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ABSTRACT: The proliferation of Internet of Things (IoT) devices has established edge computing as a critical paradigm
for real-time data analysis and low-latency processing. Nevertheless, the distributed nature of edge computing presents
substantial security challenges, rendering it a prominent target for sophisticated malware attacks. Existing signature-
based and behavior-based detection methods are ineffective against the swiftly evolving nature of malware threats and
are constrained by the availability of resources. This paper suggests the Genetic Encoding for Novel Optimization of
Malware Evaluation (GENOME) framework, a novel solution that is intended to improve the performance of malware
detection and classification in peripheral computing environments. GENOME optimizes data storage and computa-
tional efficiency by converting malware artifacts into compact, structured sequences through a Deoxyribonucleic Acid
(DNA) encoding mechanism. The framework employs two DNA encoding algorithms, standard and compressed, which
substantially reduce data size while preserving high detection accuracy. The Edge-IIoTset dataset was used to conduct
experiments that showed that GENOME was able to achieve high classification performance using models such as
Random Forest and Logistic Regression, resulting in a reduction of data size by up to 42%. Further evaluations with
the CIC-IoT-23 dataset and Deep Learning models confirmed GENOME’s scalability and adaptability across diverse
datasets and algorithms. The potential of GENOME to address critical challenges, such as the rapid mutation of malware,
real-time processing demands, and resource limitations, is emphasized in this study. GENOME offers comprehensive
protection for peripheral computing environments by offering a security solution that is both efficient and scalable.
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1 Introduction
Edge computing has emerged as a critical paradigm to meet the increasing demands for real-time

analytics and low-latency processing as the technological landscape is reshaped by the rapid proliferation of
IoT devices [1–3]. Edge computing, in contrast to centralized cloud computing, reduces the time required
for data transmission and improves system responsiveness by bringing computation closer to data sources.
Nevertheless, this decentralized approach also introduces substantial security challenges [4–6]. Edge envi-
ronments are an appealing target for cyberattacks due to their resource-constrained and distributed nature,
with malware being one of the most significant threats. Attackers are progressively exploiting vulnerabilities
in periphery computing infrastructures to launch sophisticated malware attacks, as evidenced by recent
incidents. These environments are subject to a proliferation of malware that is specifically designed to exploit
their distinctive architecture, ranging from industrial peripheral systems to IoT networks. For example, the
Mirai botnet attack, which compromised IoT devices, underscored the vulnerability of peripheral systems
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to large-scale coordinated attacks. At the same time, the necessity of improved security measures in these
environments has been emphasized by ransomware campaigns that target peripheral storage systems [7,8].

Extensive research has been conducted to develop effective malware detection and classification
techniques in order to address these challenges. Machine Learning (ML) methods have attracted substantial
attention due to their capacity to accurately identify and classify malware. Nevertheless, the implementation
of ML detection systems in peripheral computing environments is not an easy task. The deployment of
resource-intensive ML models and the management of large datasets are significantly impeded by the
limited computational resources, memory, and energy constraints of periphery devices. Recent studies have
further highlighted the potential of machine learning-based methods for improving malware classification
in IoT and edge computing environments [9–13]. These works introduce approaches that balance classifi-
cation accuracy and computational efficiency, addressing the limitations of resource-constrained systems.
Additionally, traditional detection methods frequently fail to maintain pace with the rapid and frequent
mutations that malware undergoes as it continues to evolve. Signature-based and behavior-based techniques
are the primary methods employed by conventional malware detection systems. Signature-based detection
methods are effective in identifying known malware by matching patterns within code. However, they
become ineffective when faced with even minor modifications in malware structure. In contrast, behavior-
based detection methods are designed to identify malicious activity patterns; however, they are frequently
resource-intensive and susceptible to evasion techniques, in which malware imitates benign behavior. These
constraints underscore the necessity of a malware detection and classification strategy that is adaptable,
robust, and lightweight in peripheral computing environments.

