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ABSTRACT: Fire detection has held stringent importance in computer vision for over half a century. The development
of early fire detection strategies is pivotal to the realization of safe and smart cities, inhabitable in the future. However,
the development of optimal fire and smoke detection models is hindered by limitations like publicly available datasets,
lack of diversity, and class imbalance. In this work, we explore the possible ways forward to overcome these challenges
posed by available datasets. We study the impact of a class-balanced dataset to improve the fire detection capability
of state-of-the-art (SOTA) vision-based models and propose the use of generative models for data augmentation,
as a future work direction. First, a comparative analysis of two prominent object detection architectures, You Only
Look Once version 7 (YOLOv7) and YOLOv8 has been carried out using a balanced dataset, where both models have
been evaluated across various evaluation metrics including precision, recall, and mean Average Precision (mAP). The
results are compared to other recent fire detection models, highlighting the superior performance and efficiency of the
proposed YOLOv8 architecture as trained on our balanced dataset. Next, a fractal dimension analysis gives a deeper
insight into the repetition of patterns in fire, and the effectiveness of the results has been demonstrated by a windowing-
based inference approach. The proposed Slicing-Aided Hyper Inference (SAHI) improves the fire and smoke detection
capability of YOLOv8 for real-life applications with a significantly improved mAP performance over a strict confidence
threshold. YOLOv8 with SAHI inference gives a mAP:50-95 improvement of more than 25% compared to the base
YOLOv8 model. The study also provides insights into future work direction by exploring the potential of generative
models like deep convolutional generative adversarial network (DCGAN) and diffusion models like stable diffusion,
for data augmentation.

KEYWORDS: Fire detection; smoke detection; class-balanced dataset; you only look once (YOLO); slicing-aided hyper
inference (SAHI); fractal dimension; generative adversarial network (GAN); diffusion models

1 Introduction
Fire incidents endanger both humans and wildlife and cause significant environmental and monetary

damage. With increasing urbanization, infrastructural diversity, and deforestation, technological collabora-
tion is pivotal to developing advanced fire-proof systems in consolidated engineering pipelines. Early fire
detection and damage control strategies are critical to sustain a world inhabitable by humans and wildlife
alike, and for the realization of smart cities, infrastructure maintenance, and mitigating the adversities of
global warming.

Among the myriad scientific efforts leading to fire threat mitigation include sensor-based fire detection
systems. A hydrogen sensor with a microheater to sense hydrogen generated by fire [1] was proposed to
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detect smoldering fire. Multiple sensor-equipped mobile robots using ultrasonic, line, and flame sensors [2]
have been designed to ensure the stable maneuverability of fire-detecting robots. Systems integrating sensing
technologies into the Internet of Things (IoT) are the most viable option due to rapid deployability [3].

In the past several years, with the advent of object detection capability in vision-based systems, fire
detection has held significant attention from the research community. Vision-based systems are trained on
an extensive amount of data, enabling them to make subsequent detections and predictions. However, one
of the primary challenges for efficient vision-based fire and smoke detection system design is the scarcity of
publicly available benchmark datasets. The range of challenges that come with the currently available datasets
have been summarized in Table 1.

Table 1: Range of challenges for fire and smoke detection in image-based datasets, with proposed solutions in recent
literature

Issue Baseline challenge Proposed solution Ref.
Data availability Unavailability of publicly available

benchmark dataset for fire and smoke
detection.

Synthetic data generation using Unity3D’s Particle
System.

[4]

Dataset diversity Lack of diversity leading to less
generalizability of the trained model.

Adaptive attention mechanism to learn essential
features.

[5]

Scale imbalance Object scale and box scale vary with
varying camera position and small object

detection.

Scaling on the modeled object to particularly
detect repetitive patterns.

[6]

Objective imbalance Variation in image resolution and
corresponding requirements (hardware,

loss function minimization, etc.).

Balanced cross entropy (BCE) loss to guarantee a
high detection accuracy rate and low false-alarm

rate.

[7]

Class imbalance Under-representation of one or more
classes.

Resampling techniques, algorithmic approaches,
and synthetic data generation.

