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ABSTRACT: Heart disease includes a multiplicity of medical conditions that affect the structure, blood vessels, and
general operation of the heart. Numerous researchers have made progress in correcting and predicting early heart
disease, but more remains to be accomplished. The diagnostic accuracy of many current studies is inadequate due to the
attempt to predict patients with heart disease using traditional approaches. By using data fusion from several regions of
the country, we intend to increase the accuracy of heart disease prediction. A statistical approach that promotes insights
triggered by feature interactions to reveal the intricate pattern in the data, which cannot be adequately captured by a
single feature. We processed the data using techniques including feature scaling, outlier detection and replacement, null
and missing value imputation, and more to improve the data quality. Furthermore, the proposed feature engineering
method uses the correlation test for numerical features and the chi-square test for categorical features to interact with
the feature. To reduce the dimensionality, we subsequently used PCA with 95% variation. To identify patients with
heart disease, hyperparameter-based machine learning algorithms like RF, XGBoost, Gradient Boosting, LightGBM,
CatBoost, SVM, and MLP are utilized, along with ensemble models. The model’s overall prediction performance ranges
from 88% to 92%. In order to attain cutting-edge results, we then used a 1D CNN model, which significantly enhanced
the prediction with an accuracy score of 96.36%, precision of 96.45%, recall of 96.36%, specificity score of 99.51% and
F1 score of 96.34%. The RF model produces the best results among all the classifiers in the evaluation matrix without
feature interaction, with accuracy of 90.21%, precision of 90.40%, recall of 90.86%, specificity of 90.91%, and F1 score
0f90.63%. Our proposed 1D CNN model is 7% superior to the one without feature engineering when compared to the
suggested approach. This illustrates how interaction-focused feature analysis can produce precise and useful insights
for heart disease diagnosis.
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1 Introduction

The heart is the most vital component of the human body out of every other part. The heart is essential
to the function of several other vital organs. Other body parts including the brain, kidneys, etc., are affected
if the heart is not functioning properly. Several factors increase the risk of heart disease [1]. Heart diseases
include coronary artery disease, heart failure, endocarditis, myocarditis, and others. The major behavioral
risk factors of heart disease include bad dietary habits, physical inactivity, consumption of tobacco products,
and use of alcohol [2]. According to the World Health Organization (WHO), 17.9 million people die each year
as a result of heart disease. The majority of cardiovascular disease (CVD) deaths occur in nations with low or
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middle incomes [3]. According to the 2021 report, 2552 CVD diseases are diagnosed every day, and someone
dies every 34 s in the U.S.A. In the United States, heart disease and heart attacks cause around 1905 deaths
every day. Seventy-five percent of mortality in developing nations like Bangladesh is caused by CVDs, which
are a serious public health concern worldwide [4]. Blood, stress, and imaging tests are some of the methods
used to identify cardiac disease. Proper diagnostic instruments, such as an echocardiogram, cardiac CT scan,
cardiac MRI, or ECG, are crucial for detecting this condition in imaginary-based detection [5,6]. However,
these tests are sometimes too costly and unfeasible for people in developing and developing countries.
Physical and financial burdens can be decreased by detecting cardiac problems early. By 2030, there would
be 23.6 million deaths from CVD overall, primarily from heart disease and stroke, according to another
WHO study results [7]. To save lives and diminish the financial burden, advanced machine learning, and
deep learning techniques should be used to identify this deadly disease. Data mining techniques are being
used in healthcare to produce vast amounts of raw data, which exhibit various patterns and are undoubtedly
vital for clinical diagnosis in the past few decades. Finding patterns in data is crucial for improving health
decisions, early disease identification, preventing avoidable hospitalizations, and forbearing medical errors.