This paper introduces GENOME, a novel framework that is specifically designed to improve the
detection and classification of malware in resource-constrained peripheral environments. By extracting
artifact information from malware and converting it into DNA-like sequences, GENOME capitalizes on
biological inspiration. This innovative representation facilitates the efficient analysis and classification of
similarity by encoding the structural and behavioral characteristics of malware into compact, biologically
analogous data forms. The detection of evolving malware families is facilitated with greater accuracy
by GENOME, which conceptualizes malware evolution to be analogous to viral mutations. A key aim
of this research is to demonstrate that even with dataset encoding and compression, the detection and
classification performance of GENOME remains robust and consistent. The proposed approach’s practicality
and effectiveness are validated by our experimental evaluations. The results indicate that GENOME achieves
a substantial 42% reduction in data size while maintaining, and in cases, enhancing, classification accuracy
compared to conventional methods. These results underscore the viability of implementing GENOME
in peripheral computing environments, where detection performance and resource efficiency are of the
utmost importance.

This research is a continuation of our previous research, which was presented at the International
Conference on Intelligent Information Technology [14]. In contrast to the previous research, which focused
on a proof of concept for the concept, this paper investigates the challenges associated with the real-world
application and implementation of the approach. The proposed methodology has been validated and proved
through a series of extensive experiments.

The remainder of this paper is organized as follows: Chapter 2 reviews related research, Chapter 3
explains the structure and implementation of the GENOME framework, and Chapter 4 presents the
evaluation results. Finally, Chapter 5 concludes with discussions on future research directions.
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2 Related Work
This section reviews research on malicious behavior detection and classification conducted to enhance

the security of edge computing environments.

2.1 Studies on Malware Behavior Detection
Radhakrishna et al. [15] proposed a network edge-based framework for detecting ransomware, demon-

strating superior performance compared to existing methods. By employing Random Forest and XGBoost
models alongside the chi-square feature selection technique, their model achieved significant improvements.
The CICandMal2017 dataset and data augmentation techniques were used to enhance the training process.
Ahmed et al. [16] introduced a framework for early ransomware detection in industrial IoT environments. By
collecting system call data in a virtual sandbox and applying six machine learning classifiers, they achieved
an accuracy of 98.64% with a low false positive rate of 1.7%. Akhil et al. [17] developed a model effective for
detecting and classifying malware using a Deep Neural Network (DNN) architecture. DenseNet201 achieved
a high accuracy of 94.5%, while MobileNet Small presented a lightweight architecture suitable for real-
time malware detection, offering reduced computational latency. Wang et al. [18] achieved an accuracy of
97.55% with a traffic classification model for industrial IoT (IIoT) environments using a semi-supervised
learning method. Their approach also optimized latency and improved data privacy. Chuang et al. [19]
proposed a malware detection model based on function call graphs and API interaction analysis, reporting
an accuracy of 94.5%. However, the study lacked discussion regarding the implementation challenges of
the proposed model. Oyler-Castrillo et al. [20] employed Recurrent Neural Networks (RNNs) for malware
detection, achieving an accuracy of 98%. However, the study provided no details about training times
or real-world deployment feasibility. Almomani et al. [21] achieved an accuracy of 97.5% in detecting
Android ransomware using SVM algorithms combined with oversampling techniques. Their model utilized
Application Programming Interface (API) and permission characteristics for classification. Taylor et al. [22]
reported a detection accuracy of 99.94% by analyzing 19,612 samples of malware and normal data using
deep learning.

2.2 Studies on Malware Classification
Akhil et al. [23] emphasized the importance of resource-efficient DNN models for edge computing

environments. They suggested that real-time detection requires further optimization of model complexity
and false positive rates to address the challenges of evolving malware threats. Aslan et al. [24] reported an
accuracy of 97.98% on the Malimg dataset by converting PE files into grayscale images and employing a
hybrid network structure. Bae et al. [25] developed a framework leveraging Windows system call sequences,
achieving an accuracy of 98.65% through machine learning-based multi-class classification. Yan et al. [26]
transformed opcode sequences into grayscale images and attained an accuracy of 99.88% using Convolu-
tional Neural Network (CNN) and Long Short-Term Memory (LSTM) networks. Singh et al. [27] analyzed
Android malware images, achieving a classification accuracy of 92.59% by applying multiple algorithms,
including K-Nearest-Neighbor (KNN), Support Vector Machine (SVM), and Random Forest.