[8]

Semantic imbalance Intra-class vs. inter-class semantic
difference.

Combining different datasets and employing
semantic segmentation using 5 different loss

functions.

[9]

In this study, our motivation is to design a fire and smoke detector with high accuracy that has the
potential to be applied to real-time processing on board in the future. We can summarize the contributions
presented in this work as follows:

1. Using a class-balanced dataset, we propose a light-weight deep learning-based smoke and fire detection
approach using the you only look once (YOLO) version 8 model with Slicing-Aided Hyper Inference
(SAHI) to improve the model’s detection capability, especially for small fires. To the best of our
knowledge, YOLOv8 has not yet been used with SAHI to analyze the fire detection capability of
YOLOv8 model.

2. We perform fractal dimension analysis to study the spatial arrangement of fire and smoke to get insights
into patterns, density, and severity of fire outbreaks to establish the groundwork for SAHI.

3. We give a comprehensive future work direction for data augmentation using generative adversarial
networks (GANs) and diffusion models.

4. From our rigorous experimentation, we show that the key to improving detection performance and
alleviating the problems of insufficient feature representation and background confusion lies in feature
enhancement and fusion, which we achieve through SAHI.

The complete model architecture has been presented in Fig. 1, with 4 major modules: 1) Balanced dataset
creation, 2) YOLOv8n model training, 3) fractal analysis, and 4) SAHI.
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Figure 1: Proposed YOLOv8 model using Sliced Inference with Fractal Dimension (SIFD) analysis for fire and smoke
detection

The rest of the paper is organized as follows: Section 2 explains the proposed methodology of developing
a fire and smoke analysis and detection model, fractal analysis, and SAHI, along with the environment
and hardware specification. Section 3 describes the balanced dataset we used for our experiments and its
statistical characteristics. Section 4 details the results, followed by Section 5 giving insights into our studies of
generative models with the potential of future work direction. We conclude with a summary of our findings
in Section 6.

2 Proposed Methodology
In this section, we will explain the experimental methodology including the fire and smoke detection

model architecture, fractal dimension analysis, and the inference methodology, SAHI. We also discuss
the hardware and environment specifications that were used to train and test the performance of the
proposed model.

2.1 Fire and Smoke Detection Model—YOLO-SIFD
Our proposed model YOLO-SIFD includes a study on YOLOv8 using Sliced Inference with Fractal

Dimension (SIFD) analysis for fire and smoke detection. Fig. 1 shows a schematic of our proposed work.

2.1.1 YOLOv8—Detection Model
Object detection has lately been studied with transformer architecture [10] for arial images by maximiz-

ing feature understanding at the cost of increased model complexity and different YOLO versions for loss
optimization [11]. YOLOv7 [12] and YOLOv8 [13] are both recent, state-of-the-art (SOTA) object detection
models published in 2022 and 2023, respectively. YOLOv7 motivated the inception of YOLOv8 to primarily
address its inherent limitation to be used for real-time applications owing to the trade-off between model
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complexity and inference speed. YOLOv8 is an anchor-free model which doesn’t rely on pre-defined object
size and location in an image. This is achieved with a decoupled head to process objectness score calculation
(probability of object location), and classification tasks independently. This adaptive design is advantageous
for faster inference and better accuracy in detecting small objects. YOLOv8 has introduced Cross-Stage
Partial (CSP) [14] enhancement to improve the gradient flow during training and eventually minimize
the loss function. The CSPDarknet as backbone improves feature extraction of YOLOv8 compared to its
predecessors. The Path Aggregation Network (PANet) [15] used in YOLOv8 neck enables multi-scale feature
extraction by simplifying information flow across varying spatial resolutions. The modified YOLO head
incorporates dynamic anchor assignment and a novel Intersection over Union (IoU) loss function to increase
bounding box predictions and manage overlapping objects. The sigmoid function is used as the activation
function for the objectness score in the output layer of YOLOv8 to show the probability of an object in a
bounding box.

2.1.2 Fractal Analysis
We further study the fractal dimension of fire to render fractal geometrics for analyzing fire propagation.