However, predicting heart disease requires meticulous assessment of several metrics, including diabetes,
high blood pressure, excessive cholesterol, and an irregular pulse rate [8]. An automated prediction method
may be more cost-effective and error-free for doctors based on its significant characteristics than a manual
process to avoid such a complicated assessment to predict heart disease patients early and accurately [9,10].
Complex patterns in clinical data frequently emerge and influence patient prediction [11]. We process the
data set as necessary to reduce it before running the ML model. To identify intricate patterns in data and
predict the likelihood of diseases, numerous advanced statistical and ML techniques have recently been
developed. This proposed data set contains both numerical and categorical features. These records are cleaned
and filtered to eliminate and replace unnecessary data from the dataset before additional processing. To do
this, we then highlight statistical feature interaction-based techniques that can detect complex patterns in
the data. For feature engineering, we take into account numerical and categorical features separately. To
capture the complex patterns of heart diseases, we employed correlation for numerical features and the chi-
square test for categorical features. Since the feature interaction generates more features than the original
data, we intend to reduce both the model’s dimension and complexity. To accomplish this, we used principal
component analysis (PCA), a popular multivariate feature dimensioning technique that reduces dimension
without disregarding data information. Then, we used numerous hyperparameter-based ML models, such
as RF, Gradient Boosting, XGBoost, LightGBM, CatBoost, SVM, MLP, and their voting ensemble.

Finally, we proposed a customized one-dimensional convolution neural networks (1D CNN) model,
which automatically learns the features and captures the hidden pattern, to reveal the data set’s intricate pat-
tern. From a database of past heart disease cases, the improved system provides precise hidden information,
trends, and connections related to heart disease. To help medical professionals make wise clinical judgments,
it can also provide sophisticated answers to questions about heart disease diagnosis. The results demonstrated
the surpassed power of the proposed strategy in achieving the specified prospecting goals. The diagnosis is
made at every stage using the expertise and experience of the physician. This results in undesirable outcomes
and exorbitant medical expenses for the therapies that patients receive. Thus, a system for automatic medical
diagnosis would be quite helpful. Providing a thorough overview of the myriad data analysis techniques that
can be used with these automated systems is the aim of our work. The suggested procedure for predicting
heart disease is entirely depicted in Fig. 1.
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Figure 1: Proposed heart disease prediction workflow

This paper is structured as follows: Section 1 provides a demonstration of the introduction; Section 2
demonstrates related works; Section 3 describes the proposed materials and methodology; Section 4
discusses the proposed feature engineering part; Section 5 discusses findings and comparative analysis;
and Section 6 concludes and discusses future work.

2 Literature Review

Heart disease is the world’s leading cause of death in this decade, and it is caused by a complex
interaction of hereditary risk factors, influences from the environment, and behavioral factors. As a result,
many researchers work to find high-risk factors and make precise, early patient predictions. Saboor et al. [12]
deployed a tuning-based classical machine learning algorithm based on GridSearch to study the prediction
of heart disease. Six heart disease datasets were utilized, including the Cleveland, StatLog Heart, Z-Alizadeh
Sani, Hungarian, Long Beach, VA, and Kaggle Framingham datasets. Their methodology involves comparing
the performance matrix before and after the use of the data standardization technique. On the scaled dataset,
the hyperparameter-tuned SVM achieved the highest accuracy score of 96.72% out of all the classifiers.
Jindal et al. [13] used several ML models, including KNN, LR, and RF, on a dataset consisting of 304 patients
and thirteen features obtained from the UCI repository. The goal of the study is to forecast the occurrence of
heart disease. Out of all of them, KNN got the best accuracy rate of 88.52%. Mohan et al. [8] present a hybrid
ML approach, the Hybrid Random Forest with Linear Model (HRFLM), to improve heart disease prediction
accuracy. It combines the strengths of RF and a linear model. They only employed the Cleveland dataset out
of several well-known integrated datasets, including Hungarian, Cleveland, VA Long Beach, and Switzerland.
Because of its thorough records, this dataset is frequently used. Based on 14 features, the collection includes
observations from 303 patients. The HRFLM model outperformed rival models like DT and SVM, with an
accuracy of 88.7%, which is significant for medical prediction. It also enhanced performance like sensitivity
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and specificity. Although the HRFLM model displayed improved accuracy, it may be less flexible and unable
to generalize to datasets with fewer attributes due to its dependence on all features. Also, the dataset was
tiny (297 records after cleaning) and may not have been representative of the population at large when
testing the model. Chitra et al. [14] introduce a system for predicting the occurrence of cardiovascular illness
by categorizing patient data using support vector machine (SVM) and cascaded neural network (CNN)
classifiers. In this work, the CNN classifier achieved an accuracy of 85%, outperforming the SVM, which
had an accuracy of 82%. In terms of specificity and overall accuracy, CNN outperformed other techniques,
suggesting that it may be more reliable for identifying disease-free patients. Mahmud et al. [15] present a
framework for predicting cardiac failure through the integration of various ML (DT, KNN, RE and GNB)
algorithms. With an 87% accuracy rate, the metamodel surpassed competing models in recall, accuracy, and
F1 score, suggesting it could improve the reliability of predictions. The goal of the study is to help doctors
detect heart failure earlier and make more accurate predictions so that patients can get treatment when
they need it. Hossain et al. [16] studied the use of several Al algorithms to predict cardiac disease early
and correctly. In Bangladesh, they gathered primary data from various diagnostic, medical, and hospital.
Following data collection, necessary pre-processing methods are used to ensure an optimal model fit, such as
missing value treatment, deleting redundant and ambiguous data, and scaling. To determine the prominent
features, they only employed the correlation-based feature selection with the best first search approach. The
patients with heart disease are finally predicted using different AI algorithms (LR, NB, KNN, SVM, DT, RE,
and MLP) and compared with all selected features. With the selected features, the RF classifiers obtained
the highest accuracy score of 90% out of all the AI approaches. Chang et al’s [17] research on heart disease
prediction focuses on Al-based patient detection using an ML algorithm. To anticipate patients with heart
disease, they created a healthcare application that uses machine learning algorithms, specifically the RF
model, which has a greater accuracy of 83%. This paper made theoretical and practical contributions that
improved the framework for patient diagnosis and helped the hospital and physicians alike. Jackins et al. [18]
presented an Al-based intelligent clinical disease prediction system for diseases like breast cancer, diabetes,
and coronary heart disease. They employed the Naive Biased and Random Forest classification in contrast
to K-mean clustering and DBSCAN to diagnose diseases. The accuracy of RF was the highest at 83.35% for
the heart disease dataset, while the accuracy of the Bayesian model was 82.35%.

