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ABSTRACT: In the domain of knowledge graph embedding, conventional approaches typically transform entities
and relations into continuous vector spaces. However, parameter efficiency becomes increasingly crucial when dealing
with large-scale knowledge graphs that contain vast numbers of entities and relations. In particular, resource-intensive
embeddings often lead to increased computational costs, and may limit scalability and adaptability in practical environ-
ments, such as in low-resource settings or real-world applications. This paper explores an approach to knowledge graph
representation learning that leverages small, reserved entities and relation sets for parameter-efficient embedding. We
introduce a hierarchical attention network designed to refine and maximize the representational quality of embeddings
by selectively focusing on these reserved sets, thereby reducing model complexity. Empirical assessments validate
that our model achieves high performance on the benchmark dataset with fewer parameters and smaller embedding
dimensions. The ablation studies further highlight the impact and contribution of each component in the proposed
hierarchical attention structure.

KEYWORDS: Knowledge graph embedding; parameter efficiency; representation learning; reserved entity and relation
sets; hierarchical attention network

1 Introduction
Knowledge graphs (KGs) store human knowledge by encoding millions of relational facts as triples,

represented as (head entity, relation, tail entity) [1]. Numerous real-world KGs, such as Freebase [2],
YAGO [3] and DBpedia [4], have been developed and widely utilized as foundational knowledge resources
not only in natural language processing tasks [5,6] but also in computer vision studies [7,8]. In addition
to the aforementioned general-purpose KGs, domain-specific KGs in fields like agricultural KGs [9] and
Social-Impact Funding KGs [10] are increasingly explored to provide support in various areas.

Although KGs typically contain vast amounts of entities, they are often built from limited data
sources and rely on automated extraction techniques, leading to the potential omission of certain real-
world relationships. This challenge becomes particularly evident as the scale of the KG expands, where
missing relationships may become even more pronounced. For example, DBpedia is constructed based on
Wikipedia that transforms information from Wikipedia into RDF format, featuring approximately 5 million
entities, 700 different types of relationships, and over 500 million triples. It is reported that over 65% of
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entities categorized as “person” in DBpedia lack the relationship attribute of “birthplaces” [11]. Since the
incompleteness significantly impacts the quality of downstream applications, it is essential to implement
strategies that can enhance the comprehensiveness of knowledge bases. Knowledge graph embedding (KGE)
has been proposed as a robust solution, which utilizes low-dimensional representations of entities and
relations to transform complex knowledge into more manageable forms [12].

Among leading KGE approaches, entities and relations are often embedded in the dimensional spaces
ranging from 200 to 500 dimensions to enhance prediction accuracy for knowledge graph inference
tasks [13]. This requirement to assign a unique vector for each element causes a linear increase in parameters
and poses significant scalability challenges as the number of elements grows.

Recent parameter-efficient approaches in KGs representation have introduced methods for reducing
model complexity and embedding dimensions by utilizing only a small subset of entities [14,15]. In these
methods, entities for embedding are chosen randomly beforehand, and rather than independently embed-
ding each entity, the model leverages specific types of distinguishing information to encode all entities. In
light of this, we introduce a hierarchical attention mechanism to optimize the embedding process. This
mechanism integrates attention within each distinct information module, enabling the model to dynamically
prioritize the most critical aspects of diverse information types. Moreover, a final attention strategy seam-
lessly combines outputs across modules within the GNN framework, resulting in a hierarchically enriched
embedding that elevates the effectiveness of KGE. This multi-layered attention framework not only mitigates
parameter dependence on the total number of entities but also significantly enhances the model’s adaptability
and interpretability, delivering a more parameter-efficient and expressive representation of KGs.

We organize the paper as follows. Section 2 provides various research fields and papers related to
our work. Section 3 provides a detailed discussion of the proposed network and algorithm. In Section 4,
experimental assessments are conducted on the public dataset to measure the effectiveness of our model
and discuss the results further. Finally, we make some conclusions and outline potential directions for
future research.

2 Related Work
In this section, we review several research fields relevant to our work, including the knowledge graph

embedding, knowledge distillation and parameter-efficient knowledge graph embedding.