The bounding boxes from SAHI detection are used to construct a binary fractal image representing the
detections. The calculated fractal dimension gives the spatial distribution of the bounding boxes in the binary
image. This quantitative measure of the complexity of the arrangement of detected objects can be used to
develop effective feature extraction methodologies. For the scope of this work, a higher fractal dimension
corresponds to a complex distribution, indicating more objects, clustered together. This spatial arrangement
of detected fire can provide insights into patterns, density, severity, and the potential of fire spread.

2.1.3 SAHI
To improve the detection accuracy of YOLOv8, we incorporated it with SAHI. SAHI divides large

images into smaller, manageable slices such that each slice is independently processed as a large patch. After
detection in individual patches, bounding box coordinates are matched and overlapping patches are removed
using non-maximal suppression (NMS). This method allows models to process each slice independently,
reducing computational load and memory usage. By aggregating the results from these slices, SAHI enables
detection of smaller and overlapping objects, and segmentation where high-resolution input is required.
Small object detection has been studied with attention networks [16]. The resulting performance gain is
achieved by leveraging a large dataset, hence inapplicable to data-constrained applications. To overcome the
detection challenges associated with small objects, especially in data-constrained domains, Slicing-Aided
Hyper Inference (SAHI) has been studied in the literature [17,18]. The viability of the slicing approach can be
further strengthened by the fact that dynamic textures in a fire can be fractally analyzed and fire propagation
can be modeled [19]. Such an approach can help develop early fire detection methodologies.

2.2 Hardware Specification
The hardware specification and runtime environment for the designed fire and smoke detection model

have been outlined in Table 2.
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Table 2: Hardware and environment specification

Component Details
Python version Python 3.10.14
Pytorch version Torch 1.12.1 + cu113

GPU NVIDIA GeForce RTX 3090
CPU Intel(R) Core(TM) i9-10900KF CPU @ 3.70 GHz
RAM 64 GB

Operating system Windows 11

3 Dataset
We used a publicly available fire dataset for this study, previously adapted in [20] with 8974 images

and [21] with 11,667 images. These datasets are built on other publicly available video datasets like VisiFire,
widely studied for fire detection in earlier works like [22,23]. The details specific to a dynamic dataset with
the intent to improve detection accuracy have been given in the following sections.

3.1 Dataset Description
Let the original video dataset V has n videos, such that V = {v1 , v2, . . . , vn}. Each video vi is divided

into frames f . The total number of frames in the entire video dataset V can then be given as:

Ftotal = ∑
n
i=1 Fi , where∶ Fi = { f1 , f2, . . . , fk}∣k is a variable for all i to n (1)

The entire set of frames can then be denoted as:

F = ⋃n
i=1 { fi ,k ∣k = 1, 2, . . . , ki} (2)

where fi ,k represents the kth frame in the ith video, and ki is the number of frames in the ith video. For each
frame fi ,k , the class label Ci ,k is a set of labels that can be denoted as:

Ci ,k ⊆ {C1 , C2} , where C1 = f ire and C2 = smoke (3)

Since, each frame can have single or multiple labels (fire, smoke or both), the labelled frames comprising
the labelled dataset L, can be mathematically given as:

L = {( fi ,k , yi ,k)∣ fi ,k ∈ F , yi ,k ⊆ {C1 , C2}} (4)

where each pair ( fi ,k , yi ,k) denotes a frame fi ,k from a video vi and its corresponding set of labels yi ,k . Let
the total number of frames labelled as fire and smoke be denoted by N1 and N2, respectively, such that,

N1 = ∑
m
j=1 1(y j = C1), N2 = ∑

m
j=1 1(y j = C2) (5)

where 1(y j = C1) and 1(y j = C2) indicate 1 for fire and smoke, respectively, and 0 otherwise. The total number
of frames is hence Ftotal = N1 + N2.

Using the above information, we calculate the chi-square, χ2 test, which is a statistical measure that is
used to compare the observed frequencies of each class from a multi-class dataset, i.e., fire and smoke, against
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their expected frequencies if the dataset were balanced [24]. Ox is the observed frequency of fire (O1) and
smoke (O2), and Ex is the expected frequency of fire (E1) and smoke (E2).