3 Materials and Methodology

Feature engineering and model hypermeter-based patient identification are the main goals of our
proposed heart disease prediction. To achieve the desired result, we first preprocess the data set, which
includes replacing missing and null values using a robust method, detecting and replacing outliers, scaling
features, and other things to make the model perform better than others. Following features engineering, we
use PCA to reduce dimension complexity. Then, we use ML based on hyperparameter tuning and a 1D CNN
model to achieve state-of-the-art performance. The subsequent part describes the specifics of the materials
& methodology.

3.1 Dataset Overview

Five datasets on heart disease were used in this work, and they were gathered from Kaggle, a well-known
machine learning data repository. This dataset’s integration, which captures an extensive range of patient
attributes, makes it unique. There are 1190 instances of the common 11 traits in this collection. There is a
nearly equal distribution in this dataset. Out of all the observations, there are 629 patients with the disease
and 561 patients without. These datasets were collected and merged to help advance research on CAD-related
disease using ML algorithms, and hopefully to ultimately advance clinical diagnosis and early treatment. The
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dataset includes various clinical and diagnostic features relevant to cardiovascular health. The patient’s age
in years is represented by a numeric value that is recorded. With 1 denoting male and 0 denoting female, sex
is a binary variable. Typical angina (1), atypical angina (2), non-anginal pain (3), and asymptomatic cases
(4) are the numbers that indicate the nominal kind of chest pain. Serum cholesterol levels are measured in
milligrams per deciliter (mg/dL), and resting blood pressure is measured in millimeters of mercury (mmHg).
A binary variable that indicates whether or not fasting blood sugar surpasses 120 mg/dL is fasting blood sugar
(1 = true, 0 = false). Estes’ criteria state that a resting ECG’s results are presented as nominal values: 0 for
normal, 1 for aberrant ST-T waves, and 2 for likely or proven left ventricular hypertrophy. The highest heart
rate that may be achieved is between 71 and 202. The binary variable of exercise-induced angina is 1 = yes,
0 = no. The details of the description of the heart disease data set are shown in Table 1.