As a result, existing studies have shown significant results in detecting and classifying malicious
activities, but there are some limitations. First, some studies evaluated models by relying on specific datasets,
which may not sufficiently reflect various real-world scenarios. Second, considering the limited resources
and real-time processing requirements of edge devices, further optimization of model complexity and latency
is required. We applied a DNA-based data representation method that can be efficiently utilized in an edge
computing environment through preprocessing of the dataset used in training and designed it to maintain
high detection accuracy while reducing the data size.
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3 Malware DNA Feature Genetic Encoding Framework
This section introduces the GENOME framework, designed for efficient classification and detection of

malicious activities in edge computing environments.

3.1 GENOME Framework
In this study, we propose the GENOME Framework for efficient malicious behavior detection and

malware analysis in edge computing environments. This framework systematically collects malicious activity
data and converts it into DNA-like sequences for use in training machine learning-based detection mod-
els. Fig. 1 shows the structure and main processes of the GENOME Framework, visually explaining the
data flow and the role of each component. The GENOME Framework collects malicious activity data in
a container-based environment, transfers it to an Analysis Machine, and converts it into DNA sequences
using the DNA Generator. This process includes both static data (e.g., binary sections) and dynamic data
(e.g., network traffic, system calls, and file system events), effectively extracting and compressing key features
associated with malicious activities.

Figure 1: Overview of the GENOME framework

The DNA conversion process involves the following steps: Identifying features associated with malicious
activity through binary static analysis. Deriving additional features by collecting dynamic data such as
network traffic and system calls. Converting the data into DNA format to reduce dataset size and maximize
computational efficiency. The converted DNA data reduces network bandwidth requirements, enhances
model training speed, and is optimized for use in resource-limited edge computing environments.

Fig. 1 shows the workflow: malware from the Malware Pool is analyzed and converted into artifact data
by the Analysis Machine. The DNA Generator then processes this data into DNA sequences, which are stored
as training datasets for machine learning-based detection models. This approach improves the accuracy of
malicious activity detection and classification.

Fig. 2 shows the generation process of the DNA Generator. By default, the DNA Generator assigns an
artifact 8 bits as a single structure using the sequence table. If DNA compression is enabled, 16 bits are
converted into a single DNA structure. The DNA data generated through this process is used to improve
the performance of machine learning-based detection models. By considering resource constraints in edge
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computing environments, the GENOME Framework compresses data while preserving critical information.
This minimizes network traffic, reduces computational load, and enables real-time model training for rapid
detection and response to malicious activity, even on edge devices.

Figure 2: DNA encoding process for network artifacts

3.2 DNA-Based Feature Encoding Algorithms for Malware and Malicious Activities Artifacts
In this study, we propose two DNA encoding algorithms for efficient data processing in edge computing

environments: basic DNA encoding (Algorithm 1) and compressed DNA encoding (Algorithm 2). These
algorithms take different approaches to converting network traffic data into DNA sequences, enabling
efficient representation and processing of large datasets by transforming them into biologically inspired
sequences. Table 1 provides detailed information on the data transformation process for network artifacts.
The “Original” column refers to the unencoded data, while the “DNA” column represents training data
processed using Algorithm 1. The “DNA-Compress” column shows examples of data converted using
Algorithm 2.

Algorithm 1: Algorithm for ASCII to DNA encoding
Require: Input ASCII text
Ensure: DNA sequence string
1: function ASCII_TO_DNA(ascii_text)
2: initialize empty string dna_sequence
3: initialize DNA_MAP = {0: ‘A’, 1: ‘T’, 2: ‘C’, 3: ‘G’}
4: if ascii_text = 0 or ascii_text = ‘0’ then return ‘N’
5. end if
6: for each character c in string(ascii_text) do
7: ascii_value ← ASCII value of c
8: if ascii_value = 0 then
9: dna_sequence ← dna_sequence + ‘N’
10: else
11: remainder← ascii_value mod 4
12: dna_base ← DNA_MAP[remainder]
13: dna_sequence ← dna_sequence + dna_base