χ2 =
2
∑
i=1

(Oi − Ei)
2

Ei
, where∶Ei =

Ftotal

2
(6)

Since χ2 gives the difference between observed and expected frequencies, indicating that higher values
show a greater deviation from the expected frequencies, suggesting potential imbalance.

We also calculate the p-value, a statistical measure to calculate the significance of observed data. It is the
likelihood of obtaining a value equal to or greater than the observed result if the null hypothesis or conjecture
is true. The p-value is the probability that a chi-square random variable with df degrees of freedom exceeds
the observed statistic, χ2. Here d f = 2 − 1 = 1, for 2 classes (fire and smoke).

p−value = P (χ2 ≥ observed χ2∣df = 1) (7)

If the p-value is greater than a significance level α (usually 0.05), the null hypothesis fails to be rejected
and the dataset is balanced, and imbalanced otherwise. A p-value of 1 indicates a perfect balance between
the class labels.

To achieve the dataset balance, we adopt a pruning technique that uses an oversampling or undersam-
pling technique, as required. For over-sampled or under-sampled labels, we respectively reduce or increase
the duration or frequency of frame extraction from videos labeled as fire or smoke, by skimming through the
entire dataset L, to avoid losing data diversity. We do this iteratively until a class-balanced dataset is achieved.

3.2 Statistical Analysis of Dataset
Following the balanced dataset creation strategy from Section 3.1, Fig. 2 shows samples from the dataset.

Figure 2: Samples from the balanced dataset

Fig. 3 shows the label distribution in terms of fire and smoke in the dataset. A further distribution of
label counts in train, test, and validation datasets is shown. An equal number of 6793 smoke and fire labels
corresponds to a balanced dataset.
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Figure 3: Label distribution comparison in train, test and validation sets. (a) Fire and smoke label distribution in the
fire and smoke detection dataset. (b) Label distribution comparison in train, test and validation sets

A consolidated overview of data split into training, test, and validation sets, and a statistical overview
of the dataset in terms of label counts for fire and smoke is given in Table 3.

Table 3: Statistical distribution of fire and smoke images and labels in the dataset

Image dataset Image count Label count (Fire, Smoke) Chi-square (χ2) p-value
Training 8018 (70%) 4812, 4692 1.51 0.21

Test 2403 (20%) 593, 596 0.007 0.93
Validation 1094 (10%) 1388, 1505 4.73 0.02

Total 11,515 6793, 6793 0.0 1.0

Chi-square values, obtained using Eq. (6), are 0 for the entire dataset indicating a perfect balance.
For training and test datasets, the values are low, so the model can be trained on a balanced dataset. The
validation set, on the contrary, shows a higher χ2 value of 4.73, which motivates the need for a robust
inference methodology.

The results of chi-square test are further supported by the p-value from Eq. (7). Statistically, a low
p-value (<0.05) suggests that the class distribution in the dataset is significantly different from the expected
distribution, indicating potential imbalance. This can be seen in the validation dataset, again prompting the
need for a better inference methodology.

4 Results
We used fine-tuning for optimal performance. For YOLOv7, adam optimizer was used with a learning

rate of 0.001 and momentum of 0.937. For YOLOv8, adamW optimizer was used with a learning rate of 0.01
and momentum of 0.9. The training results for YOLOv7 are for 60 epochs while that for YOLOv8 are for 50
epochs, to achieve comparable performance. We compare our results with recent work in terms of precision,
recall, and mean average precision (mAP) values.
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Fig. 4 shows the training result of YOLOv7 and YOLOv8 for 60 and 50 epochs, respectively. The epochs
are shown along the x-axis while the performance metrics on the y-axis are depicted by the graph header.
These evaluation parameters [25], precisely precision, recall, and mAP [26] can be defined using Eqs. (8)
to (10) where true positive (TP), true negative (TN), false positive (FP), and false negative (FN) values are
considered. For both models’ performance shown in Fig. 4, the precision, a count of true positives out of the
total predicted bounding boxes, has been calculated using (8):

Precsion = TP
TP + FP

(8)

Recall, which counts the true objects detected by the model, can be calculated as:

Recal l = TP
TP + FN

(9)

At a given IoU threshold, we also calculate the model’s mAP value as:

mAP = 1
n
×∑AP@IoU [i] , where 0.5 ≤ IoU [i] ≥ 0.95 (10)

where IoU = Area o f Ov er l a p
Area o f Union .