Table 1: Heart disease dataset attribute description

Feature Description Data type
Age In years Continuous
Sex Female = 0, male=1 Categorical
Typical angina: 1
_ Atypical angina: 2 _
Chest pain type _ . Nominal
Non-anginal pain: 3
Asymptomatic: 4
Resting blood pressure mmHg Continuous
Serum cholesterol mg/dl Continuous
Fasting blood sugar (fasting blood sugar >120 mg/dl) (1 = true; 0 = false) Categorical
Value 0: normal
Resting electrocardiogram results Value 1: having ST-T wave abnormality (T wave Nominal
inversions and/or ST depression of >0.05 mV)
Value 2: showing probable or definite left
ventricular hypertrophy
Max heart rate achieved 71-202 Continuous
Exercise-induced angina Yes =1;no=0 Categorical
Oldpeak = ST Depression Continuous
The slope of the peak exercise Upsloping: 1; flat: 2; down sloping: 3 Nominal
ST segment
Target 1 = heart disease, 0 = normal Categorical

3.2 Data Pre-Processing

In the preprocessing part, missing value handling is an important part of data analysis and ML. Ifit’s not
done right, it can lead to biased models and wrong results. There are different ways to fill in missing values
depending on the type of data and how it is distributed. When it comes to categorical and numerical traits,
the method might be different. When it comes to categorical features, mode (the most usual value) is often
used to fill in missing values. This makes sure that the numbers that are imputed are a good representation
of how the categories are currently spread out in the feature. X;,,pureq = mode(x), is the imputed value
for the missing data in column X, and mode (X) represents the most frequent category in column X. For
numerical variables, we treated the missing values by median. Then we detected and imputed outliers’ values
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of the numerical variable by using a distribution-based approach. When the data is normally distributed,
the values are often replaced with the mean such as; X;,pures = mean(x), where mean(x) represents the
average value of column mean(x). For skewed numerical data, where outliers might influence the mean,
the median is used for imputation to reduce the impact of extreme values such as Xjpusea = median(x),
where median(x) is the middle value in column (x) when the data is ordered, providing a more robust
central value in the presence of outliers. We handle skewness in a numerical feature as an important factor
to consider before choosing the imputation method. If the skewness S(x) of the column S(x) is greater than
a certain threshold, indicating the presence of significant outliers or a non-normal distribution, the median
is preferred. Otherwise, for approximately symmetric distributions, the mean is used. Unlike a histogram,
which displays frequencies with bars, a density plot provides a smooth estimate of the distribution, making
it easier to see the shape and spread of the data. To show the dataset’s skewness, we set up an equation as
S(x) = (T =) P (%)3, where, S(x) is the skewness of the column x;, y is the mean of the column,
and o is the standard deviation of the column. To scale the features, utilizing a standardized method (0 to 1
ranges), we scale the features to ensure that they all contribute equally to the model. This speeds up model
convergence, prevents features with greater values from dominating, and ensures that all features contribute
equally to the model. Algorithms that are sensitive to feature magnitudes, such as PCA, SVM, KNN, and
gradient descent-based models, require standard scaling. If the features are x;, then the scaled features are
defined as X, 404 = (¥ ), where y is the mean of the feature, ¢ is its standard deviation.

4 Proposed Feature Engineering

By identifying the complex patterns in the dataset, we can forecast heart disease patients with ease and
accuracy using the proposed feature engineering strategy. We used the correlation approach for numerical
features and y* for categorical features so that the model could uncover the hidden pattern. The specifics are
covered in the subsection that follows on feature selection based on correlation and y*.

4.1 Correlation-Based Feature Selection

The statistical measurement of the connection between two variables is a correlation. The measure works
well with variables that show a linear relationship with one another. The usual range for linear correlation
scores is —1 to 1, where 0 denotes no link. The correlation coefficient is not affected by scaling or translation.
As a result, this measure may have the same value for both features with distinct variances [19,20]. Let
us consider n — dimensional feature vector X =[x, ..., X, ]. The mutual correlation for a feature pair x;

i ia (xi=%0) (x-%))
VE =) £, (5-5)’
they are also uncorrelated, that is, Txix; = 0. The correlation values for the highest to lowest variable
combinations are displayed in Table 2. To uncover hidden patterns in heart disease diagnosis, we analyzed

and x; is defined as: r, ,; = . If two features x; and x; are independent, then

feature interactions and identified the most insightful combinations. These combinations were chosen with
care to reduce multicollinearity and redundancy among the characteristics as well as to potentially uncover
subtle correlations.