2.1 Knowledge Graph Embedding
Knowledge graphs organize information and knowledge into entities, attributes, and relationships to

facilitate effective knowledge management and semantic understanding in various domains. It is commonly
expressed as a triplet (h, r, t), where h denotes the head entity, t represents the tail entity, and r indicates
the relationship connecting the two entities. For applying knowledge graphs to downstream tasks including
question answering [16] and recommendation systems [17], knowledge graph embedding techniques are
focused on developing approaches to encode entities and relations from a knowledge graph into continuous
vector spaces, enabling efficient knowledge inference, reasoning, and predictive analytics in knowledge-
driven applications. Various knowledge graph embedding methods have been proposed to improve the
generalizability and transferability [18].

The distance-based methods encode the triple (h, r, t) into embedding spaces and access the distance
between h and t as a measure of relational similarity. TransE [19] is a classic distance-based model designed to
learn entity representations by modelling relations as translations between r and t. The RotatE [20] technique
represents relations as rotations in the complex vector space, enabling the capture of both the directional
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and symmetric patterns. HAKE [21] takes into account the hierarchical nature of elements within the
knowledge graph by leveraging polar coordinates to effectively disseminate hierarchical knowledge within
the embeddings.

The semantic matching-based methods evaluate the likelihood of a triple by aligning latent semantics
within the embedding space [22]. ComplEx [23] enhances the bilinear product score by extending it to the
complex vector space, providing more effective modeling of antisymmetric relations. TuckER [24] extends
the semantic matching model by employing Tucker decomposition, which factorizes entity and relation
embeddings into multiple components. It encodes symbolic triples through tensor products of these factors,
enabling efficient relational reasoning.

DynaSemble leverages textual models that utilize descriptions of textual entities, alongside structure-
based models that capitalize on the connectivity framework of the Knowledge Graph [25]. TCompoundE
employs composite geometric operations, including scaling and translation, to efficiently handle both
temporal and relational information within temporal knowledge graphs [26]. GradPath utilizes Gradient
Rollback during training to generate faithful explanation paths, which enhance the probability of the triple
prediction by mimicking human-like reasoning processes [27].

2.2 Knowledge Distillation
In recent years, knowledge distillation has been extensively studied and the research directions can

be categorized into three groups: response-based, feature-based and relation-based, depending on the
knowledge being distilled [28–30].

Response-based distillation refers to a technique aimed at distilling the output value of the teacher
model to guide and instruct the output of the student model. A neural network-based framework is
proposed to transfer knowledge from a complex teacher neural network to a simpler student network by
mimicking the final soft target distributions of the teacher model [31]. WSLD goes one step further to propose
weighted soft labels for the purpose of handling the bias-variance tradeoff [32]. Feature-based distillation
enables the student model to acquire richer semantic information across intermediate hidden layers of the
teacher model, addressing the issue of response-based distillation’s focus solely on learning the final layer’s
output. NST proposes a technique for learning similar neuron activations by minimizing the Maximum
Mean Discrepancy (MMD) metric between the teacher and student distributions [33]. SemCKD utilizes an
attention mechanism to automatically allocate appropriate target layers of the teacher model to each student
layer, thereby enabling more effective cross-layer supervision over the training process [34]. Unlike response-
based and feature-based methods which explore the specific layer outputs between the teacher and student
model from an individual data instance, relation-based methods investigate correlations or dependencies
between various layers or distinct data samples. A novel perspective, review mechanism, employs multiple
layers in the teacher model to supervise a single layer in the student model [35]. CIRKD integrates structured
pixel-to-pixel and pixel-to-region relationships across entire images into distillation losses. It enhances
the student network’s capacity to reproduce the structured semantic relationships exhibited by the teacher
network [36].