Figure 4: Performance result comparison of YOLOv7 and YOLOv8 for fire and smoke detection. (a) YOLOv7
performance results (y-axis) for 60 epochs (x-axis). (b) YOLOv8 performance results (y-axis) for 50 epochs (x-axis)

From (10), mAP is the average of precision values computed at different recall levels across all classes and
images, hence being a more comprehensive evaluation metric. It gives a more balanced view of the model’s
performance for given confidence thresholds.
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From Fig. 4, we can see that for YOLOv7 to reach a performance comparable to YOLOv8, the finetuning
results vary by 10 epochs less for YOLOv8, to avoid overfitting. The results have been summarized in Table 4,
where we compare our results to recent related work. We used a balanced dataset with fire and smoke labels to
make this model better suitable for practical applications. Our model shows a great balance between precision
and recall which is a tradeoff. Looking at Eqs. (8) and (9), if a model strictly predicts a positive class with
high confidence, it will have high precision but many true positives might be missed leading to lower recall,
and vice versa. This concept is further evaluated in the precision-recall curve shown in Section 4.3.

Table 4: Comparison of YOLOv7 and YOLOv8 performance on fire and smoke detection datasets

Ref. Year Model Precision Recall mAP:50 #Images Detection
[27] 2024 YOLOv7 0.856 0.760 0.847 2576 Fire
[27] 2024 YOLOv8 0.857 0.781 0.871 2576 Fire
[28] 2023 YOLOv7 0.861 0.818 0.883 2058 Fire
[20] 2023 YOLOv7 0.887 0.869 0.903 8974 Fire/Smoke
[20] 2023 YOLOv8 0.889 0.871 0.909 8974 Fire/Smoke
[21] 2024 YOLOv8 0.837 0.952 0.890 11,667 Fire/Smoke

Ours 2024 YOLOv7 0.903 0.883 0.919 11,515 Fire/Smoke
Ours 2024 YOLOv8 0.922 0.928 0.969 11,515 Fire/Smoke

We compare our results with recent work in the literature. Reference [27] studied fire detection using
YOLOv7 and YOLOv8. However, the achieved performance is not very high and the training dataset is
small. The models are also trained only for fire detection, which limits its applicability. The fire detection
model from [28] has achieved a good balance between precision and recall, but the dataset size and only fire
detection capability become its limitations. The model proposed in [21] with the same baseline dataset as
ours, has been designed for both fire and smoke detection and achieves a high recall with a suitable dataset
volume. Our proposed model achieves an overall superior performance in terms of high precision, recall
balance, and better mAP values, which can be credited to the class-balanced dataset.

4.1 Loss
To dig further into our fire and smoke detection model, we use box loss as an evaluation parameter to

compare YOLOv7 and YOLOv8 performance, shown in Fig. 5. Box loss is the difference between the model’s
predicted bounding boxes and the actual ground truth bounding boxes. A lower loss value is desirable since
it is an indicator of the model’s predictions to be closer to the actual values. While YOLOv7 gives a lower box
loss value compared to YOLov8, we choose YOLOv8 due to its overall better performance.

We further explore the trained YOLOv8 model and evaluate it on a number of parameters.

4.2 F1 Confidence Curve
F1 score is the harmonic mean of precision and recall given by:

F1score =
2 × Recal l × Precision

Recal l + Precision
(11)

The graph in Fig. 6 shows F1 score calculated at different confidence thresholds. It shows the balance
between precision and recall by considering both false positives and false negatives. A higher peak suggests
better model performance. The values range from 0 to 1, where 1 indicates perfect precision and recall, and 0
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indicates the worst performance. All classes 0.92 at 0.332 means that, on average, the model has 92% precision
at a confidence threshold of 0.332 for all classes.