We hope to better understand the dynamics of heart disease by concentrating on these relationships
to capture special synergistic effects that transcend the contributions of individual features. Combinations
with lower correlation values showed weaker interactions, and thus, were less likely to provide additional
predictive power.
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Table 2: Correlation values with the two variable combinations

Variable pair Correlation value
Age * resting bp s 0.257692
Age * oldpeak 0.245093
Cholesterol * max heart rate 0.238028
Resting bp s * oldpeak 0.176111
Resting bp s * cholesterol 0.099037
Cholesterol * oldpeak 0.057451
Age * cholesterol —-0.046472
Resting bp s * max heart rate -0.101357
Max heart rate * oldpeak -0.183688
Age * max heart rate -0.368676

4.2 x* Based Feature Selection

Chi-square is a univariate feature selection method that can be used with categorical data as input and
a categorical target variable as output. If there is a significant association between two category (nominal)
variables, the y* a test of independence is performed to find it. It compares the actual cell frequency to an
expected cell frequency. In this case, Hy: There is no association between the two variables and H;: There is
an association between the two variables. The test statistic is, xz = (OE;E), where, O = Observed value(s),
E = Expected value(s). The p-value-based information of the categorical features” significance is displayed
in Table 3. The feature combination is thought to have a substantial influence on the development of the
disease if the p-value is less than 0.05. The table demonstrates that almost all feature combinations have
p-values below 0.05, suggesting that they significantly influence heart disease.

Table 3: y? test for categorical variables feature selection

Type Chi’ statistic p-value df

Sex and chest pain type 40.1110 0.0000 3

Sex and fasting blood sugar 14.0211 0.0002 1

Sex and resting ecg 71510 0.0280 2

Sex and exercise angina 44.0280 0.0000 1

Sex and ST slope 21.2805 0.0001 3

Chest pain type and fasting blood sugar 19.0197 0.0003 3
Chest pain type and resting ecg 28.4547 0.0001 6
Chest pain type and exercise angina 229.6260 0.0000 3
Chest pain type and ST slope 179.2338 0.0000 9
Fasting blood sugar and resting ecg 19.6329 0.0001 2
Fasting blood sugar and exercise angina 3.0888 0.0788 1
Fasting blood sugar and ST slope 31.4632 0.0000 3
Resting ecg and exercise angina 14.9467 0.0006 2
Resting ecg and ST slope 14.5306 0.0242 6
Exercise angina and ST slope 211.2377 0.0000 3




3914 Comput Mater Contin. 2025;82(3)

4.3 Feature Interaction Approach

Features interaction captures the intricate, non-linear pattern that a single feature can fail to reach
improving model performance and lowering bias. Interactions learn automatically in models like DT, but
they can be explicitly engineered or automatically identified in many models, such as linear or neural
network models. It is possible to make models much more accurate by giving them a larger dataset through
feature engineering using interaction terms. To mine more complex, nonlinear relationships, we need to add
interaction terms [8]. If we denote two features X; and X,, an interaction X;,seraction Can be represented
mathematically as X;ureraction = X1 % X5. This term Xipseraction i then added as an additional feature in the
dataset, potentially improving model performance by allowing it to consider the multiplicative effect of X;
and on X, the target. We used the correlation technique categorical in this study to interact with the features
that are detailed in Sections 4.1 and 4.2.

4.4 PCA for Dimensionality

PCA is a multivariate analysis method that reduces dimensionality and complexity while identifying
the key features that encapsulate the intricate pattern. PCA preserves the data’s fundamental structure by
preserving its variance. It works by transforming the data into a new set of orthogonal components (principal
components) that maximize variance [21,22]. If X is the original dataset with n features, then after applying
PCA, Xpca = X x W, where W is the matrix of principal components. After interaction, we obtained an
excessive amount of dimensionally complicated features. Therefore, we used PCA with 95% variance to
reduce the computational cost and model performance efficiency.