2.3 Parameter-Efficient Knowledge Graph Embedding
Knowledge graph embedding methods encounter scalability challenges because the number of param-

eters increases linearly with the entity count [14]. This will cause difficulties in its applications, such as
deploying it on edge devices. Several studies concentrate on utilizing various methods to reduce parameters
of entity representations including knowledge graph distillation, quantization and compositional methods.
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Knowledge graph distillation-based methods transfer expertise from complex, high-dimensional
embeddings into simplified, low-dimensional entity representations. Mulde is a novel iterative knowledge
distillation framework with multiple low-dimensional teacher hyperbolic KGE models and two student
networks, Junior and Senior, where the Junior actively queries teachers based on preliminary predictions and
the Senior distills teachers’ knowledge adaptively to train the Junior [1]. Dualde uses an adaptive soft label
evaluation method that assigns each triple with different soft and hard label weights [37]. It is then trained
by a two-stage distillation approach where the first stage learns from the static teacher model and the second
stage makes the teacher fit a soft label produced by the student to improve the distillation effect. Quantization-
based approaches compress the continuous embedding vectors into a discrete codebook of vectors that can
be efficiently stored while preserving prediction accuracy. TS-CL is a pioneer work in this field by learning
an autoencoder-like network where a discretization function is utilized to convert continuous entity embed-
dings into discrete codes and a reverse discretization function is employed to revert the process [38]. LightKG
represents entity embeddings by combing codewords from various codebooks [39]. Furthermore, a novel
dynamic negative sampling method is proposed to improve LightKG’s effective training. NodePiece [40] and
EARL [15] are two well-known compositional methods. NodePiece is an approach to tokenize nodes in a
knowledge graph into combinations of a small set of anchor nodes and relations, where the anchor vocabulary
is much smaller than the total number of nodes. EARL employs an encoding process that is agnostic to
entities, capturing their distinguishable information within the embeddings.

3 Proposed Method
A knowledge graph is represented by G = (E, R, T) where E is the entity set, R is the relation set and

T = {(h, r, t) ∣ h, t ∈ E, r ∈ R} denotes head-relation-tail triples. The task of knowledge graph completion is
typically achieved by learning embeddings for each entity and relation in order to predict missing edges in the
graph. Motivated by the previous studies which only learn embeddings for a small portion of entities [14,15],
we also follow similar strategies by introducing hierarchical attention mechanism to further reduce the
demand for parameters and the dimension of embeddings. In this section, we will define the problem of our
task and present the proposed model with a detailed description of the algorithm.

3.1 Task Description
In the proposed model as shown in Fig. 1, we aim to learn embeddings exclusively for a randomly

reserved subset of entities with the corresponding embeddings Eemb. Other non-reserved entities’ embed-
dings can be generated through our model. Since the number of relations is much smaller than the number
of entities, we learn embeddings for the full set of relations directly. Given the input entity represented by the
relation feature xfea, we use a trainable relation attribute matrix Rfea, the relation feature matrix of all reserved
entities Efea and the embeddings matrix of all reserved entities Eemb to handle the input entity. Lastly, a graph
neural network is used to update the entity embeddings he for each entity e and the relation embeddings hr
for each relation r. All processes are primarily driven by the attention model.
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Figure 1: The structure of the proposed model
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3.2 Proposed Network Architecture
For each input entity e, we use a relation feature xfea = [rin

1 , rout
1 , rin

2 , rout
2 . . . .rin

n , rout
n ] to indicate the

frequency of the entity appearing as either the head or tail in a relation where rout
j is the frequency of e as

the head of rj and rin
j is the frequency of e as the tail of rj. A trainable relation attribute matrix Rfea projects

xfea to obtain the connection feature of e, denoted as xcf
e . The result is processed through a self-attention

layer combined with a softmax-driven non-linear transformation to enable adaptive feature weighting and
enhanced feature interactions. This integration allows the model to effectively capture the significance of
different feature dimensions while uncovering richer and more complex relationships among features [41].
The output of this process, shown in the left of Fig. 1, is denoted as hcf

e , which represents entity’s final
connection feature.
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where Wcf
Q , Wcf

K and Wcf
V are learnable transformation matrices, and

√
dcf

k denotes the size of the vector
space for (xcf

e ⋅Wcf
K ).