Figure 5: Loss comparison of YOLOv7 and YOLOv8 models. (a) Training and validation box loss for YOLOv7.
(b) Training and validation box loss for YOLOv8

Figure 6: F1 confidence curve for YOLOv8 validation
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4.3 Precision Recall Curve
The graph in Fig. 7 shows the trade-off between precision and recall for different threshold values.

All classes 0.969 mAP@0.5 means that the mAP is 96.9% across all classes at an IoU threshold of 0.5, as
given in Eq. (7). IoU measures the area of overlap between the predicted bounding box and the ground
truth bounding box. mAP50 refers to the mean average precision calculated at an IoU threshold of 0.5. In a
precision-recall curve, a model that reaches closer to the top-right corner is better.

Figure 7: Precision recall curve for YOLOv8 validation

4.4 Confusion Matrix
The confusion matrix summarizes the classification performance. Correct predictions are indicated

along the main diagonal (top left to bottom right) while misclassifications are indicated by the off-diagonal
values. Fig. 8 shows the normalized confusion matrix for YOLOv8. It is evident from the figure that the
model’s ability to predict fire and smoke is high, precisely, 95% and 98%, respectively.

4.5 Fractal Dimension
Fractal dimension is a rational geometric statistic providing the complexity detail in a pattern indicating

“self-similarity”, in a normal Euclidean space. In essence, spatial dimensionality constrains the fractal
dimension of the object it contains. A higher fractal dimension typically indicates more complex, intricate
shapes, and vice versa. Since we are using 2D images, the 2D space constrains the fractal dimension of fire
in a range between 1 and 2. 1D objects, like straight lines, can be covered with intervals, whereas 2D objects
need to be covered with small boxes or tiles. In the realm of wildfires, fractal dimension methodologies like
the box-counting method can be used to analyze how the embedding space is occupied by the fire pattern.
Since the boundary of fire is highly irregular, being neither a 1D curve nor filling a complete tile in a 2D box,
the overall fractal dimension of fire follows the power law, eventually ranging between 1 (for linear) and 2
(for surface).
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Figure 8: Normalized confusion matrix for YOLOv8 validation

The box-counting method is analogous to counting the boxes in a grid that cover a certain part of
an image (or object of interest like fire in our case) over different dimensions. We use a box-counting
fractal dimension methodology, wherein, with an increasing scale of analysis, or larger boxes; the fractal
dimension generally decreases. This is because large boxes are less sensitive to fine details, leading to a
less complicated structure at larger scales. Fractal properties of fire have been studied in the literature for
stochastic modeling [29], suggesting its importance in determining the spread of fire.

We analyzed the fractal dimension based on varying box sizes, using the fine-tuning dataset, and the
result is shown in Fig. 9. The result shows that the fractal dimension of the detected bounding boxes in the
image broadly ranges between 1 and 2. A fractal dimension close to 1 indicates simpler, linear structures,
while that closer to 2 suggests more complex, surface-like structures. Our result is therefore suggestive of
some irregularity or roughness in fire and smoke patterns, indicating somewhat low dimensionality, unlike
highly intricate or fractally detailed objects like ice or certain kinds of trees, etc.

This somewhat fractal pattern in the spatial dimension of fire, clearly observed in the small box scenario,
is a convincing argument for developing adaptive feature extraction strategies. It also advocates the use of
efficient inference methodologies for a performance boost. We therefore study SAHI as an inference scheme
to reap the benefits of fractal patterns. The result is also significant evidence to study fractal dimension as a
useful metric to analyze fire spread. However, considerable value to human intervention and environmental
conditions needs to be considered.