(Continued)
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Algorithm 1 (continued)
14: end if
15: end for
16: return dna_sequence
17: end function

Algorithm 2: Compressed ASCII to DNA sequence encoding
Require: Input ASCII text
Ensure: Compressed DNA sequence string
1: function COMPRESSED_ASCII_TO_DNA(ascii_text)
2: initialize DNA_MAP = {0: ‘A’, 1: ‘T’, 2: ‘C’, 3: ‘G’}
3: initialize empty string dna_sequence
4: if ascii_text is NULL or ascii_text = 0 or ascii_text = ‘0’ then return ‘N’
5. end if
6: ascii_values ← empty array
7: for each character c in string(ascii_text) do
8: append ASCII value of c to ascii_values
9: end for
10: for i = 0 to length(ascii_values) step 2 do
11: if i + 1 < length(ascii_values) then
12: first_value ← ascii_values[i]
13: second_value ← ascii_values[i + 1]
14: combined_value ← (first_value + second_value) mod 4
15: else
16: combined_value ← ascii_values[i] mod 4
17: end if
18: dna_base ← DNA_MAP[combined_value]
19: dna_sequence ← dna_sequence + dna_base
20: end for
21: return dna_sequence
22: end function

Table 1: Example of DNA transformation and compression for network artifacts

Scheme ip.src_host ip.dst_host icmp.checksum
Original 149.40.90.151 192.168.0.128 35,144

DNA TATCAACTACTTT TTCCTCACACTCA GTTAACA
DNA-Compress TGAGCCT CAGCCGA ATCA

Algorithm 1 employs a straightforward approach by mapping each American Standard Code for
Information Interchange (ASCII) character to one of four DNA bases: A, T, C, or G. The mapping is based on
modulo operations, where the remainder of dividing the ASCII value by 4 determines the base: 0 to A, 1 to T, 2
to C, 3 to G. If the input value is null or zero, an ‘N’ is assigned to handle exceptions. This one-to-one mapping
simplifies data representation while minimizing information loss, preserving the original characteristics of
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the data. Algorithm 1’s intuitive and clear conversion rules ensure high information retention, making it
suitable for applications requiring accurate data restoration.

Algorithm 2 has advanced the basic encoding and added data compression. This algorithm adopted a
method of mapping two ASCII characters to one DNA base, which increased the data compression rate.
Specifically, the algorithm determines one DNA base by adding the two adjacent ASCII values and using
the remainder divided by four. This has the advantage of halving the length of the output data compared
to the existing method. Algorithm 2 considers the case where the length of the data sequence is odd, and
treats the last single character in the same way as Algorithm 1. This compression method can dramatically
reduce storage space while maintaining the overall pattern of the data. In particular, when processing
large-scale network traffic data, this compression method allows for efficient use of storage space and
transmission bandwidth.

Both methods are engineered for robustness and exception management. They function dependably
despite partial or anomalous input data, managing null values and unusual characters proficiently. The time
complexity for both methods is O(n), with n representing the length of the input string. Algorithm 1 yields
an output length commensurate with the input length, but Algorithm 2 gives output approximately half the
length of the input. This compression renders Algorithm 2 more memory-efficient, especially advantageous
for handling extensive datasets.

Algorithm 1 ensures total reversibility, facilitating the restoration of the original data. It is appropriate
for situations where precision and data integrity are paramount. Conversely, Algorithm 2 is more appropriate
for applications that emphasize storage economy and bandwidth conservation, such as edge computing
situations with constrained resources. The DNA encoding techniques presented in this paper provide an
innovative approach for the analysis and processing of network traffic data. These approaches improve the
efficiency of data transmission and processing by converting data into DNA-like sequences. Algorithm 1
is optimal for scenarios necessitating great accuracy, but Algorithm 2 is superior in contexts where the
reduction of storage and bandwidth use is critical.

In conclusion, the two suggested algorithms possess unique benefits and limits, permitting their
selective use according to the specific environment and requirements. These DNA-based encoding methods
provide an innovative method for the effective processing and analysis of network traffic data in edge
computing contexts. Subsequent study ought to concentrate on enhancing these encoding techniques and
assessing their relevance in other network contexts.

