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ABSTRACT: The automotive sector is crucial in modern society, facilitating essential transportation needs across
personal, commercial, and logistical domains while significantly contributing to national economic development and
employment generation. The transformative impact of Artificial Intelligence (AI) has revolutionised multiple facets of
the automotive industry, encompassing intelligent manufacturing processes, diagnostic systems, control mechanisms,
supply chain operations, customer service platforms, and traffic management solutions. While extensive research
exists on the above aspects of AI applications in automotive contexts, there is a compelling need to synthesise this
knowledge comprehensively to guide and inspire future research. This review introduces a novel taxonomic framework
that provides a holistic perspective on AI integration into the automotive sector, focusing on next-generation AI
methods and their critical implementation aspects. Additionally, the proposed conceptual framework for real-time
condition monitoring of electric vehicle subsystems delivers actionable maintenance recommendations to stakeholders,
addressing a critical gap in the field. The review highlights that AI has significantly expedited the development
of autonomous vehicles regarding navigation, decision-making, and safety features through the use of advanced
algorithms and deep learning structures. Furthermore, it identifies advanced driver assistance systems, vehicle health
monitoring, and predictive maintenance as the most impactful AI applications, transforming operational safety and
maintenance efficiency in modern automotive technologies. The work is beneficial to understanding the various use
cases of AI in the different automotive domains, where AI maintains a state-of-the-art for sector-specific applications,
providing a strong foundation for meeting Industry 4.0 needs and encouraging AI use among more nascent industry
segments. The current work is intended to consolidate previous works while shedding some light on future research
directions in promoting further growth of AI-based innovations in the scope of automotive applications.
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1 Introduction
In the fourth industrial revolution era, artificial intelligence (AI) significantly impacts the world in

resolving hitherto intractable issues from different sectors. AI mimics human behaviour like planning, rea-
soning, learning, problem-solving, thinking, perception, and decision-making in machines. This cognitive
capability is achieved through human intelligence simulation utilising data with feasible algorithms [1,2].
As a result, AI can simplify complex tasks to minimise errors more efficiently, whereas humans are more
prone to errors and require more time to complete the same tasks. Therefore, AI adoption in different sectors
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is increasing dramatically [3], i.e., the automotive sector [4], healthcare sector [5], power sector [6], real
estate sector [7], entertainment and gaming sector [8], fast-moving consumer goods sector [9], education
sector [10], e-commerce and retail shop sector [11], agriculture sector [12], cybersecurity [13], finance and
banking sector [14], and so forth. Since the number of AI-adopted sectors is rising with time, its market is
also expanding. VTT Technical Research Centre discusses these matters in their technical paper. They found
that the AI market price in 2019 was $39.9 billion, and market analysts predict that this will increase to $733.7
billion in 2027 [15].

Moreover, based on this evidence, it is clear that AI’s significance in different sectors is rising due
to its massive beneficial prospects and the outstanding growth of related research activities. Similarly,
its importance is also visible in the automotive industry in minimising issues that arise and maximising
outcomes intelligently. For example, intelligent fault diagnosis systems [16], intelligent manufacturing
processes [17], intelligent control systems [18], intelligent supply chains, sales and service systems [19],
intelligent traffic management systems [20], etc. Adopting AI for the abovementioned purposes makes the
automotive sector more intelligent and sophisticated. Curiosity about AI is expanding in the automotive
domain because it holds the key to the new future. It can extract essential information without the direct
intervention of humans and utilise these to run any operation/activity smoothly to gain desired outcomes
efficiently besides minimum losses in the automotive sector. As a result, the AI deployment rate in this
sector for various purposes is also praiseworthy [21]. According to the report of Precedence Research,
the worldwide automotive AI market generated revenue of $3.22 billion in 2023 and is expected to grow
from $3.87 billion in 2024 to $35.71 billion by 2033. This remarkable expansion represents a compound
annual growth rate of 28% over the nine-year forecast period [22]. Enhancing it in this sector will accelerate
economic growth worldwide and improve desired functionalities. However, nuTonomy, AutoX, Optimus
Ride, Drive.ai, Waymo, Zoox, CarVi, Nauto, Rethink Robotics, DataRPM, and many other organisations
have been using AI technology in the last few years to shape the business context of the automotive sector
and move it ahead [3].

Furthermore, the AI technology in this sector acts as a machine-enabled intelligent system that can
perceive, learn, analyse, and comprehend the outcomes by following human cognition activity. To ensure
the facility of this technology, it usually comprises algorithms with an arrangement of instructions loaded
in a machine-like computer, which transforms input data into meaningful output [23]. In this instance,
traditionally, it is not confined to machine learning (ML) algorithms used in the automotive sector as AI
to expedite the desired work without complexity [24]. Artificial neural networks (ANN), deep learning
(DL), reinforcement learning (RL), fuzzy logic, and so on are also currently used to mimic human cognition
for better results with utmost efficiency [23]. In previous times, due to AI implementation for different
purposes in this sector, various challenging issues arose during the operational period, hindering continuity
and reducing overall efficiency. In this case, data quantity context (big data), large-scale implementation,
real-time results, processing speed, systems downtimes, costing, and many other issues usually appear
challenging. However, the respected researchers continue their exceptional work to mitigate these challenges
by perfectly performing the AI system [23,24].

The recent progress of AI adoption and its potential prospects for the future in the automotive sector
motivated us to gather valuable information to assist future research work and step ahead of this sector with
more sophisticated AI technology. Numerous types of exceptional research have already been carried out
independently by focusing on particular issues. For example, Fedullo et al. [25] reviewed the application of
AI techniques in the automotive sector, with a focus on innovative measurement systems, advanced driver
assistance systems (ADAS), Internet of Things (IoT), and intelligent industrial systems to improve road safety,
predictive maintenance (PdM), and build the intelligent automotive factory of the future. Subsequently,
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to enhance traffic control and vehicle communication in connected vehicle frameworks, Rana et al. [26]
summarised a review showing a broad range of AI applications in the automotive industry beyond just ADAS,
including car emissions, PdM, and security. However, the researchers suggested future studies on network
architecture, connectivity, and performance metrics related to automotive AI and ML applications. Addi-
tionally, Ammal and coworkers [27] provided an overview of AI and sensor technology to develop innovative
products and applications in the automotive industry, reducing human errors such as aggressive driving,
accidents, and traffic collisions. Moreover, a literature study by Vermesan and colleagues [28] summarised
that AI technologies enable intelligent functions and optimisation for electric-connected autonomous
and shared vehicles to support sustainable green mobility. Nevertheless, decision-making mechanisms in
autonomous vehicles need to be developed using AI, machine learning, deep learning, and other advanced
techniques to make the processes more reliable and resilient. Despite recent review works offering valuable
insights into the use of AI methods in specific aspects of the automotive sector, such as control systems,
vehicle diagnostics, traffic management, autonomous driving, and accident prevention, these studies often
approach applications in isolation. This fragmented analysis fails to provide a comprehensive understanding
of how AI techniques interact, complement, or conflict with one another when integrated into a cohesive
automotive ecosystem. Additionally, cross-functional challenges such as interoperability issues, data sharing,
and real-time decision-making within interconnected automotive domains remain underexplored, limiting
the potential for a unified and optimised implementation of AI in the industry. To address this research
gap, it is essential to develop a holistic perspective that integrates various AI techniques, such as machine
learning, deep learning, computer vision, and natural language processing, across all application areas
within the automotive sector. This integrated approach would enable a comprehensive understanding of
the combined potential of these technologies, uncover synergistic opportunities, and provide clarity on
overarching challenges. By fostering such a consolidated framework, the automotive industry can move
toward building truly intelligent, resilient, and optimised systems. Therefore, this review aims to bridge
this gap by holistically examining the state-of-the-art AI techniques, assessing their collective impact, and
outlining a roadmap for future research to address these integrative challenges in the automotive industry.
In particular, this article infers:

i. Fundamental details about AI technology for the automotive sector;
ii. As pictorial maps, a proposed taxonomy of AI in the automotive field;
iii. Dig out the inclusive information of different AI approaches and their applications in the automotive

sector;
iv. Profound analysis of benefits, associated challenges, and future application scope of AI in this sector.
Ultimately, we anticipate that this article’s outcome will represent the credible capture of AI technology’s

diversified utilisation and advancement in the automotive sector. Additionally, it will assist as a robust
foundation for fulfilling the demand of Industry 4.0 requirements and intensifying the adoption of AI
technology in the underprivileged branches of this sector.

The remaining portions of this paper are presented in the following order. Firstly, Section 2 presents
a history of AI adoption in the automotive field and utilises this information to portray the taxonomy
in Section 3, besides the extensive discussion. Then, Section 4 describes the automotive-based AI conceptual
framework, and Section 5 outlines the challenges and potential areas for future AI research in the automotive
field. Finally, Section 6 ends this review by emphasising significant contributions and observations.
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2 Historical Background
Due to the pressing need for the quick processing of large amounts of data, AI’s importance in daily life

is becoming indispensable. However, this stage of AI is not achieved in a day or a year. It evolved over 70
years and started from the 1940s; indeed, 1942 through Runaround was a short story written by Isaac Asimov,
the American Science Fiction writer, where he plotted a robot that allowed it to work for human beings based
on some fundamental rules. Later, it inspired scientists and was first coined as “Artificial Intelligence” in 1956
by John McCarthy and Marvin Minsky through many transformations and changes [29]. In 1961, General
Motors installed an AI-based industrial robot to advance the automotive industry for managing die castings
smoothly. Later, they inspired and enhanced the Lordstown assembly plant using this technology in 1969.
They established an AI-based automated vehicular assembly plant in the mid-1970s with MIT to expedite the
vehicle manufacturing process [30]. After the industrial cases, the automotive sector also enhanced drive-in
highways using this technology.

In 1979, Tsugawa and his research team [31] proposed driverless vehicles as autonomous vehicles (AVs)
by recognising road patterns using TV cameras. Such autonomous vehicles could move within 30 Km/hr
without driver assistance in different road environments. Also, in the early 1980s, autonomous land vehicles
with AI-contained high-performance computing facilities were introduced by DARPA to run the vehicle
over the highway at a maximum 45 mph speed [32]. The AI system was confined to the purposes mentioned
above for the automotive sector, and it was extended to diagnosing vehicles like an expert system by 1986 [33].
Recently, this concept has attained great attention and is being applied in various cases to diagnose faults
in the automotive sector to minimise downtime and increase operational time, which is discussed later
elaborately. However, in the early 1990s, researchers began to realise the significance of intelligent traffic
management and the employment of AI technology in this sector, which is eloquently discussed in [34].
Besides these, this technology also showed praiseworthy outcomes for intellectual vehicular performance
controlling systems in 1995. Furthermore, this work inspired and upgraded AI technology to achieve
supremacy for regulating vehicular performance more sophisticatedly [35].