The next part of the network involves finding similar entities for e from the reserved entities. By
identifying similar entities, the model can learn shared patterns and attributes, allowing for greater robust-
ness and generalization. We first calculate the similarity between the relation features of e (i.e., xfea) and
the relation features of all reserved entities (i.e., Efea), and then retrieve the top-k entities based on the
similarity scores. Next, we extract the embeddings of these top-k entities from Eemb (denoted as xsf

e ), and
then apply an attention pooling on these retrieved embeddings to generate the similarity-based feature
for e, as it dynamically emphasizes the most relevant embeddings, improving the quality of the feature
representation. The result of this process, illustrated on the right side of Fig. 1, is represented as hsf

e , indicating
the similarity-based feature of the entity.

hsf
e =Wsf

o ⋅Dropout (softmax (Wsf
a ⋅ xsf

e + bsf
a ) ⋅ xsf

e ) + bsf
o (2)

where Wsf
a and bsf

a are parameters of the attention, and Wsf
o and bsf

o are parameters of the output layer.
The final part, similar to previous research [15,42], employs a GNN to embed the KG in order to capture

multi-hop dependencies within the graph. Before starting the GNN process, the dot-product attention is
applied to hcf

e and hsf
e to form the input representations (i.e., h0

e ) for the GNN, enabling efficient computation
and capturing the interactions between features with scalable complexity.

h0
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where WQ, Wk and Wv are learnable transformation matrices, and
√

dk denotes the size of the vector space
for (hsf

e ⋅Wk). Note that the initial relation representation is denoted as h0
r . To aggregate information from

neighboring nodes, we perform an edge-attentional transformation on the combined entity and relation
embeddings to highlight critical edge information and capture intricate relational patterns. The message
aggregation for the entity e is defined as:

ml
e = ∑
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out[hl

r∣∣hl
t] + ∑

(r,t)∈I(e)
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r∣∣hl

h] (4)
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O(e) represents the set of all edges where e is the head and I(e) is the set of all edges where e is the tail.
Wl

out is the out-going trainable matrix, Wl
in is the in-going trainable matrix and l ∈ [0, 1, . . . L] is the layer

of GNN. The attention weight of the head edge (r,t) is defined in Eq. (5) and the attention weight of the tail
edge (r, h) is defined in Eq. (6).

a(r,t) = σ(Watt[hl
e∣∣hl

t∣∣hl
r]) (5)

a(r,h) = σ(Watt[hl
h∣∣hl

e∣∣hl
r]) (6)

where Wl
att is a learnable matrix and σ is an activation function. Edge-attentional layer adaptively adjusts

edge weights to avoid information loss from fixed weights, allowing the model to better capture complex
neighbor relationships. This dynamic weighting mechanism improves feature aggregation and enhances
representation learning.

The entity representation of e and the relation representation of r in the GNN are then updated as
follows, respectively.

hl+1
e = σ( 1

∣O (e) + I(e)∣m
l
e +Wl

enth
l
e) (7)

hl+1
r = σ(Wl

relh
l
r) (8)

where Wl
ent is the learnable transformation matrix for entities and Wl

rel is the learnable transformation matrix
for relations.

3.3 Model Training Process
The concept of the KGE is to optimize the embeddings of entities and relations by leveraging a scoring

function and a loss technique. For each fact triple (h, r, t), we use RotatE to learn the corresponding
dimensional vectors (h, r and t) and its scoring function is defined as fr (h, t) = ∣∣h ○ r − t∣∣ where ○ denotes
the element-wise product.

Negative sampling has been shown to be highly effective for learning word embeddings [43]. The self-
adversarial negative sampling technique in RotatE extends negative sampling approach to KGE tasks by
dynamically generating negative samples based on the current entity and relation embeddings. The loss
function is defined as follows:

Loss = − log σ(γ − fr(h, t)) − ∑
(h′ ,r,t′)∈Neg(h,r,t)

1
Neg(h, r, t) log σ(fr(h′, t′) − γ) (9)

where γ is the margin and (h′, r, t′) is the negative triple for (h, r, t). Negative triples are formed by replacing
a given triple’s head or tail entity with another entity randomly selected from the complete entity set E. The
negative triples set is defined as:

Neg (h, r, t) = {(h′, r, t)∣h′ ∈ E} ∪ {(h, r, t′)∣t′ ∈ E} , (h, r, t) ∈ T (10)