4.5 Model’s Hyperparameter Tuning

By finding the best setup without overfitting, hyperparameter tuning makes models more accurate and
useful in new situations. By trying out different setups, tuning helps find the model setup that works best
for the provided information. Random Forest is a group of decision trees that work together as a whole.
The gradient Boosting method builds sequential trees that fix mistakes made by earlier trees. Gradient
boosting methods like XGBoost, LightGBM, and CatBoost are made to be fast and accurate. A classifier
known as an SVM divides data into groups by identifying a hyperplane. MLP is a kind of neural network
with programmable layers and activation functions. And a 1D CNN model that uses a refined technique to
automatically learn from the feature. To find the model parameter, we applied gird-search and chose the
best set of parameters to fit the model. Grid Search is an exhaustive parameters optimization method that
evaluates every possible combination of hyperparameters within a predefined grid. It systematically tests all
possible combinations in a specified hyperparameter space to find the best one [23]. Table 4 describes the
specific final best hyperparameters.

Table 4: Model hyperparameter used to get the best performance

Model Hyperparameter Values

RF n_estimators; max_depth [50, 100, 200];
[None, 10, 20, 30]
GB n_estimators; learning_rate [50, 100]; [0.01, 0.1,

0.2]

XGBoost n_estimators; learning_rate [50, 100]; [0.01, 0.1]
LightGBM n_estimators; learning_rate [50,100]; [0.01, 0.1]
CatBoost Iterations; learning_rate [50,100]; [0.01, 0.1]

(Continued)
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Table 4 (continued)

Model Hyperparameter Values
SVM C; gamma [0.1, 1, 10]; [‘scale,
‘auto’]
MLP hidden_layer_sizes; activation [(10,), (20,), (30,)];
[‘tanh) ‘relu’]
Proposed 1D CNN Sequential; filters; kernel_size; activation; ConvlD; 64; 2;
Relu
MaxPoolinglD; Dropout; filters; kernel_size; 2; 0.30;128; 2; Relu
activation

MaxPoolinglD; Dropout; Dropout; activation 2; 0.30; 0.5; Signoid

5 Findings and Comparative Analysis
5.1 Evaluation Matrix and Computational Efficiency

The model’s performance is evaluated using a set of criteria that provide a thorough grasp of its
diagnostic capability: accuracy, precision, recall, specificity, and F1 score. The proposed models were trained
on a system specified as follows: Processor: Intel(R) Core (TM) i7-10510U CPU @ 1.80, 2.30 GHz; RAM: 16
GB; Operating System: Windows 11 Pro; Device Name: DESKTOP-SQS8I1EEL.

5.2 Model Performance Discussion

Different prediction metrics were shown in the study’s findings for both the suggested feature engineer-
ing and non-feature engineering approaches. We conducted our study using both the train test (70% and
30%) and the K-fold cross-validation approach. Model performance is displayed in Table 5 without feature
engineering techniques, while performance matrices are displayed in Table 6 using feature engineering
techniques. Before feature engineering, the RF model outperformed all other classification algorithms in
terms of accuracy of 90.21%, precision of 90.40%, recall of 90.82%, specificity of 90.91%, and F1 score
of 90.63% during the whole procedure. When assessing the effect of feature engineering on the model
functionality, our proposed 1D CNN model achieved the greatest accuracy of 96.36%, precision of 96.45,
recall of 96.36, specificity of 99.51%, and F1 score of 96.34%. In conclusion, all models’ performance was
improved by feature engineering, but the 1D CNN stood out because of its remarkable accuracy, specificity,
and F1 score gains, demonstrating its capacity for high-impact predictions. The ROC curve for the feature
engineering method model is displayed in Fig. 2 of (a), while Fig. 2 of (b) displays the model without
feature engineering.

Table 5: Evaluation performance for heart disease prediction without feature engineering

Model Accuracy (%)  Precision (%) Recall (%) Specificity (%) F1 score (%)
RF 90.21 90.40 90.86 90.91 90.63
GB 87.30 87.06 88.83 91.56 87.94
XG Boost 88.36 88.83 88.83 92.21 88.83
Light GBM 89.15 89.80 89.34 94.16 89.57
Cat Boost 86.24 86.80 86.80 87.66 86.80
SVM 83.60 84.97 83.25 83.77 84.10

(Continued)
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Table 5 (continued)

Model Accuracy (%)  Precision (%) Recall (%) Specificity (%) F1 score (%)
MLP 82.80 86.26 79.70 85.71 82.85
Ensemble 88.89 88.94 89.85 92.21 89.39
1D CNN 90.20 90.38 90.20 95.07 90.12