It is noticeable that from the beginning, AI technology’s footprint significantly appeared in the automo-
tive field for manufacturing, autonomous driving, traffic management, vehicle performance regulating, and
fault diagnosing purposes [23,36]. Before 2000, AI’s evolution in this sector was in its initial stages compared
to other industries. The giant leap happened in 2009, as over the last decade, Google, Tesla, General Motors,
Volvo, Intel Corporation, IBM Corporation, and so forth, renowned organisations have undertaken many
projects to employ AI technology with a more sophisticated approach for advancing the automotive sector
to a great extent [37–39]. However, the adoption of AI is increasing outstandingly, and it is necessary to
portray the taxonomy as a map of detailed implementation in the automotive field, described extensively in
the upcoming section.

3 Taxonomy of AI in the Automotive Sector
AI applications in the automotive industry have made our lives easier and more dynamic. Therefore,

it is unavoidable that all the related aspects of AI in the automotive sector be depicted in an integrative
format. For this reason, a taxonomy has been developed (Fig. 1) to give a clear view of AI’s employment in
the automotive sector.

3.1 Classification of AI Systems
Through human-inspired, analytical, and humanised, depending on the intelligence exhibition (emo-

tional, cognitive, and social) and the evolutionary stage of AI in the automotive sector, it is divided into two
distinct groups: Type I and Type II [29,40].
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Figure 1: Proposed taxonomy of AI in the automotive sector

3.1.1 Type I
Under this category, the employed AI technology in the automotive sector could behave like a human

mind exhibiting the ability to think and feel based on the functionality of the AI system. Moreover, it is
classified into four subcategories [41] and described as follows:

Reactive Machines
The AI system does not depend on memory or utilise previous experiences and decides only based on

the current situation or existing scenario [42]. As a result, all control and decisions in the system might
be conducted by light processing using current data. So, in this case, low-priced and limited resources
are required to get better output, but in some cases may be trapped in complex environments [43]. For
example, Mr Roberts and his research team proposed [44] an autonomous underground mining vehicle
to ensure operator safety, reducing operational complexity using reactive machines AI. The robust reactive
wall-following behaviour was the control architecture for 30 tons Load-Haul-Dump trucks.
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Limited-Memory Machines
The AI system can acquire knowledge and learn from historical data as past experiences, stored data,

actions, and learnings to make subsequent decisions. That means this combination of observational data and
preprogrammed knowledge is used to make the necessary decision. In this case, the past data is not stored
for an extended period [40–42]. AVs are a real-world example of limited-memory machines. It can read
their environment to discover patterns and changes in external elements to adapt and learn them, besides
observing and understanding how to drive human-operated vehicles efficiently. Also, it can detect other
vehicles and pedestrians in their line of sight [45]. Previously, such feats may take up to 100 s, but this time
has drastically lowered due to recent technology and software advancements, i.e., deep learning and machine
learning [40].

Theory of Mind
The theory of mind AI is a more advanced stage of AI systems than the previous two systems, which

can be described as a human mind. As a result, this system may study human emotional complexities
besides behavioural patterns and make predictions about their emotions, intentions, desires, thoughts, and
beliefs [41]. In this case, the significant aspect involves grouping entities based on similarity, proximity,
symmetry, continuity, common fate, etc. [46]. Thus, drones and AVs might benefit from this AI system
because it could avoid physical harm to ordinary people and pedestrians by predicting the movements as
humanity’s collective ability [47]. Also, in automotive manufacturing environments, it could help measure
employees’ perceptions and behaviour to expedite the manufacturing process [48].

Self-Aware AI
The last step of AI system development is self-aware AI, which currently exhibits hypothetically, and

in this case, will attain human-level perception, emotions, desires, and independent decision-making ability
based on its own moral compass and philosophical approach. Respected researchers are working on adopting
it in the automotive sector, such as AVs, autonomous manufacturing systems, and industrial management;
it has a broad scope to continue safe and effective operations in all cases [49].

3.1.2 Type II
In this context, AI technology classified based on capabilities and technology in the automotive sector

could be organised into three subcategories [49], which are discussed as follows:

Narrow Intelligence
Narrow intelligence can be defined as not exhibiting intelligent functionality beyond the particular

application domain precisely on what they have been programmed to do [41]. Widely, it performs efficiently
on specific tasks based on the given initial training, but generalisation ability is missing except for these
particular tasks [48]. Such limited focus capabilities represent AI’s narrowness, also termed “weak AI” [41].
However, the examples of narrow intelligence are related to afore-discussed reactive machines and limited-
memory machines AI. Also, in some cases, the theory of the mind machine’s rudimentary examples is
involved [40].

General Intelligence
Artificial general intelligence can be defined as a system that not only performs like a weak AI. However,

that system also has the capabilities or functionalities to understand, learn, perceive, and make decisions
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entirely the same as human beings [46]. That means the system in the automotive sector could perform any
operation like a human without human fatigue besides error [40]. Because of this, it is also called “strong
AI.” Moreover, though it does not exist, the continuous development and advancement of narrow AI in
the automotive sector minimised the distance between humans and AI machines’ capabilities. Therefore,
hopefully, it will lead to general intelligence very soon [41].

Super Intelligence
It is still in the conceptual stages where the AI system in the automotive sector could have higher

cognitive functional capabilities than the human brain. However, since it exists hypothetically, it is hoped
that the system may have the total ability to perform moving and transportation services due to enhanced
memory besides significantly faster data processing, handling, and decision-making abilities [23]. Table 1
presents the fundamental differences between the different categories of AI in various aspects.

Table 1: Comparison between AI classes

Reference AI class Definition Capabilities Learning ability Challenges
Hassani

et al. [42]
Reactive
machines

Simple AI that
responds to current

inputs without
memory

Basic
decision-making in
real-time based on
pre-defined rules

No memory, cannot
improve or adapt

over time

Limited to specific
tasks; lacks

adaptability and
learning

Shi et al. [50] Limited-
memory
machines

AI that can use past
experiences to
make decisions

Can learn from
historical data and
adjust behaviour

accordingly

Can learn from past
data but not in

real-time; retains
short-term memory

Limited by data
processing power,

memory fades over
time

Nori et al. [51] Theory of
mind

AI is capable of
understanding

emotions, beliefs,
and intentions

Advanced
decision-making
with interaction
based on drivers’

intentions

Hypothetical:
would require

adaptive learning of
human-like traits

Currently
speculative, it

requires significant
advances in

emotional and
situational

understanding
Shao et al. [52] Self-aware AI AI that possesses a

sense of self,
potentially

conscious of its
existence

Could make
independent

decisions, anticipate
changes, and exhibit

self-preservation
behaviours

Theoretical
self-learning,

evolving beyond the
initial

programming

Largely theoretical;
poses ethical and
existential risks

Gryth
et al. [53]

Narrow
intelligence

AI focused on a
specific, narrow

task

Highly optimised
for single-domain

tasks, limited
generalisation

ability

Pre-trained to
particular tasks but
cannot generalise

beyond them

Task-specific
limitations: unable

to handle
unfamiliar

scenarios effectively
Li et al. [54] General

intelligence
AI that can

understand, learn,
and apply

intelligence across
various domains

Flexible
decision-making,

multi-domain
problem-solving,

human-level
reasoning

Real-time learning
and adaptation
could process

multi-modal data
for better responses

Significant
technological and

ethical hurdles
limited by current

AI capabilities

(Continued)
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Table 1 (continued)

Reference AI class Definition Capabilities Learning ability Challenges
Chai et al. [55] Super

intelligence
AI that surpasses

human intelligence
in all aspects

Autonomous, with
enhanced

problem-solving
and strategic

thinking

Theoretical
continuous

improvement,
self-modification

capabilities

Highly theoretical;
significant ethical,
security, and safety

risks

3.2 AI Techniques Used in the Automotive Sector
Commonly used techniques or advanced methods of AI in the automotive field have been applied

to perform human-like or superhuman behaviour to operate or maintain the desired system smoothly.
For manufacturing, autonomous driving, traffic management, vehicle performance regulating, and fault-
diagnosing purposes, various AI approaches and fundamental techniques are currently used to mimic the
human brain’s working principle in the automotive sector, described as follows:

3.2.1 Machine Learning
Machine learning is an algorithm that learns from the data without depending on rules-based pro-

gramming. Currently, the ML technique is one of the most effective AI tools for resolving various issues in
the automotive industry. By exploring the algorithm’s construction and learning mechanisms, ML can study
data patterns to predict the most probable outcomes with high accuracy [56]. Additionally, it shares many
similarities and overlaps with computational statistics. Based on the learning nature of the automotive field,
it is classified into four categories [57], as depicted in Fig. 2; these are explained as follows.

Supervised Learning
The supervised learning approach is an AI algorithm generally trained by the labelled input data to

predict or provide a firm decision. This approach is primarily suitable for classification in the automotive
field besides solving regression problems, and various algorithms are available to achieve the desired
outcomes [57]. In this case, supervised learning includes techniques like support vector machines (SVM),
K-nearest neighbour (KNN), decision trees (DT), random forest (RF), logistic regression, linear regression,
and others. However, in the last decade, the supervised technique has been utilised in the automotive
sector for various purposes, where the system is initially trained by feeding required information and later
run using the testing data. For instance, Harold et al. [58] proposed a powertrain control framework for
hybrid electric vehicles (EV) that uses the supervised learning technique to improve fuel economy, and they
achieved a satisfactory outcome over dynamic environments. Furthermore, due to better performance in
decision-making and classification, this technique is also implemented in the automotive industry to control
manufactured vehicle quality by scrutinising the vehicular body’s panel surfaces [59]. Similarly, last few years,
the demand for supervised learning techniques in the automotive sector has risen significantly for various
purposes, i.e., estimation of moving vehicle’s road friction [60], improving quality of service for intelligent
transport systems [61], performing roundabout manoeuvres for AVs [62], fault detection of unmanned aerial
vehicle (UAV) [63], predictive maintenance and risk management [64,65], supply chain management [66],
and so forth. However, supervised learning is highly dependent on large, high-quality labelled datasets,
which are costly and time-consuming to obtain, particularly for the extensive edge cases seen in real-world
driving environments. This reliance on labelled data creates a contradiction: while supervised learning
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delivers accurate results within a controlled scope, it lacks flexibility, and its performance in dynamic, real-
time situations (e.g., autonomous driving) often necessitates additional support from semi-supervised or
unsupervised learning for comprehensive adaptability.