The training procedure for our proposed model is outlined in Algorithm 1. We first initialize the model
parameters randomly in line 1. At each iteration, a batch of triples is sampled from the training set in line 3.
For each triple in the batch, the relation feature, hcf

e , hsf
e , concatenation and GNN representation are in lines

5–9. The generation of negative samples is in line 10. After each iteration, the parameters are updated based
on the loss in line 12. The learning iteration continues until it reaches the predefined threshold or converges.
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Algorithm 1: Hierarchical attention network for KGE
Input: The training dataset {T = (h, r, t)∣h, t ∈ E , r ∈ R}
Output: θ for all the trainable weights in the network
1: Randomly initialize θ
2: repeat:
3: Tbatch ← sample_batch(T)
4: for each (h, r, t) ∈Tbatch:
5: Represent the entity with the relation feature
6: Apply a self-attention layer to obtain hcf

e based on Eq. (1)
7: Apply an attention pooling layer to obtain hsf

e based on Eq. (2)
8: Combine hcf

e and hsf
e with a dot-product attention based on Eq. (3)

9: Learn the entity and relation representations based on Eqs. (7) and (8)
10: Generate negative samples based on Eq. (10)
11: end for
12: Update parameters by minimizing the loss function in Eq. (9)
13: until End

4 Experiments and Results
In this section, we conduct empirical studies to evaluate the proposed method on the link prediction

task. We present the experimental results and analysis to address the following research questions:
RQ1: Is our model parameter-efficient while achieving competitive performance?
RQ2: How do different settings affect the performance of our model?
The following discussion covers these aspects: datasets used in the experiments, evaluation met-

rics, performance comparison with other methods, and ablation studies to assess the contribution of
key components.

4.1 Experimental Setting
The evaluation is performed using the WN18RR dataset which is a knowledge graph benchmark derived

from WordNet that is commonly used to evaluate link prediction models [44]. It contains 40,559 entities and
11 relations. In this experiment, the data is split into 86,835 training samples, 2824 validation samples, and
2924 test samples.

The link prediction in KGs focuses on identifying missing relationships by generating and scoring
potential triples. For each test triple (h, r, t), we replace either the head or tail entity with candidates from the
entity set and rank these new combinations based on their predicted scores. To evaluate model performance,
we use three metrics:

Mean Reciprocal Rank (MRR): This metric measures the average rank of the true triples among the
candidate triples and rewards higher-ranked correct predictions.

Hits@10: This metric calculates the proportion of true triples ranked within the top 10 positions and it
reflects the model’s top-10 prediction accuracy.

Efficiency (Effi): To quantify model efficiency, we denote Effi as MRR divided by the number of model
parameters (#P), indicating the trade-off between model performance and size.
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All experiments are conducted on a system with Windows 10, equipped with an Intel Core i9 CPU,
128 GB RAM, and an NVIDIA GeForce RTX 3090 GPU with 24 GB GDDR6X memory. The hyperparameter
configurations are detailed in Table 1. We implement this system primarily using libraries including PyTorch,
DGL, and EARL.

Table 1: Hyper-parameter configuration

Parameter Value
Batch size 1024

Training steps 50,000
Early stop patience 20
Reserved entities 10%

Top-k 10
Embedding dimension 150

4.2 Experimental Performances
To assess the effectiveness of our approach, we conduct a comparison against several leading state-

of-the-art models. RotatE, used as a baseline, is a rotation-based KGE method whose parameter count is
mainly determined by the embedding dimension [20]. NodePiece+RotatE is the method that combines
NodePiece’s efficient node representation learning approach with RotatE’s rotation-based score function to
enable more accurate and parameter-efficient representation. EARL+RotatE is the method that uses Entity-
Agnostic Representation Learning and RotatE as score function to represent and evaluate entities in KGs [15].
NodePiece+RQ is the method that uses NodePiece tokenization and Random entity Quantization (RQ) to
randomly construct a codebook for efficient entity representation in KGs [14].

The experimental results are displayed in Table 2. We present the results of RotatE with larger parameters
(40.6 M) and dimensions (500), referred to as RotatE_L, as the upper bound of performance on the WN18RR
dataset. In contrast, the results of RotatE with smaller parameters (4.1 M) and dimensions (50), referred
to as RotatE_S, serve as the benchmark for comparison using a similar parameter budget. Compared to
RotatE_S, EARL+RotateE, NodePiece+RQ and our model all demonstrate better performance in terms of
MRR and Hits@10. Among these models, our method achieves the best MRR (0.434) and Hits@10 (0.520)
results while utilizing the smallest parameter budget (3.7 M). Specifically, our model utilizes just 90.24% of
the parameters while achieving a 5.59% relative improvement in MRR and 21.21% in Hits@10 compared to
RotatE. Moreover, our model also obtains the best Effi score shown in the last column of Table 2. The results
and analysis presented above address our RQ1.