4.6 SAHI
To improve the detection capability of our proposed YOLOv8 model further, we run SAHI infer-

ence [30] on the test dataset. We analyzed the slice size and overlap ratio using experiments with two window
sizes, 64 × 64 and 128 × 128, and three overlap ratios, 1%, 10%, and 20%. We used a minimum confidence
threshold of 50% to evaluate the mAP value. The results can be visualized from Fig. 10.
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Figure 9: Results of fractal dimension based on varying box sizes

Figure 10: Results of SAHI inference for YOLOv8 validation. (a) SAHI inference with 12 slices each 128 × 128, 1%
overlap = 2 predictions. (b) SAHI inference with 12 slices each 128× 128, 20% overlap = 3 predictions. (c) SAHI inference
with 28 slices each 64 × 64, 1% overlap = 17 predictions. (d) SAHI inference with 35 slices each 64 × 64, 10% overlap =
23 predictions

Fig. 10a shows that 12 slices of 128 × 128, with 1% overlap, produced only 2 predictions, suggesting that
with a large slice size and a minimal overlap ratio, the effectiveness of capturing boundary details becomes
limited. The same 12 slices of 128 × 128 each and a 20% overlap in Fig. 10b, show 3 distinct predictions. The
same can be inferred from Fig. 10c and d, where 28 and 35 slices each of 64 × 64 yield more predictions
with 1% and 10% overlap, respectively. While the latter shows 6 more predictions, the redundancy also
needs to be considered. Intuitively, small window sizes and high overlap ratios will increase detection
redundancy, computation time, and resource utilization. Therefore, the results of SAHI inference from Fig. 10
can be summarized as: potentially smaller slices with a higher overlap ratio generally yield better detection
performance. However, redundant information from overlapping slices needs better pruning, so a balance
needs to be achieved. We achieve this using NMS, following the same strategy as [30], with a 50% IoU
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confidence threshold. For a selected bounding box with high confidence, if the IoU with the overlapping
bounding boxes exceeds the threshold, it is discarded.

Following this approach, we get better performance of SAHI with 128 × 128 window size and 20%
overlap, giving a mAP:50–95 value of 88%, as can be seen in Fig. 10b. It can hence be inferred that smaller
slices with a moderate overlap ratio have the potential to enhance detection by providing finer details,
enhanced detection across boundaries, better contextual integration, and fewer false positives. To achieve an
optimal performance for small object detection, the dataset can be diversified with aerial and satellite images.

To evaluate the performance of SAHI, we use mAP (Eq. (10)), evaluated at multiple IoU thresholds like
0.5, and 0.5:0.95. It essentially penalizes the model with poor localization (low IoU). This is because mAP
defines a strict criterion for counting true positives, by using a percentage of overlap between the predicted
and ground truth bounding boxes. This allows for capturing both the quality of the bounding boxes and their
classification accuracy.

Moreover, precision and recall, in isolation, can be misleading in case of class imbalance, by being
skewed towards the class with more instances in the dataset. mAP, on the other hand, computes average
precision across all classes, eradicating the bias toward the frequent classes and giving a more balanced
evaluation. Since mAP captures the trade-offs between precision and recall across multiple IoU thresholds,
we consider it for evaluating the performance of SAHI, and compare it to our baseline model in Table 5.

Table 5: Comparison of mAP:50 and mAP:50-95 results using YOLOv7, YOLOv8 and YOLOv8+SAHI

Model mAP:50 mAP:50-95
YOLOv7 0.919 0.479
YOLOv8 0.969 0.614

YOLOv8+SAHI 0.928 0.884

The results in Table 5 indicate a performance improvement and coherence of the proposed
YOLOv8+SAHI model. The model gives consistently high performance with mAP:50 and mAP:50-95 being
as high as 93% and 88%, respectively. This performance gap between the two metrics varies by more than
20% for both YOLOv7 and YOLOv8, under a high threshold of 50–95, indicating better performance
under a high confidence threshold for YOLOv8+SAHI. The proposed model, therefore, provides reasonable
evidence for successfully detecting small fires, and is a practically viable solution for real-time fire and smoke
detection applications.

5 Research on Generative Models for Data Augmentation
To address the key challenges facing the fire and smoke detection use case, also highlighted in Table 1,

we study the baseline using generative models for data augmentation to create a balanced dataset and for
data augmentation. As a future work direction, generative adversarial networks (GAN) [31] and diffusion
models can be used to increase the dataset size.