Table 6: Proposed model performance for heart disease prediction with feature engineering

Model Accuracy (%) Precision (%) Recall (%) Specificity (%) FI1 score (%)
RF 91.88 93.07 92.61 88.31 92.84
GB 91.04 93.40 90.64 89.61 92.00
XG Boost 92.16 93.97 92.12 90.26 93.03
Light GBM 91.80 94.39 91.13 89.61 92.73
Cat Boost 88.24 89.27 90.15 84.42 89.71
SVM 89.08 88.32 93.10 83.12 90.65
MLP 87.96 88.83 90.15 85.71 89.49
Ensemble 92.44 90.64 92.61 87.66 93.30
1D CNN 96.36 96.45 96.36 99.51 96.34
* e e
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Figure 2: (a) ROC curve of all models with feature engineering; (b) ROC curve of all models without feature
engineering

A model is considered perfectly classified if its ROC value is 1.0, while it is considered to have no
discrimination ability if its ROC value is 0.5. A ROC greater than 0.8 is generally regarded as favorable
for binary classification. The performance metrics of several ML models, including the 1D CNN, for the
prediction of heart disease using 10-fold cross-validation, are shown in Table 7. At 90.91%, RF has the greatest
accuracy score. Therefore, in our 1D CNN model, the reliability of our findings is ensured by adding cross-
validation for the RF model, which offers further validation of the outcomes. The model accuracy and loss
curve for the proposed approach is displayed in Fig. 3 of (a) and (b), whereas the model accuracy and loss
without feature engineering is displayed in Fig. 3 of (c) and (d). Table 8 compares the performance of the
approach we propose with some recent state-of-the-art results.
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Table 7: Performance matrix for heart disease prediction with feature engineering (k-fold = 10)

Model Accuracy (%)  Precision (%) Recall (%) Specificity (%) F1 score (%)
RF 91.60 90.91 90.91 92.19 90.91
GB 90.76 89.29 90.91 90.62 90.09
XG Boost 90.76 90.74 89.09 92.19 89.91
Light GBM 90.76 90.74 89.09 92.19 89.91
Cat Boost 84.03 86.00 78.18 89.06 81.90
SVM 88.24 84.75 90.91 85.94 87.72
MLP 85.71 88.00 80.00 90.62 83.81
Ensemble 89.92 90.57 87.27 92.19 88.89
1D CNN 84.87 84.94 84.87 83.96 84.85
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Figure 3: 1D CNN model accuracy (a) and loss (b) curve for with feature engineering and model accuracy (c) and loss
(d) for without feature engineering

Table 8: Performance comparison of the recent studies with the proposed method on the heart disease dataset

Author’s Model Accuracy (in %)
Bharti et al. [24], 2021 LR, KNN, SVM, RE, DT, DL 94.20
Mauya et al. [25], 2024 DT, RE LR, NB, SVM 84.85
Anika et al. [26], 2024 KNN, SVM, LR, GNB, AdaBoost, XGBoost, 79.00
KNN
Hossain et al. [16], 2023 LR, NB, KNN, SVM, DT, RE, MLP 90.00
Our proposed model RE, Cat Boost, Light Boost, SVM, MLP, 96.36

Ensemble, XGBoost, Gradient Boosting, 1D
CNN
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6 Conclusion

Finding the hidden pattern of heart disease in the health informatics data is our goal in this work.
The dataset is initially preprocessed, including null and missing value replacement, robust outlier detection,
etc., before delving deeply into the model application. Next, we attempt to determine how likely a feature
is to cause the corresponding disease. Correlation and chi-squared feature interaction were then utilized
to increase the model’s accuracy by mining the intricate hidden pattern, and the findings showed promise.
To classify patients with and without the disease, we used several advanced machine learning models (RE,
MLP, XGBoost, CatBoost, Light GBM, SVM, GB, Ensemble) that can capture the association with the target
variable. Additionally, we used a ID CNN model, which learns from features automatically without the need
for manual feature engineering. We concluded that our proposed 1D CNN model has the greatest and most
reliable outcomes, with accuracy, precision, recall, specificity, and F1 score of 96.36%, 96.45%, 99.51%, and
96.36%, respectively. This indicates state-of-the-art performance compared to recent work.
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