Machine
Learning

Supervised Learning

Advanced Driver Assistance Systems

Automated Driving Systems

Predictive Maintenance &Analytics

Personalized Vehicle Functions

Vehicle Detection & Classification

Unsupervised Learning

Anomaly Detection in Sensor Data

Path Optimization for AVs

Risk Prediction & Decision-Making

Driver Behavior Analysis

Safety-Critical Systems

Semi-Supervised Learning

Radar-Based Object Classification

Human-Car Interaction

Automotive Ethernet Security

Manufacturing Fault Detection

Vehicle Trajectory Prediction

Reinforcement Learning

Autonomous Driving

Vehicle Control & Stability

Advanced Energy Management

Simulation to Reality Transfer

Lane-Keeping Assist Systems

Figure 2: Machine learning techniques for automotive applications

Unsupervised Learning
In machine learning, the unsupervised learning approaches can be defined as the AI algorithm models

or systems that are not supervised based on the labelled training dataset to draw affirmative inferences.
This method is crucial in the automotive industry to uncover hidden data for specific purposes, and
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it currently makes use of a variety of well-liked algorithms, including hierarchical clustering, K-means,
self-organising maps, and many others [67,68]. Moreover, this technique significantly improves in some
cases compared to supervised learning techniques. For example, an unsupervised learning approach in the
automobile manufacturing industry provided praiseworthy performances for detecting the fault and failure
prediction of power transmission systems, pneumatic actuators, and valves [69]. Similarly, the K-means
clustering algorithm was used by Shaeiri and coworkers [70] as an unsupervised learning approach for
vehicular self-maintenance purposes and profiling driver behaviours. They found that the proposed system
successfully assists the user. Besides these purposes, day by day, the implementation of this technique in
the automotive field is increasing considerably, i.e., real-time automobile insurance fraud detection [70],
CAN-based modern vehicle transmission systems [71], enhanced driver assistance systems [72], and so forth.
However, unsupervised learning presents notable disadvantages, particularly the difficulty of validating
results and the risk of identifying irrelevant patterns, as there is no labelled data for model guidance. This
lack of interpretability can hinder safety-critical applications, where understanding the model’s rationale
is essential. Contradictions arise in scenarios like autonomous driving, where accuracy and safety are
paramount. However, unsupervised learning provides flexibility and speed; it often requires subsequent
validation with supervised methods, raising concerns about reliability and the need for hybrid approaches
to balance accuracy with adaptability.

Semi-Supervised Learning
It can be defined as the ML approach, where the system is trained by feeding a small amount of

labelled data with a large quantity of unlabelled data as a mixture of data. In general, it helps to overcome
some difficulties in supervised and unsupervised learning cases where managing a substantial amount
of training data is difficult [73]. Semi-supervised learning outperformed supervised models in vehicle
trajectory prediction by leveraging large amounts of unlabelled data, thus scaling up the training process and
improving accuracy [74]. Additionally, these methods have shown high effectiveness in detecting various
network attacks in automotive Ethernet, achieving impressive detection rates [75]. For example, Hoang and
the research team [76] employed semi-supervised learning to detect various in-vehicle intrusion attacks,
including known attacks like denial of service, fuzzy, and spoofing, as well as unknown attacks. Nevertheless,
one major drawback is the difficulty in handling datasets with few labelled samples, as traditional broad
learning systems struggle to effectively utilise the information between labelled and unlabelled data [77].
Furthermore, the increased interconnectivity in automotive Ethernet introduces new vulnerabilities. While
semi-supervised learning can enhance detection, it is still susceptible to unknown attacks due to the
developing nature of this research area [75].

Reinforcement Learning
Reinforcement learning is a promising ML technique in which the intelligent agent learns from experi-

ences rather than a training dataset and is concerned with initialising the action in the potentially complex
and uncertain environment to maximise reward or outcome by taking a sequence of suitable decisions.
Particularly, in the RL paradigm of the automotive field, an autonomous agent interacts with its environment
to perceive and learn how to improve its performance at a given activity through a series of trials [78].
In addition, its employment proliferation recently appeared and grew dramatically in this field to mitigate
complex issues smartly. Moreover, Navarro et al. [79] found that for developing a simulated environment
and control strategies of an AV, this approach is cost-effective and requires the lowest data solution than the
traditional algorithm. Again, it has extreme significance for vehicle routing problem solutions, and Nazari’s
research team revealed it, proposing an end-to-end framework for self-driven learning [80]. Recently, to get
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better outcomes in this sector, the RL approach enhanced deep reinforcement learning (DRL) by combining
its architecture with ANNs, where software-defined agents enable learning best. As a result, it has performed
praiseworthy in autonomous driving [78,81], UAV navigation [82,83], unmanned surface vehicles [84], and
many others for environment recognition, decision-making, and controlling system advancement. However,
the lack of standard tooling solutions for RL-based function development in the automotive industry remains
challenging [85]. Furthermore, while RL can theoretically enhance driving policies, practical implementation
requires reliable fallback mechanisms and high-fidelity simulators to ensure safety and effective policy
transfer from simulations to real-world applications [86,87].

3.2.2 Deep Learning
The deep learning technique in AI consists of ML algorithms that use multilayered ANNs to mimic

human intelligence by learning and making the best decision, with the most layers acting as the hidden
layer. Its effectiveness has been demonstrated outstandingly for any purpose in the automotive branch,
and implementation is rising dramatically [88]. The significance of DL was realised by Chen’s research
team [89] from Cardiff University, UK, for predictive vehicle maintenance based on maintenance history
and geographical information system (GIS) data. It outperformed based on real-world information than
other traditional approaches and anticipated that it would reduce the fleet management organisations’
maintenance-related burdens. Similarly, Naqvi et al. [90] achieved greater accuracy in mitigating accidental
issues due to inconsistent driver behaviours. The results were much better than those obtained in previous
research using a convolutional neural network (CNN) and DL technique with pupil centre corneal reflection-
based method.

Table 2: Comparison of different deep learning algorithms

Reference DL algorithm Features Application
Ulrich

et al. [91]
Convolutional

neural networks
Efficient for image-based tasks like

recognising pedestrians, vehicles, and
road signs

Object detection
and classification

Paparusso
et al. [92]

Recurrent neural
networks

Models temporal dependencies; useful
for anticipating driver actions based

on historical data

Trajectory
prediction and

driver behaviour
Tammewar
et al. [93]

Deep Q-network Reinforcement learning-based,
efficient in path planning and

lane-keeping

Autonomous
driving control

Talpaert
et al. [94]

Deep
reinforcement

learning

Learns from trial and error in
simulated environments, adapting to

new driving scenarios

Autonomous
navigation

Ren
et al. [95]

Generative
adversarial
networks

Creates realistic training data, essential
for rare events in autonomous driving

Synthetic data
generation for

training
Singh

et al. [96]
Long short-term

memory
Efficient in processing time-series

data, detecting anomalies in-vehicle
components

Predictive
maintenance and

sensor data

(Continued)
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Table 2 (continued)

Reference DL algorithm Features Application
Wang

et al. [97]
Autoencoders Used for anomaly detection and

quality control, reducing manual
inspection

Fault detection in
manufacturing

Again, for demand forecasting and inventory management of automobile spare parts, the DL approach
(modified Adam optimiser with recurrent neural network (RNN)/long short-term memory (LSTM)) per-
formed well and provided less error than available other methods [98]. Moreover, its footprints are also
extensively sketched in remote sensing of UAVs for various purposes in urban, agricultural, and envi-
ronmental contexts. Gated recurrent unit (GRU), Bi-GRU, Bi-LSTM, and DL approaches are prominently
used for fault diagnosis and identification in this sector [99]. Table 2 presents how various DL algorithms
enhance automotive applications like driver assistance systems and traffic management, improving safety and
efficiency. However, these techniques demand significant computational resources and extensive training
data to ensure reliability and safety in real-world scenarios. Therefore, contradictions arise in balancing
the rapid advancements in DL with the automotive industry’s stringent safety and validation requirements,
highlighting the need for ongoing research and development to address these challenges.

3.2.3 Heuristic Techniques
The heuristic technique is an approach for the specific problem that implements the practical method

or numerous shortcut approaches and often gives satisfactory solutions more quickly than other classic
methods [100]. In the automotive sector, day by day, its application is increasing satisfactorily due to its
quick problem-solving features. For instance, decomposition strategies in vehicle routing heuristics can
significantly enhance performance by breaking down significant problems into manageable subproblems,
as demonstrated by the superior performance of route-based decomposition methods over path-based
methods [101]. In addition, the heuristic method with improved multi-choice goal programming is used in
the vehicle-related logistics system to design a green supply chain management system by adopting carbon
regulation as greener practices [102]. Similarly, Pérez’s research team [103] found that the automotive industry
could benefit from the logistic system by minimising transportation costs through minimum touring dis-
tance, loading-unloading operations, and proper decision-making using the heuristic algorithm. However,
the primary disadvantage of heuristic methods is that they often rely on rule-of-thumb approaches that may
not guarantee optimal solutions and can lack robustness across varying conditions, potentially leading to
inconsistent performance. Furthermore, though they provide practical solutions for quick decision-making,
their reliance on approximations and empirical rules may fall short in applications requiring high precision
and predictability.

3.2.4 Metaheuristic Techniques
Metaheuristic approaches emerged as versatile problem-solving tools that operate independently of

specific problems, employing innovative strategies based on heuristic principles to resolve various challenges.
Here, the prefix meta indicates the high-level methodological nature [104]. These techniques, such as those
developed for vehicle routing problems, provide robust solutions to complex combinatorial optimisation
issues by iteratively exploring and exploiting the search space, often outperforming traditional performance
and conceptual originality [105]. Nature-inspired meta-heuristics, in particular, have been successfully
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applied across various domains, including automotive logistics, due to their flexibility and ability to handle
diverse problem sets [106]. Table 3 summarises some innovative approaches to these techniques used in the
automotive sector to optimise a broad range of complex issues perfectly.