4.3 Ablation Studies
To evaluate the effectiveness of our attention mechanism, we conduct ablation studies on the WN18RR

dataset to examine the benefits of our approach and measure the contribution of each key component. As
shown in Table 3, removing any attentional module leads to a drop in performance across all evaluation
metrics. These results demonstrate that our approach effectively enhances knowledge graph embedding
performance while maintaining efficient parameter storage. Further analysis of the values in the Table 3
reveals that the edge-attention in GNN plays a more crucial role, as its removal results in a more signif-
icant performance decrease. In contrast, the dot-product attention has a relatively minor impact on the
overall performance.
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Table 2: Comparison of all competing methods on the WN18RR dataset. We implement EARL+RotateE based on the
released codes [15] and others are taken directly from original literature

Model Dim #P(M) MRR Hits@10 Effi
RotateE_L 500 40.6 0.508 0.612 0.013
RotateE_S 50 4.1 0.411 0.429 0.100

NodePiece+RotateE 100 4.4 0.403 0.515 0.092
EARL+RotateE* 200 3.8 0.426 0.517 0.112
NodePiece+RQ – 4.4 0.429 0.517 0.098

Our model 150 3.7 0.434 0.520 0.117

Table 3: Ablation study results

Model MRR Hits@10
Our model 0.434 0.520

- (Self-attention) 0.427 0.516
- (Attention pooling) 0.429 0.517

- (Dot-product attention) 0.430 0.520
- (Edge-attention) 0.423 0.516

In addition to exploring the impact of different attention modules, we also investigate how varying the
k-value in attention pooling module affects model performance. As illustrated in Fig. 2, we plot different k-
values against their corresponding MRR and Hits@10 scores. The variance in MRR is approximately 0.0049,
while the Hits@10 score variance was around 0.0048. These results indicate that different k-values do not
significantly impact model performance. Based on the aforementioned two ablation studies, we can address
our RQ2: While different attention modules contribute to model performance, varying k-values does not
have a substantial effect.

Figure 2: MRR and Hits@10 performance with different k-values
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To assess the scalability of our proposed model, we conduct experiments on the CoDEx-L dataset, which
contains over 70,000 entities [45]. Following the same experimental settings as previous studies, we utilize
a dataset configuration comprising 551,193 training samples, 30,622 validation samples, and 30,622 testing
samples. Compared to other models with a similar budget, our model achieves superior performance, as
shown in Table 4, with an MRR value of 0.213 and a Hits@10 score of 0.353. These results highlight the
robustness and effectiveness of our model in large-scale scenarios. In the comparison with EARL+RotateE,
both models use the same dimensionality of 72. However, their model employs slightly fewer parameters,
resulting in a better Effi score. Exploring ways to ensure that our model maintains efficient parameter usage
on large-scale KGs will be an important direction for future research.

Table 4: Performance comparison of competing methods on the CoDEx-L dataset

Model Dim #P(M) MRR Hits@10 Effi
RotateE_L 500 78.0 0.258 0.387 0.003
RotateE_S 25 3.8 0.196 0.322 0.052

NodePiece+RotateE 100 3.6 0.190 0.313 0.053
EARL+RotateE 72 1.4 0.209 0.352 0.149
NodePiece+RQ – 3.6 0.192 0.326 0.053

Our Model 72 2.0 0.213 0.353 0.107

5 Conclusion and Future Work
In this paper, we propose a hierarchical attention network architecture to advance parameter-efficient

knowledge graph embedding. Our experimental results demonstrate the effectiveness of our approach,
achieving strong MRR and Hits@10 scores while maintaining parameter efficiency. This balance is particu-
larly crucial as knowledge graphs continue to grow in size and complexity.

Our work opens up several promising research directions. First, future studies could explore the
integration of more sophisticated attention mechanisms to further enhance the model’s representational
capacity while preserving its efficiency in parameter usage. Second, investigating the model’s scalability to
larger knowledge graphs and its potential applications in domain-specific scenarios could provide valuable
solutions for real-world implementations and industrial use cases.
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