datasets. In the future, researchers may explore and
implement advanced technologies such as reinforcement learning, quantum computing, and large language
models (LLMs) to provide more robust and effective solutions to complex healthcare issues and address
computational, interpretability, and data quality issues.
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