Table 3: Comparison between metaheuristic techniques

Reference Aspect Swarm intelligence Genetic algorithm Ant colony
optimisation

[107–109] Definition Mimics the collective
behaviour of

decentralised systems,
such as bird flocking

or fish schooling

Inspired by the
process of natural

selection, involving
operations like

selection, crossover,
and mutation

A bio-inspired
algorithm that
simulates the

foraging behaviour
of ants to find
optimal paths

[107–110] Key
algorithms

Particle swarm
optimisation, artificial
bee colony, bacterial

foraging optimisation

Standard genetic
algorithm, improved

genetic algorithm with
adaptive adjustments

Ant colony system,
Max-min ant

system

[108,109,111,112] Application Used for vehicle
routing, path
planning, and

optimisation of
logistics

Applied in intelligent
vehicle path planning

to reduce energy
consumption and

improve route
efficiency

Utilised for solving
vehicle routing

problems,
optimising path
planning, and

enhancing
convergence speed

[108,109,111] Strengths Fast convergence
speed, strong

optimisation ability,
effective in dynamic

environments

Reduces the number
of iterations and turns

in path planning,
adaptive adjustments

improve performance,
elite retention strategy

enhances solution
quality

The high success
rate in reaching

best-known
solutions, effective

in large-scale
problems,

combines local
search operators

for improved
results

[107–109] Weaknesses May get trapped in
local optima;

performance can vary
based on parameter

settings

Requires careful
tuning of parameters,

Can be
computationally

intensive

Performance can
degrade with
substantial

problem instances

[108,109,111] Hybrid
approaches

Combines with other
algorithms like PSO

for enhanced
performance

Hybridised with ACO
for improved path

planning in intelligent
vehicles

Integrated with
variable

neighbourhood
descent for better

optimisation

(Continued)
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Table 3 (continued)

Reference Aspect Swarm intelligence Genetic algorithm Ant colony
optimisation

[113,114] Scalability Scales well with
decentralised control,
suited for multi-agent

systems

Scalable but with
increased

computational costs
for larger populations

Scalable but faces
computational

limits with large
path networks

[108,109,111] Parameter
sensitivity

Moderate; sensitive to
swarm size, inertia,
and social factors

High mutation,
crossover, and

selection rates require
fine-tuning

High; dependent
on pheromone

decay, deposit rate,
and ant population

size

3.2.5 Statistical Learning
Apart from machine learning, statistical learning can be defined as mathematics intensive, which

means formalised relationships among the variables in a mathematical equation. Also, it forms a hypothesis
before building the model; besides, it depends on the smaller dataset with some attributes and operates
under assumptions compared to ML (because ML requires a massive data set to learn algorithms and is
not assumptions dependent) [39]. However, it could be categorised into three categories: natural language
processing, gesture recognition, and speech recognition (Fig. 3). Firstly, NLP is the AI approach that may
help the system or machine recognise, manipulate, and interpret human language efficiently. Its significance
in the automotive field is massive in utilising structured and unstructured data for various cases, such as
driving improvement, customer service enhancement, and resource management improvement [115]. Also,
this technique could assist the driver at the time of the journey if the driver asks for any assistance regarding
the vehicle owner’s manual, where it can convert the information of the manual into text [116]. Secondly,
gesture recognition is the approach to establishing human-machine interaction using only body actions
instead of voice. In the automotive field, gesture recognition is usually conducted through three stages,
i.e., detection, tracking, and recognition. Tateno et al. [117] developed a gesture-based control system using
an infrared sensor array installed in vehicles. The system recognises seven distinct hand movements to
control the vehicle’s directional movement through a CNN-powered data processing mechanism. Finally,
speech recognition involves understanding a person’s words through a computer and translating them into a
machine-readable format. This AI feature facilitates driving vehicles without distraction to ensure a safe and
comfortable journey in the vehicle. Its application for different purposes in automotive is also notable, and
employment of this technique is escalating with changing times. For example, a DL-based speech recognition
system was developed for Arabic drivers to reduce distraction and improve human-vehicle interaction [118].
The study achieved high speech recognition accuracy of over 94% for noise-free audio and over 91% for noisy
audio using various acoustic models. However, implementing the above approaches in the automotive sector
presents numerous challenges. NLP systems must handle context understanding, multilingual support, and
integration with other systems. On the contrary, gesture recognition faces accuracy, real-time processing, and
user variability issues. Furthermore, speech recognition systems must overcome noise interference and low
signal-to-noise ratio conditions, with advanced speech enhancement techniques offering potential solutions.
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Touchless Control: Controlling
in-car functions like music,

climate, and navigation by using

hand gesture

Safety Alerts: Detects driver
alertness or fatigue through

head and hand movements

Passenger Control:Adjust
lighting or seat position

Gesture
Recognition

Voice Activation: Enables
hands-free control for phone,

calls, music, navigation, and

emergency responses

Personalization:
Recognizes drivers' voice to

adjust personalized settings

(seat position, temperature)

Real-Time Transcriptions:
Transcribes spoken instructions

or messages without looking

away from the road

Speech
Recognition

Natural Language
Processing

Voice Assistant: Contextual
responses and suggestions

based on driver request

Translation Tool: Translating
road signs or assisting passengers

in multilingual environments

Emergency Communications:Adjusting
vehicle settings and querying vehicle

information through voice commands

Autonomous Vehicle

Figure 3: Automotive applications of statistical learning approaches

3.2.6 Game-Theoretic Learning
Game-theoretic learning is an approach in the AI field where a player among a set of players as

the individual agent can make the optimal decision (prediction) of each other sequentially for upcoming
actions, and the outcome comes from these decisions [119]. So, it explains how the agents strategically might
learn from the consequences of social interaction in the long run and adopt the behaviour. It has shown
significant promise for self-driving vehicles in enhancing decision-making processes and improving safety
and efficiency in complex traffic environments. Various studies have integrated game theory with deep
reinforcement learning to model interactions between multiple vehicles, including human-driven ones, in
diverse scenarios. For instance, one approach combines DRL with game-theoretic decision-making to enable
AVs to navigate unsignalized intersections by modelling different driving behaviours and anticipating the
reactions of other vehicles without explicit communication [120]. Another study formulates lane-changing
decisions as games between pairs of vehicles, using neural learning to adjust payoff matrices and optimise
behaviour [121]. Additionally, game-theoretic planners have been developed for competitive scenarios,
such as autonomous racing, where vehicles employ strategies like blocking and overtaking to outperform
others. These planners often outperform traditional model-predictive control methods by considering
vehicle interactions [122]. Furthermore, multi-agent planning algorithms have been proposed to handle
interactions with human drivers at intersections and roundabouts, assigning priorities based on observed
driving styles to prevent collisions and deadlocks [123]. However, multi-agent interaction involves predicting
and responding to the behaviours of numerous traffic participants, including other AVs, human-driven cars,
and pedestrians. This complexity is compounded by the need for real-time decision-making, which requires
efficient computational algorithms to ensure safety and optimal performance. The integration of game theory
with DL and memory neural networks has also been explored to predict opponent behaviours and enhance
path planning in dynamic environments [124]. However, robustness against unpredictable behaviours of
human drivers and the dynamic nature of traffic environments also poses a significant hurdle, necessitating
advanced models that can adapt to varying conditions and uncertainties.

3.2.7 Fuzzy Logic
Fuzzy logic is a reasoning method in AI that imitates human reasoning for decision-making by

manipulating or representing uncertain information based on the degree of truth or a partial truth that could
be all intermediate possibilities for any actual number between o to 1 [125]. Vehicle designers have leveraged
fuzzy techniques in the automotive sector to enhance dynamic control analysis, providing a cost-effective
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solution for examining vehicle performance during driving modelling. One commonality of this method for
application in different automotive aspects is its ability to handle uncertainty and subjectivity, which is crucial
in applications ranging from failure mode and effects analysis (FMEA) to demand forecasting and energy
efficiency evaluation [126,127]. For instance, fuzzy logic enhances traditional FMEA by incorporating expert
knowledge to more effectively analyse subjective failures [128], and it is also used to predict vehicle ranges in
EVs by considering dynamic parameters [129]. Moreover, its applications extend to Industry 4.0 readiness
assessments, demonstrating versatility across different analytical domains [130]. These applications highlight
the flexibility of fuzzy logic but also underscore the differences in its implementation based on the problem
being addressed. Contradictions arise in the perceived efficiency and accuracy of fuzzy logic models. For
instance, while the Mamdani-type fuzzy logic model is praised for its high accuracy in evaluating vehicle
energy efficiency [131], other studies suggest that integrating fuzzy logic with different techniques, such as
neural networks or big data analytics, can yield more robust and reliable results [126,132]. This denial suggests
that fuzzy logic is a powerful tool. Still, its effectiveness can be context-dependent, and combining it with
other methodologies may enhance its utility in the automotive sector.

3.2.8 Hybrid Intelligent Systems
In the automotive sector, hybridisation systems combine multiple AI methodologies, such as machine

learning, rule-based systems, and optimisation algorithms, to enhance decision-making and control systems,
particularly in autonomous driving, predictive maintenance, and driver assistance systems. These approaches
share an analogy in their objective to improve accuracy, adaptability, and robustness by compensating for
individual limitations of each AI technique, such as integrating rule-based systems for interpretability with
ML for adaptability. For instance, the use of hybrid human-AI in semi-autonomous driving systems aims to
leverage human judgment alongside AI capabilities to improve system reliability and performance [133]. Sim-
ilarly, the ML-multi-agent system framework combines ML models with rule-based agents from symbolic AI
to address the limitations of ML-only approaches, thereby enhancing the driving score in fully autonomous
vehicles [134]. Recently, Rahim et al. [135] developed a CNN-BiGRU-based hybrid decision model for
vehicular engine health monitoring that combines CNN for feature extraction and BiGRU for handling
sequential dependencies in time-series engine data. They achieved high decision accuracy (0.8897) with low
decision loss, surpassing conventional models by integrating sensor data with structural and vulnerability
assessment information for improved PdM. Furthermore, hybrid systems offer a promising approach to
overcoming some of the current limitations faced by fully autonomous vehicles. By integrating hybrid electric
vehicle technology with autonomous driving systems, several practical benefits can be realised.

Energy Efficiency and Management
Hybrid systems can significantly enhance the energy efficiency of AVs. For instance, the integration of

intelligent driver assistance systems, such as adaptive cruise control (ACC) and energy management systems,
can optimise energy consumption. These systems use advanced control strategies like model predictive
control and neuro-fuzzy systems to maintain safe distances and manage acceleration, thereby reducing
energy waste and improving fuel efficiency by up to 2.6% [136]. Additionally, hybrid powertrains allow AVs
to achieve similar energy savings with smaller motors compared to those required by human drivers, thanks
to more optimal torque requests and efficient engine operations [137].
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Enhanced Control and Safety
Hybrid control models can improve the robustness and adaptability of AVs under various driving con-

ditions. For example, combining model predictive and Stanley-based controllers can enhance vehicle control
and path-following capabilities, ensuring better performance in diverse scenarios [138]. Moreover, hybrid
ML-based control strategies can optimise driving performance and smoothness, addressing limitations in
existing control systems [139].

Environmental Impact
Hybrid systems in AVs can also contribute to reducing environmental impact. By employing advanced

fuzzy logic control for energy management, hybrid electric AVs can decrease fuel usage and extend battery
life, leading to a reduced carbon footprint [140]. This aligns with the automotive industry’s goals of
sustainability and reduced emissions.