5.1 GAN
The current data augmentation techniques can increase the dataset size but they are limited to changing

the dataset already available, incapable of generalization. With the dataset used for this study, we used deep
convolutional generative adversarial network (DCGAN) [32] to generate a diverse and generalizable dataset,
as shown in Fig. 11.
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Figure 11: Images generated using DCGAN trained for 500 epochs

The objective function of GAN, V(D, G), is given by:

minG maxD V (D, G) = Ex∼Pd ata(x) [logD (x)] + Ez∼Pz(z) [log (1 − D (G (z)))] (12)

Training a DCGAN works with a generator, G, that creates realistic image samples, and a discriminator,
D, that learns to distinguish between the real and the generated samples, in an adversarial manner. Eq. (9)
has 2 terms: minG for the generator to minimize the discriminator’s ability to distinguish real and fake
samples, and maxD for the discriminator to maximize its ability to classify real and generated image samples.
Ex∼Pd ata(x) [logD (x)] is the expected log-probability of correctly identifying real samples, such that Pd ata(x)
is the true data distribution for a real data sample, x, with D (x) being the discriminator’s probability
of classifying x as a real sample. Ez∼Pz(z) [log (1 − D (G (z)))] is the expected log-probability of correctly
identifying generated samples as a fake. Here, D (G (z)) is the discriminator’s probability of classifying G (z)
as a fake data sample generated by the generator.

We used the PyTroch framework for DCGAN implementation with the same dataset explained
in Section 3, and hardware specification from Section 2.2. The model was configured with a batch size of 128
and a learning rate of 0.0002. The size of the feature map in the generator and discriminator has been set
to 64, for the sake of analysis. Fig. 12 gives an overview of how the generator and discriminator loss were
minimized over 50, 100, 200, and 500 epochs.

By leveraging DCGAN to generate a dataset with minimal generator-discriminator loss, the YOLOv8
model can be trained and its performance can be evaluated as a future work direction.

5.2 Diffusion Models
Diffusion models are a class of generative models, which operate using a step-by-step diffusion of a

series of random noises [33]. They employ a Markov chain to iteratively add and reverse Gaussian noise to
data, and generate high-quality synthetic images. Utilizing the impressive capabilities of uniting the forces of
large language models (LLMs) and diffusion models, text-to-image generation can be studied for improving
data augmentation for fire and smoke detection.
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Figure 12: Minimizing the objective function of DCGAN with loss on the y-axis and iteration corresponding to number
of epochs along the x-axis. (a) 50 epochs. (b) 100 epochs, (c) 200 epochs, (d) 500 epochs

We used pre-trained Stable Diffusion version 1–4, which is a latent diffusion model for text-to-image
generation, from Hugging Face. The potential of the base model can be evaluated with a fine-tuned version,
to explore its potential as a data augmentation candidate for efficient fire and smoke detection. Fig. 13 shows
some representative images generated using stable diffusion.

Figure 13: Image samples of forest fire, generated using stable diffusion

Diffusion models can be explored as a promising future work direction for data augmentation to
improve the performance of fire detection.

6 Conclusion
In this paper, we have formulated a fire and smoke detection methodology based on YOLOv8 using a

balanced dataset. We statistically analyzed our dataset and showed enhanced training results using a class-
balanced approach compared to earlier research work. We analyzed the fractal dimension of fire and showed
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that the repetitive patterns in a fire can be leveraged for better feature extraction using a windowing-based
inference technique. Our proposed slicing-based inference approach, SAHI, shows significant potential to
improve the detection capability of our fire detection model. Our model is lightweight and straightforward
and can be extended into real-world applications. Due to the absence of any work reported using SAHI
inference with YOLOv8 for fire and smoke detection, our work can be used as a baseline for extensions
into practical fire and smoke detection systems. We further provide baseline studies and promising future
work direction using DCGAN and diffusion models to generate images and produce high-quality, diverse,
and generalizable fire and smoke detection datasets. These can be used for data augmentation and can be
rendered to realize high-performance fire and smoke detection models.
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CSP Cross-stage partial
DCGAN Deep convolutional generative adversarial network
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IoT Internet of things
IoU Intersection over union
mAP Mean average precision
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PANet Path aggregation network
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