Integration with Urban Traffic Systems
In urban environments, hybrid systems can facilitate the coexistence of autonomous and non-

autonomous vehicles. For instance, creating exclusive lanes for AVs and allowing them to travel in platoons
can reduce travel times and improve traffic flow, as demonstrated in simulations using real-world data [141].
This hybrid approach can ease the transition to fully autonomous urban mobility.

By enhancing energy efficiency, control, safety, and environmental sustainability, and by facilitating
integration with existing traffic systems, hybrid systems can address many of the current limitations of
AVs. However, the development and deployment of these hybrid systems face complexities related to
algorithm portability and the standardisation of software development processes, which are crucial for
mass production and industrial applications [142]. Subsequently, integrating AI into existing vehicle systems
requires significant modifications and validation to ensure safety and compliance with regulatory standards,
which can be resource-intensive and time-consuming [143].

3.2.9 Computer Vision
In AI, computer vision for vehicles empowers them to perceive everything in their surroundings or natu-

ral environment without human assistance. The application of computer vision techniques in the automotive
sector has been explored extensively, revealing converging and diverging viewpoints among researchers.
Several studies highlight the potential of computer vision for enhancing safety and efficiency in automotive
applications. For instance, edge and ellipse detection, camera calibration, 3-D reconstruction, and stereo
vision have been successfully applied to detect rims, estimate calibration angles, and reconstruct vehicle
trajectories, demonstrating the versatility of these methods in solving complex vehicle problems [144].
Similarly, integrating this method with Industry 4.0 technologies, such as remote sensing data fusion and
mapping tools, has improved collision avoidance and environment mapping [145]. However, there are notable
differences in focus. At the same time, some researchers emphasise the role of computer vision in ADAS
for safety purposes, highlighting the superiority of DL techniques over traditional methods [146]. Others
concentrate on its application in manufacturing for quality control and defect detection [147,148]. While
some studies advocate for the immediate integration of self-adjusting computer vision systems to achieve
zero-defect manufacturing [147], others point out the slow-growing R&D infrastructure in certain regions,
which could hinder such advancements [145]. Additionally, the use of computer vision for non-contact
weigh-in-motion systems [149] and error detection in vehicle parts [150] further illustrates the diverse
applications and ongoing research gaps in this field. However, Table 4 compares various criteria of the AI
methods mentioned above.
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3.2.10 Comparative Analysis
Various AI algorithms in the automotive sector have been critically evaluated and compared based on

key performance metrics, as shown in Table 5.

3.3 Overview of AI’s Applications and Opportunities
Recently, AI’s application in the automotive sector has been increasing outstandingly to ensure intelli-

gent services, computing, networking, and security purposes, exploiting the most efficient techniques. The
prominent purposes of AI in this sector are described as follows.

3.3.1 Advanced Driver Assistance Systems
Advanced driver assistance systems are a recent automotive innovation that enhances safety and

comfort by automatically detecting and responding to potential road hazards through environmental
sensing and interpretation [177]. ADAS provides automobiles with a mix of sensor technologies and AI
processing algorithms that perceive the environment surrounding the vehicle, process it, and then either
present information to the driver or take action [178]. The state-of-the-art sensors used in this system for
various functions are RADAR (radio detection and ranging) (long range, short or medium range), LiDAR
(light detection and ranging), camera (monocular, stereo, and infrared), and ultrasonic sensors [179]. The
integration of AI in ADAS has led to the development of sophisticated algorithms, which enable the system to
adapt to different driving environments and user preferences [180,181]. To assure the highest degree of safety,
reinforcement learning algorithms have recently been applied for many levels of task repetition. For example,
Gonjalo et al. [182] created a prototype variable message sign reading system with the help of ML techniques
to improve road safety, in which images were preprocessed and delivered to an optical character recognition
model, and subsequently converted to announcements using IBM Watson Text to Speech. Moreover, Salve
et al. [183] proposed a CNN model with two output layers that can provide an alert through an alarm when the
driver is continuously predicted to be exhausted. The applications of ADAS consist of adaptive cruise control
(ACC), collision avoidance (CA), and automatic parking, among many others [184], which are discussed
as follows.

Adaptive Cruise Control
This critical ADAS component integrates onboard sensor data to maintain safe following distances and

prevent forward collisions with preceding vehicles [185]. RADAR technology emits microwave sequences
to estimate object distance and speed, while LiDAR provides high-resolution object detection by projecting
beams and calculating distances in ACC-equipped vehicles [186]. AI techniques, particularly DL neural
networks, have been employed to improve the predictive control of ACC systems. For instance, neural
network predictive control has been utilised to mimic vehicle dynamics and optimise control actions,
demonstrating improved performance in maintaining safe distances and adapting to dynamic driving
conditions [187,188]. Moreover, personalised ACC systems, which adapt to individual driving styles using
AI, have also been developed to enhance user comfort and safety by learning and adjusting to real-time
driver feedback [189]. Furthermore, innovative methods for scene recognition and target tracking in complex
traffic environments have been proposed, leveraging multi-sensor fusion and advanced filtering techniques
to improve the robustness and accuracy of ACC systems [190]. According to an analysis, traffic congestion
could be efficiently eliminated when 25% of highway vehicles are equipped with ACC [191].
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Table 5: Performance comparison of various AI algorithms in automotive applications

AI techniques Algorithm Performance analysis in automotive applications Reference
Machine learning SVM For vehicle detection in crowded traffic, SVM

demonstrated superior accuracy, achieving a
performance of 95.85% compared to KNN’s 92.65%.

Additionally, SVM has been used in predictive
maintenance for electrical systems, where it achieved

a balanced performance with an accuracy of 85%.

[165,166]

KNN In the context of parking space availability prediction,
KNN, along with DT and RF, outperformed more

complex algorithms like multilayer perceptron,
suggesting its effectiveness in less complex prediction

tasks. In predictive maintenance for electrical
systems, KNN showed lower performance with an
accuracy of 78%, indicating that it might not be the

best choice for such applications.

[166,167]

RF In predictive maintenance for electrical systems, RF
achieved the highest classification accuracy of 92%
and showed robustness in regression tasks with the
lowest mean absolute error. Additionally, in parking
space availability prediction, RF was among the top
performers, indicating its effectiveness in handling

complex datasets and providing reliable predictions.

[165,166]

Deep learning CNN CNNs are instrumental in AVs for tasks such as
object detection, lane detection, and traffic sign

recognition. These are also used in predictive
maintenance to detect anomalies in visual data from

vehicle components. CNN achieves the highest
accuracy (83.45%) in road image recognition for

AVs, outperforming other algorithms like SVM and
RF in classifying images into categories such as left,

right, forward, and stop.

[168,169]

LSTM LSTMs are used to predict future states of vehicle
components based on historical data, which is crucial

for scheduling maintenance and preventing
breakdowns. They outperform traditional methods in
terms of accuracy and efficiency, as demonstrated in
predictive maintenance models where LSTM-GANs

achieved high fault prediction accuracy.

[170]

DRL DRL algorithms, such as DQN and proximal policy
optimisation, have shown significant promise in

improving the performance of AVs by enabling them
to learn complex behaviours through interaction
with the environment. It is also applied in routing

algorithms for automotive supply chains to improve
efficiency and adaptability.

[93,171]

Heuristic Flexi algorithm In the context of software integration, the algorithm
has been shown to efficiently schedule control

applications on shared resources, minimising control
performance degradation. This approach is

particularly useful when dealing with the integration
of multiple distributed periodic control tasks, as it
provides nearly optimal results with significantly
reduced computation times compared to more

exhaustive methods like constraint programming.

[172]

Meta-heuristic GA and PSO Widely used for their robustness and efficiency in
control systems, predictive maintenance, and supply
chain management. Each algorithm has its strengths
and is chosen based on the specific requirements of
the application, such as cost efficiency, convergence

speed, and accuracy.

[107–109]

(Continued)
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Table 5 (continued)

AI techniques Algorithm Performance analysis in automotive applications Reference
Game theory N/A Game-theoretic approaches have been used to

develop robust path tracking control systems for
AVs, ensuring superior tracking performance under
varying conditions. Additionally, game theory has

been applied to optimise traffic flow at urban
intersections, where it helps in resolving conflicts

between vehicles and improving overall traffic
efficiency.

[173,174]

Fuzzy logic N/A In hybrid EVs, fuzzy logic controllers are used to
optimise motor speed and throttle control,

enhancing vehicle performance and reducing
emissions. The effectiveness of these controllers is

often improved through self-tuning using heuristic
algorithms, which adjust the gain factors for better

performance. Furthermore, fuzzy logic is integrated
with meta-heuristics in simheuristics to tackle

complex transportation optimisation problems,
allowing for the modeling of uncertainties in travel

and service times.

[175,176]

Collision Avoidance
Collision avoidance, a sophisticated ADAS component in autonomous vehicles, prevents potential

collisions by alerting drivers to environmental hazards [192]. It usually follows two strategies for risk
assessment, i.e., path planning and path tracking strategies [191], and the process is briefly presented in Fig. 4.
The path planning component designs a collision-free route by analysing current road conditions. In contrast,
path tracking ensures the vehicle adheres to this route using feedback adjustments. The risk assessment
is used to quantitatively analyse the objects’ risk level from where collisions can be predicted. After a
proper risk assessment of imminent collision, the vehicle will replace the current route and follow the
replanned route using a path-tracking strategy. It addresses various driving scenarios, such as lane-keeping
and lane-changing, by configuring control parameters specific to each scenario. The system relies on vehicle
actuators—steering, throttle, and braking—to execute manoeuvres and adapt in real time. Two controllers,
longitudinal (for speed control in car-following) and lateral (for lateral movement in lane-changing)
work together to maintain safe and stable vehicle behaviour. Yu et al. [193] developed spatial-temporal
CA algorithms using ML to enhance collision prediction accuracy and optimise AV decision-making.
Additionally, a CA model was proposed by Rill et al. [192] that used optical flow and monocular depth
estimation based on DL techniques to estimate the ego vehicle’s speed depending on the lead vehicle’s
distance. However, challenges like restricted fields of view and inaccurate range information generated from
vision-based methods have been addressed by developing a multi-sensor approach that integrates LiDAR
data for precise time-to-collision calculations [194].

Automatic Parking
Automatic parking systems represent a pinnacle of vehicle automation, seamlessly integrating real-time

sensor data with sophisticated motion planning algorithms. By synthesising environmental inputs from an
array of sensors, these systems can execute precise parallel, angled, or perpendicular parking manoeuvres
autonomously, effectively removing the complexity and stress traditionally associated with challenging
parking scenarios [191]. Ultrasonic sensors are used in these systems to store information about parking
spaces when a vehicle exits its parking spot. Afterwards, based on a two-dimensional map, RADARs are
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employed to locate appropriate parking places [195]. Recently, numerous researchers have applied DRL
to develop an automatic parking model to ensure more complex and efficient operations. For example,
Zhang and coworkers [196] proposed that reinforcement learning-based end-to-end parking algorithms
allow vehicles to learn optimal steering commands through continuous experience, thereby reducing path-
tracking errors and improving parking accuracy. Additionally, the fusion of camera sensor data and RADAR
enhances these systems’ perception and decision-making capabilities, enabling more reliable multi-target
matching and scenario extraction [197]. Furthermore, Guo et al. [198] designed an automatic parking system
using an improved DL algorithm, which resulted in 34.83% less time-consuming than manual parking.
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Figure 4: Collision avoidance system using AI

3.3.2 Vehicle Health Monitoring Systems
AI-enabled vehicle health monitoring systems (VHMS) use sensor networks and diagnostic algorithms

to monitor component conditions and detect abnormalities in modern vehicles. The system collects infor-
mation from the engine body, fuel flow system, engine speed, etc., using connected sensors, Arduino, and
the cloud [199]. Therefore, any abnormal behaviour from single or multiple vehicle components is reported
instantly through VHMS so that safety precautions can be taken rapidly to avoid complete vehicle failure.
Recent studies have emphasised the integration of AI technologies to enhance vehicle health management
capabilities. For instance, Rahman et al. [200] have suggested a conceptual framework for a central VHMS
based on multi-layer heterogeneous networks. They advocated an ML approach in this scenario to monitor
individual vehicle health concerns, warn drivers, and create data for future necessary measures. Moreover,
the use of DL for monitoring engine vulnerable components [201], signal integrity tracking, and fault
detection [202] are highlighted as some of the significant advancements. Similarly, the application of AI
for real-time diagnosis and prognosis in vehicular systems is underscored, with a focus on the powertrain
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and drivetrain components. However, there are notable differences in the approaches and technologies
employed. Though some researchers advocate using unsupervised DL models to simplify data collection
and labelling processes [202], others propose using dynamic Bayesian networks for fault detection and
prognosis in AVs [203]. Additionally, using lightweight computational intelligence for IoT health monitoring
in off-road vehicles, leveraging economic sensors and edge devices presents a cost-effective alternative to
traditional methods [204]. Nevertheless, researchers contrast the dependence on cloud-based vs. edge-based
solutions, with some studies emphasising the need for cloud computing to handle big data [202]. In contrast,
others highlight the limitations of cloud dependence in rural areas and propose edge-device-enabled
solutions [204]. These perspectives underscore the diverse methodologies and technological preferences in
AI-based vehicle health monitoring, reflecting both the potential and the challenges of implementing such
systems across different vehicle types and operational environments.

3.3.3 AI in Automotive Manufacturing
The integration of AI in automotive manufacturing spans across design and prototyping, manufacturing

and assembly, and post-production systems, offering numerous advantages as illustrated in Fig. 5. For
example, General Motors in the USA employed AI to create a prototype for one of their vehicles that
evolved a new seat belt bracket that was 40% lighter and 20% stronger than its original design [205].
In addition, to improve the flexibility of manufacturing in the automotive metalworking industry, a low-
load universal collaborative robot (cobot) system was proposed with innovative security solutions [206].
AI technologies have significantly enhanced design efficiency, reduced costs, and improved manufacturing
quality, making the industry more competitive and sustainable [207]. For instance, using federated learning-
AI in decision-making and smart contract policies effectively managed costs, energy, and other control
functions in the manufacturing process [208]. Moreover, the automotive AI transformation has radically
changed organisational infrastructure and management working methods for better performance, efficiency,
and competitiveness. At the same time, leadership styles are also evolving in automotive industries, and
AI methods are being used to provide more strategic and analytical solutions within the optimum time
frame [209]. Workforce adaptation and ethical considerations are significant impediments, as the shift
towards AI-driven processes necessitates new skills and raises concerns about job displacement [207].
Moreover, it is driving innovation and reshaping the industry’s future. There are difficulties in establishing
AI technologies at the firm level, emphasising the need for organisational readiness and digital skills [210].
Contradictions also arise regarding the scope of AI’s impact. Some researchers focus on the benefits of AI in
autonomous vehicle design and production logistics [211]. In contrast, others stress the unresolved issues in
production planning and sequence control [212].

3.3.4 AI in Supply Chain Management
Supply chain management (SCM) is the process of controlling the movements of products and services,

which covers all procedures that convert raw materials into finished commodities. Different AI technologies
are currently being used in various subfields of automotive SCM for resource utilisation and information
sharing among suppliers, manufacturers, and consumers to get the highest efficiency keeping time and
money at an optimum level (Fig. 6). As an example, study by Arunmozhi et al. [213] found a 12.48%
reduction in energy wastage and an 11.58% reduction in hidden financial transactions in the AV supply
chain using the blockchain and AI-based approach. Their framework is expected to improve product
traceability, transaction transparency, and sustainable economic growth in AV supply chains. Subsequently,
AI-based SCM significantly influences raw material procurement, bridging the gap between raw material
suppliers and automobile manufacturers [214]. AI and ML effectively maintain a proper and accurate
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inventory of automotive parts by analysing large real-time data sets and forecasting supply and demand
efficiently to improve product availability and customer satisfaction [215]. AI can optimise inbound logistics
in the automotive industry by assessing disruption risks and proposing countermeasures to ensure material
availability [216]. AI techniques combined with IoT help track and monitor automotive parts to avoid
any unprecedented damage (due to improper handling and by providing insights into materials based
on temperature and humidity) and ensure timely arrival at sites [217]. Furthermore, in the production
process, AI is able to identify any quality issues of the finished product at an early stage. For instance, Audi
implemented a project to improve the testing process in products where ML automatically identified the
finest cracks of sheet metal parts within seconds [217]. Meanwhile, Mercedes Benz and Renaults came to
realise the benefits of AI in the supply chain as soon as they developed risk mitigation and contingency plans
to reduce the probability of production or financial losses where large amounts of data were processed with
the help of AI models [205].
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Figure 5: AI deployment in automotive manufacturing

3.3.5 Predictive Maintenance
Predictive maintenance intends to predict the time frame of maintenance activities based on the system’s

health condition (statistical PdM) and recorded data of the system (condition-based PdM) to avoid costly
repair as well as ensure timely repair (before failure). Fault diagnostics and prognosis are important research
areas for PdM involving feature extraction, selection, and fault classification. By leveraging advanced sensor
technologies and big data analytics, AI techniques can predict potential failures and estimate the remaining
useful life (RUL) of automotive components, allowing for timely and precise maintenance actions [218–
220]. This proactive approach minimises unexpected breakdowns and extends the lifespan of vehicle parts,
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contributing to overall operational efficiency [221]. Table 6 shows that most existing research relies on
supervised ML methods requiring labelled data. Therefore, combining multiple data sources can improve the
accuracy of PdM models [222]. Modern vehicles equipped with sensors provide extensive data about their
condition and performance, which can be analysed to avoid vehicle failures by constructing statistical and
mathematical models using ML algorithms and executing maintenance activities resulting in models [218].
For instance, Aravind et al. [223] presented a model for AI-based PdM in AVs using physics models,
advanced sensors, and reconfigurable devices, aiming to examine electronic components’ deterioration and
the relationship between local failures and global system malfunctions. The research presents a proof-of-
concept simulation that demonstrates the effectiveness of the proposed physics models, data-driven learning
strategies, and virtual prototype-aided dynamics learning control schemes in handling different transmission
system dynamics and fault phenomena. However, the non-availability of real automotive datasets, usually
considered highly confidential by companies, prevents a qualitative comparison of novel approaches with
the state of the art. Furthermore, evaluating the validity of developed methods using real data is difficult, as
real data is often unlabelled or only partially labelled, and annotating data is time-consuming and requires
expert knowledge [218].
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Figure 6: Features of AI-driven automotive SCM
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Table 6: AI techniques used in PdM of automotive cases

Reference Features Predict cases AI techniques
Narayanan et al. [224] Engine temperature, oil

pressure, fuel
consumption, rpm, and

vibration levels

Armored fighting
vehicle engine failures

ML algorithms

Wang et al. [225] Vehicle maintenance
time series data

Vehicle maintenance
prediction

Seq2Seq neural
network with GRU

Sharma et al. [226] Historical data on
vehicle tyres

RUL of tyres DT, KNN, RF

Chen et al. [227] (GIS) data (weather,
traffic, terrain)

RUL Cox proportional
hazard model,
Merged-LSTM

network
Vasavi et al. [228] Engine load, rpm,

pressure sensor, air
flow sensor, engine

coolant temperature
sensor, throttle

position, air intake
temperature, and fuel

level

Vehicle health
monitoring

ANN + KNN

Biddle et al. [229] Driving torque,
steering wheel angle,
and brake pressure

AV’s controller fault
detection and

prediction

SVM

Hu et al. [230] Vibration signals and
fatigue loads

Suspension health
monitoring and

remaining fatigue life

LSTM

Mckinley et al. [231] NOx sensor data
(engine out NOx,
system out NOx)

NOx sensor failure Xtra gradient boosts
ML

Krishnamurthy
et al. [232]

Imaging-based sensors Component wear Feedforward neural
network

Voronov et al. [233] Sparse vehicle
operational data

Battery failure LSTM, RF

Chen et al. [89] GIS data (climatic
features)

Time-between-failures
of vehicle

DNN, RF, KNN

Wang et al. [234] Vehicle age, early
failure, and repair

history

Durability of
automobile engine

Conditional inference
tree

Shafi et al. [235] Sensor data from fuel,
ignition, exhaust, and

cooling systems

Failure prediction in
vehicle subsystems

DT, SVM, KNN, RF

(Continued)
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Table 6 (continued)

Reference Features Predict cases AI techniques
Giobergia et al. [236] Time series data from

the engine control unit
Oxygen sensor

clogging
Custom feature

selection algorithms,
semi-supervised

labelling, and
classification
algorithms

4 Conceptual Framework of AI-Based Electric Vehicle’s Real-Time Health Control Model
The significance of AI in the automotive sector in regulating the degradation of vehicles and their control

systems’ valuable parts is growing because of the real-time monitoring of their health and performance. Until
today, the available intelligent features in traditional vehicles successfully minimised maintenance expenses,
improved durability, reduced unexpected downtime, unexpected accidents, and so forth [237]. However,
conventional vehicles are not environmentally friendly due to using fossil fuels to drive them, the emission of
excessive greenhouse gasses, and climate deterioration. As a result, the demand for electric vehicles is rising
dramatically, and the market analyst predicted that the market will expand to $802.81 billion by 2027 [238].
Again, according to Reuters, vehicle manufacturers commit to ending fossil-fuel vehicles by 2040 with 100%
zero-emission vehicles. Based on the discussed matters, it can be inferred that EV demand will explode
quickly instead of fossil-fuel-driven vehicles because EV production costs will be cheaper and more flexible
than fossil fuel vehicles by 2027, and the fossil fuel vehicles’ overall market could be downed [239,240].

The notable matter is that EVs have many essential components, i.e., complete structure, electric
controller, electric motor, tyre, transmission system, and so on, which are greatly responsible for running
the vehicle smoothly. Unexpected irregularities of these components may lead to devastating accidents,
reduce vehicular longevity, increase operating expenses, waste valuable time, and many other issues may
arise [241]. Also, sensible component irregularities may lead to unexpected downtime, irregular spare parts
replacement, excessive maintenance expenses, excessive operating expenses, and replacement of expensive
spare parts, hindering people’s interest in EVs. Recently, much research has been conducted on EVs as part of
their health monitoring system to overcome the abovementioned issues. Still, these researches are confined
to specific items of health monitoring systems like tyres [242], batteries, traction motors [243], charging
faults [244], predicting the RUL of EVs [245], and so forth. Therefore, in the Industry 4.0 era, the smart and
intelligent decision-providing model is a prerequisite to control the degradation of EV’s sensible component
by measuring its real-time condition. However, till now, a robust, smart, intelligent, and secure AI-based
EV’s real-time health control model system has not been developed using structural data and associated
risk factors that could monitor, control, and notify as fast as possible by ensuring reliability and accuracy.
Therefore, Fig. 7 presents an AI-based comprehensive model designed to monitor, assess, and manage the
health of critical EV components in real time. The process begins with identifying essential components like
the battery, motor, and transmission and then assessing their vulnerabilities and associated risk factors. A
wireless sensor network is established to continuously gather real-time data from these components, focusing
on key indicators like temperature, vibration, and electrical parameters. The collected data undergoes
preprocessing and feature engineering to ensure its quality and relevance for predictive analytics. ML and
DL algorithms then analyse this data to estimate each component’s RUL and health status, enabling accurate
predictions of potential failures. After rigorous model performance evaluations in a controlled test-bed
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environment, the VHMS framework is implemented in real-world EVs applications, where it continuously
monitors component health and provides timely alerts and maintenance recommendations. This smart,
intelligent approach minimises unexpected downtime and maintenance costs and supports the Industry 4.0
goal of creating smart, sustainable, and efficient EVs.
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Decision Model System
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Sensible Components of Electric Vehicle (EV)
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Ensure Targeted Goals Efficacy and Release for
Real-World Application Through

Recommend for Real-World Application

Figure 7: Conceptual framework of AI-based health monitoring system for EVs

5 Challenges and Future Scopes of AI in Automotive Sector
As AI technologies evolve, they promise unprecedented advancements in autonomous driving, predic-

tive maintenance, and intelligent transportation systems while presenting complex technological, ethical, and
infrastructure challenges. However, successful integration requires addressing critical issues and overcoming
many obstacles, as presented in Fig. 8.



Comput Mater Contin. 2025;82(3) 3671

Calibration Reliability
M
u
lt
i-
S
en
so
r
F
u
si
o
n

H
ig
h
S
p
ee
d
D
at
a

Complexity &
Uncertainty

Workforce Adaptation

E
th
ic
al
C
o
n
ce
rn
s

M
o
d
el
S
p
h
is
ti
ca
ti
o
n

Sensor Issues Model Tuning

F
ea
tu
re
E
n
g
in
ee
ri
n
g

R
ea
l-
W
o
rl
d
T
ra
n
si
ti
o
n

Cloud-to-Edge Deployment

Cybersecurity

I n
tr
u
si
o
n
D
et
ec
ti
o
n

C
o
m
p
li
an
ce
S
ta
n
d
ar
d
s

Biometric Authentication

Ethical
Challenges

A
cc
o
u
n
ta
b
il
it
y

S
o
ci
et
al
Im
p
ac
ts

Transparency Privacy

Federated AI Digital Twins

P
re
d
ic
ti
v
e
M
ai
n
te
n
an
ce

A
d
d
it
iv
e
M
an
u
fa
ct
u
ri
n
g

Smart
Manufacturing

Deep Learning Hybrid AI

H
ig
h
-D
ef
in
it
io
n
M
ap
s

5
G
I n
t e
g
ra
ti
o
n

Autonomous
Driving

Cobots Ergonomics

A
u
g
m
en
te
d
R
ea
li
ty

S
a f
et
y
M
ea
s u
r e
s

Human-Robot
Collaboration

Simulation Standardization

A
d
v
er
sa
ri
a l
T
e s
t i
n
g

C
o
n
ti
n
u
o
u
s
L
e a
r n
i n
g

Testing &
Validation

Challenges & Future Directions of AI in Automotive Industry

Current Challenges

Future Research Scopes

Figure 8: Overview of AI challenges and future opportunities in automotive

5.1 Associated Challenges
Integrating AI into existing automotive systems presents several practical challenges. One of the

primary concerns is ensuring the safety and dependability of AI-based systems, especially in mission-critical
applications like real-time embedded systems in vehicles [246]. The integration process must address ethical
and legal considerations, data privacy, and liability issues, which are crucial for maintaining trust and
compliance with regulations [247]. Additionally, the complexity of AI systems requires robust solutions to
handle scalability, real-time data processing, and security vulnerabilities, which are essential for enhancing
vehicular networks and communication protocols. The automotive industry also faces challenges related to
data availability, quality, and system integration, alongside ethical and regulatory conundrums, particularly
as vehicles become more autonomous [248]. Furthermore, the integration of AI in automotive design and
manufacturing must consider the impact on employment and the need for international standards to ensure
secure AI systems in vehicles [247]. However, following are the detailed practical challenges of introducing
AI in automotive sector.
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5.1.1 Sensor Issues
AI integration in AVs fundamentally depends on sophisticated sensor technologies, which serve as

the critical sensory interface for perception and decision-making processes. The automotive sector faces
substantial challenges in ensuring sensor reliability, performance, and effectiveness, directly impacting the
safety and functionality of AI-driven automotive systems. Sensor calibration emerges as a crucial factor
in autonomous system performance. Complex multi-sensor fusion techniques require precise alignment
for accurate object detection and reliable vehicle operation [249]. In addition, sensor reliability represents
another pivotal concern, particularly for IoT sensors in cyber-physical systems. Unreliable sensor data can
fundamentally undermine AI applications, necessitating robust methodologies to enhance data quality and
consistency [248]. Moreover, the intricate sensor infrastructure in modern vehicles demands sophisticated
data management and high-speed networking capabilities to process the vast amount of generated data. This
complexity introduces significant challenges across hardware and software domains, with additional com-
plications arising from high energy consumption requirements and the need for rapid data processing [250].
After all, innovative AI applications for the automotive sector are often limited by the sensor technology
available. The success of an entire AI model is strongly dependent on the quality of input sensor signals [27].
Hence, resolving these challenges is the first step towards the safe and effective deployment of AVs and other
AI surfer automotive applications.

5.1.2 Complexity and Uncertainty
The development of AI systems, especially for autonomous and connected vehicles, relies heavily

on the labour-intensive contributions of micro-workers who annotate and process vast amounts of data,
highlighting a structural dependency on low-paid labour across global supply chains [251]. Additionally,
the increasing complexity of vehicle digital architectures necessitates sophisticated AI models for predictive
maintenance, which, while promising enhanced efficiency and cost reduction, also reveal emerging and
declining research trends that underscore the dynamic and evolving nature of the field [218,221]. Adopting
AI in automotive safety and cybersecurity further complicates the landscape. New attack vectors and
sophisticated hacking tools pose significant risks, necessitating the development of explicable AI and
robust security measures [252]. The automotive industry’s ongoing digital transformation, driven by AI,
IoT, and ML integration, has reshaped business processes and relationships, underscoring the sector’s
embrace of innovation and technological advancement. However, this digital overhaul also presents ethical
considerations and challenges in workforce adaptation [253]. Thus, the complexity and uncertainty of AI in
the automotive sector are characterised by a confluence of technological advancements, labour dynamics,
cybersecurity threats, and ethical factors, all of which require careful navigation to harness AI’s full potential.

5.1.3 Complex Model Tuning Issues
Training complex AI models in the automotive industry presents many significant challenges of fine-

tuning. The complex and time-variant nature of system parameters in this sector presents substantial
challenges to properly defining essential features such as non-linear behaviours, time delays, and parameter
drifts to develop effective control and modelling [254]. In addition, deploying AI models in automotive
contexts necessitates advanced methodologies surrounding data collection, training, and model deployment.
Acquiring high-quality, wide-ranging datasets and building generalisable model architectures robust to
varied operating conditions make this process particularly arduous [17]. The integration of AI also increases
the complexity of the overall tuning process in terms of machine learning (for example, hyperparameter
optimisation). It introduces the need to move rapidly from cloud-based development toward edge-based
implementation to achieve adequate model performance at the required reliability rates in real-world
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situations [255]. Furthermore, advanced feature engineering and anomaly detection methods are needed to
support defining AI models for PdM and traffic flow prediction in cooperative and autonomous EVs due
to the large amount of data produced by modern automotive systems [218,256]. Multi-objective tuning is
more complex since it is dependent on micro-workers for labelling the data, and there is a requirement to
continuously update the AI models to cater to the new data and scenes [251].

5.1.4 Cybersecurity and Functional Safety
Incorporating AI and ML in the automotive sector has dramatically increased the attack surface,

posing substantial cybersecurity risks. Adopting these technologies promises enhanced user experiences
and improved traffic management but also introduces security risks across various automotive systems,
including electronic control units, infotainment, and communication networks [257]. The complexity of
data and traffic behaviours in AV networks, controlled by protocols like CAN bus, makes them susceptible
to various attacks such as spoofing, flooding, and replaying [258]. The increasing connectivity of vehicles
exacerbates societal vulnerability to cyberattacks, necessitating robust cybersecurity validation processes and
the development of new safety integrity levels [259]. Despite the advancements, the automotive industry
faces significant challenges in knowledge sharing and collaboration among manufacturers and suppliers,
which is crucial for addressing cybersecurity threats effectively [260]. Current research highlights the
predominance of intrusion detection systems in automotive cybersecurity, yet many areas, such as biometric
authentication and cryptographic methods, remain underexplored [261]. However, lightweight crypto-
graphic protocols [262], hybrid cryptography engines [263], and hardware security modules [264] are being
developed to secure vehicular communications and components. Meanwhile, biometric solutions, including
noninvasive sensor authentication [265], and biometric fingerprinting and keystroke dynamics [261], offer
promising applications for vehicle security. As standards like ISO/SAE 21434 emphasised, comprehensive
cybersecurity testing is critical for identifying and mitigating vulnerabilities, although specific technical
guidelines are still lacking [266].

5.1.5 Ethical Challenges
The ethical challenges of AI in the automotive sector are multifaceted and complex, encompassing

issues such as human agency, technical robustness, privacy, transparency, fairness, societal well-being, and
accountability. AVs present significant ethical dilemmas, particularly in decision-making processes where
machine ethics must navigate scenarios involving potential harm to humans [267,268]. The rapid adoption
of AI technologies in automotive manufacturing and design has led to substantial improvements in efficiency
and quality. Still, it also raises ethical concerns related to workforce displacement and the need for equitable
adaptation strategies [269]. Moreover, deploying AVs necessitates robust data governance frameworks to
protect user privacy and ensure transparency in AI decision-making processes [267,270]. Despite ongoing
efforts by academia, policymakers, and industry stakeholders to address these ethical issues, a consistent and
comprehensive solution remains elusive, highlighting the need for continued collaboration and innovation
to develop ethical guidelines that can keep pace with technological advancements [268,270].

5.2 Future Research Scopes
5.2.1 Autonomous Driving and Intelligent Vehicles

One critical focus is enhancing deep learning techniques to improve autonomous driving systems’
reliability and real-time performance, particularly in complex scenarios involving road, lane, vehicle,
pedestrian, and traffic sign detection [271,272]. Additionally, integrating AI with other emerging technologies
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such as high-definition maps, big data, high-performance computing, augmented reality, virtual reality,
and 5G communication will be essential for achieving full automation and improving the decision-making
capabilities of AVs [273,274]. The concept of hybrid human AI also presents a promising avenue, com-
bining human judgment with AI to overcome current limitations and enhance the safety and efficiency
of semi-autonomous systems [133]. Furthermore, addressing the challenges of cybersecurity, vehicle-to-
everything privacy, and risk mitigation technologies will be crucial for the safe deployment of intelligent
vehicles [274]. Finally, the development of innovative AI algorithms and hardware architectures tailored for
autonomous driving will be necessary to handle the increasing complexity and ensure the robustness of these
systems [275].

5.2.2 Smart Manufacturing
Smart contracts significantly enhance trust and efficiency in AI-driven automotive manufacturing

processes by providing a secure and automated framework for executing and controlling manufacturing
operations. In the proposed design framework [208], smart contracts are integrated with federated AI to
facilitate data-driven decision-making and process execution in a decentralised manner. This integration
introduces a trust threshold limit, which helps manage and moderate the use of resources such as equipment,
tools, energy, and costs, thereby reducing wastage in manufacturing processes. By leveraging blockchain
technology, smart contracts ensure transparency and immutability, which enhances trust among stake-
holders by securely handling trading policies and market risk assessments, even during socio-economic
crises. The model demonstrates improved decision accuracy and efficiency in procurement, assembly,
and manufacturing, ultimately optimising cost, energy, and control functions. Developing AI-based mea-
surement systems, including ADAS and intelligent industrial measuring systems, will also increase road
safety and enable PdM [25]. The application of ML algorithms for PdM is another critical area, aiming to
optimise manufacturing tool performance and reduce downtime through advanced diagnostic and fault
detection methods [276]. Furthermore, the role of AI in enhancing design efficiency, cost reduction, and
manufacturing quality underscores its transformative impact on the industry [277]. The exploration of
key enabling technologies such as digital twins, additive manufacturing, and AI-based monitoring and
inspection will also be essential for the evolution of smart factories [278]. Future research should also address
the challenges of customisation, graphical user interfaces, and cloud integration to fully realise the potential
of AI in smart manufacturing [208].

5.2.3 Human-Robot Collaboration
Developing more intuitive and seamless human-robot-environment interactions leverages humans’

cognitive capabilities and robots’ physical power to create a synergistic work environment [279]. The
deployment of AI with cobots and technologies such as augmented reality (AR) and digital twin can
significantly improve the flexibility and efficiency of manufacturing processes, addressing the pressing
needs of the automotive sector [280]. Additionally, implementing AI-enabled robots and 3D printing
technologies drives rapid growth in the automotive robotics sector, particularly with the shift towards
EVs [281]. Future research should also focus on enhancing human-robot collaboration systems’ safety
and interaction modalities, incorporating advanced manual guidance techniques and wearable devices to
facilitate multi-modal interactions in a fenceless environment [282]. Moreover, the ergonomic aspects of
head-mounted displays used in AR applications need further maturation to ensure operator comfort and
effectiveness [283]. Finally, establishing standards and guidelines for developing AR assistance systems and
conducting large-scale assessments in industrial environments will be crucial for widespread adoption and
success [283].



Comput Mater Contin. 2025;82(3) 3675

5.2.4 Testing and Validation of AI systems
As automotive AI systems become more complex, rigorous testing methodologies that mimic real-world

conditions are essential. Research should focus on creating standardised, scalable frameworks for testing
AI under diverse scenarios, including rare edge cases that current datasets may not capture. Additionally,
advancing digital twin and simulation technologies can help evaluate AI-driven automotive systems more
comprehensively while reducing physical testing costs [284]. There is also a need to explore robust validation
techniques, such as adversarial testing and continuous learning algorithms, that allow systems to adapt and
self-correct in dynamic environments. Transparency in AI decision-making remains a critical research area,
as interpretable models will enhance the industry’s ability to validate complex algorithms and make decisions
auditable and compliant with emerging automotive regulations [285]. This multifaceted research approach
will ensure that AI systems in the automotive sector are safe, adaptive, and aligned with ethical and regulatory
standards, driving forward the sector’s reliability and public adoption.

5.2.5 Integration of AI with 5G
The integration of AI with 5G in the automotive sector presents a promising avenue for future research,

focusing on enhancing vehicular intelligence, safety, and communication. As 5G technologies advance,
they offer a robust platform for AI applications, enabling more efficient vehicle-to-vehicle communication
and traffic management through mobile edge computing [286]. This integration is expected to support the
development of AVs by providing ultra-low latency and high reliability, essential for real-time decision-
making and remote driver monitoring systems [287]. Furthermore, AI can optimise 5G network operations,
such as resource allocation and network slicing, to meet the stringent quality of service requirements of
autonomous driving scenarios [288]. However, the integration also poses challenges, particularly in terms of
security threats to AI-driven systems, necessitating ongoing research into robust security frameworks [289].
As the industry moves towards 6G, AI’s role will become even more critical, potentially transforming
vehicles into highly autonomous, non-polluting, and safe devices, thus making them integral to future smart
cities [290]. This convergence of AI and 5G technologies is anticipated to create a more intelligent and
connected internet of vehicles ecosystem, driving the need for continued exploration of these synergies to
address emerging challenges and opportunities.

6 Conclusions
Artificial intelligence digitally transforms the automotive sector and can improve the vehicle’s design,

assembly and experience. This extensive study examines the varied ways in which AI shapes automotive
technology and gleaned several key insights.

• Image and sensor data processing using deep neural networks have played a significant role in
enhancing the perception capabilities of vehicles. Suitable for autonomous driving and environmental
understanding, these models are proficient in pattern recognition and can work enormously with
unstructured data.

• A key strength of reinforcement learning is that it can be used to realise adaptive vehicle systems
that make intelligent decisions in uncertain environments. However, drivers might not face the same
situation more than once, so these algorithms can simulate driving conditions and iterate until they learn
the best way to approach these real-world scenarios.

• Computer vision technology is a fundamental aspect of vehicle perception, a process of reading
visual information collected by different cameras. Such functionality supports advanced movement
operations such as lane following, pedestrian identification, and visitor signal recognition, which will
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act as the human-like mind for on-road exercising and assist in better coordinating the vehicle on
high-speed roadways.

• The research also indicated the potential of AI in EV diagnostics, providing a practical guide for real-time
diagnostics and linking the theoretical framework to real-world implementation.

• The research notes several significant challenges, particularly the “black box” issue in complex AI
models. Concerns about accountability and trust arise from the opacity of decision-making processes.
The dependence on training data creates opportunities for bias that might hinder performance in
multiple deployment scenarios. To address the “black box” problem, several strategies can be employed.
One approach is to develop inherently interpretable models rather than relying on post hoc explanations
of complex models. This approach emphasises designing models that are transparent and understandable
from the outset, which is particularly crucial in high-stakes applications such as automotive sys-
tems [291]. Another strategy involves using probabilistic models, such as Bayesian networks, to provide
post hoc interpretations of black-box models. These models can offer insights into which features con-
tribute to predictions and why, thus enhancing the interpretability of the decision-making process [292].
Additionally, robust and stable explanation frameworks can be developed using adversarial training
to ensure that explanations remain consistent even under distribution shifts [293]. Finally, employing
techniques like Markov blankets can help focus on the most relevant features, providing a clearer
understanding of the model’s behaviour [292].

However, this study acknowledges several inherent limitations in its approach. The rapid evolution
of AI technology means that some of the most advanced features highlighted may not be fully captured.
Additionally, the study mainly relied on academic publications, which may reflect limited knowledge
originating in proprietary industrial innovations that are unable to be made public. Moreover, although the
developed conceptual framework is theoretically sound, it is more thoroughly examined in practical, real-
life applications and for many different types of vehicles and use cases. Immersing into the ever-evolving
era of Industry 4.0, this review is a solid base by which one can grasp a basic framework for where AI fits
into industry change while also exposing the yet understudied research landscapes of emerging technologies,
such as the IoT, edge computing, and hybrid artificial intelligent systems.
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Abbreviations
AI Artificial intelligence
ML Machine learning
ANN Artificial neural network
DL Deep learning
RL Reinforcement learning
ADAS Advanced driver assistance systems
IoT Internet of Things
PdM Predictive maintenance
NLP Natural language processing
AV Autonomous vehicle
ANI Artificial narrow intelligence
AGI Artificial general intelligence
ASI Artificial super intelligence
SVM Support vector machine
KNN K-nearest neighbour
DT Decision tree
RF Random forest
CNN Convolutional neural network
RNN Recurrent neural network
DQN Deep Q-network
GRU Gated recurrent unit
SI Swarm intelligence
GA Genetic algorithm
ACO Ant colony optimisation
ACC Adaptive cruise control
EV Electric vehicle
UAV Unmanned aerial vehicle
CAN Controller area network
DRL Deep reinforcement learning
GIS Geographical information system
VHMS Vehicle health monitoring system
LSTM Long short-term memory
GAN Generative adversarial network
PSO Particle swarm optimisation
RADAR Radio detection and ranging
LiDAR Light detection and ranging
CA Collision avoidance
Cobot Collaborative robot
SCM Supply chain management
RUL Remaining useful life
AR Augmented reality
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