4 Evaluation
This section evaluates the proposed approach by analyzing the GENOME framework’s encoding

techniques in edge computing environments. The evaluation focuses on classification accuracy and compu-
tational efficiency compared to conventional methods.

4.1 Experimental Environment
The experimental environment for this study utilized a system equipped with an Intel Core i7-10700

CPU@2.90 GHz processor, 8 GB of DDR RAM, and a 1 TB SSD for storage. The operating system was
Ubuntu 24.04 with kernel version 5.15.0. Malicious activity detection training and performance evaluation
were performed in containerized environments, with each container allocated 512 MB of limited memory.
Additionally, to verify the scalability of GENOME with Deep Learning models, evaluations were conducted
in an NVIDIA RTX 4090 GPU environment.
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4.2 Dataset for Performance Evaluation
The Edge-IIoTSet dataset [28] was used to evaluate the performance of the DNA encoding techniques.

This dataset is specifically designed for developing intrusion detection systems (IDS) in IoT and Industrial
IoT (IIoT) environments and reflects realistic network scenarios. It includes data from various IoT devices,
such as temperature, humidity, water level, pH, heart rate, and flame detection sensors. The dataset contains
1,380,858 instances of normal traffic and 546,446 instances of attack traffic, making it suitable for learning
complex patterns in IoT/IIoT environments.

Edge-IIoTSet includes 14 attack types, addressing major threats like DoS/DDoS, information gathering,
man-in-the-middle attacks, injection attacks, and malware. The dataset provides 61 additional unique
features on top of the existing 1176 features to enhance analyzability. It is designed for both centralized
machine learning and federated learning environments, offering a high degree of realism compared to other
datasets. The added features and large-scale configuration make it an ideal benchmark for evaluating modern
machine learning-based intrusion detection models. For additional Deep Learning model evaluations, the
CIC-IoT-23 dataset was employed [29]. This dataset incorporates recent IoT attack types and complements
the characteristics of the Edge-IIoTSet, enabling a broader assessment.

For these reasons, Edge-IIoTSet was selected as the optimal dataset to assess the performance and
practical applicability of the GENOME framework in edge and fog computing environments.

4.3 Performance Comparison of Malware Behavior Detection
The performance of the proposed DNA encoding techniques was evaluated using binary classification

models, including SVM and Logistic Regression. The analysis was conducted on three datasets Original,
Encoded, and Compressed to examine the effects of data preprocessing and compression on classification
performance in edge computing scenarios.

Table 2 summarizes the classification performance of five machine learning models (Random For-
est, SVM, K-Nearest Neighbors, Logistic Regression, and Decision Tree) across the three datasets using
Precision, Recall, and F1-Score metrics. Random Forest and Decision Tree consistently achieved perfect
performance (Precision = 1.0, Recall = 1.0, F1-Score = 1.0) across all datasets. Logistic Regression also
maintained perfect performance in both Encoded and Compressed datasets, while SVM and K-Nearest
Neighbors experienced slight performance degradation due to the data conversion process.

Table 2: Detection performance of models on original, DNA, and compressed DNA datasets

Dataset Model Precision Recall F1-Score
Random forest 1.00 1.00 1.00

SVM 1.00 1.00 1.00
Edge-IIoTset K-nearest neighbors 1.00 0.99 0.99

(Original) Logistic regression 1.00 0.99 0.99
Decision tree 1.00 1.00 1.00

Random forest 1.00 1.00 1.00
SVM 1.00 0.99 0.99

K-nearest neighbors 1.00 0.99 0.99
Edge-IIoTset-DNA Logistic regression 1.00 1.00 1.00

(Encoded) Decision tree 1.00 1.00 1.00
Random forest 1.00 1.00 1.00

(Continued)
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Table 2 (continued)

Dataset Model Precision Recall F1-Score
SVM 1.00 0.99 0.99

Edge-IIoTset-DNA- K-nearest neighbors 1.00 0.99 0.99
Compress (Compressed) Logistic regression 1.00 1.00 1.00

Decision tree 1.00 1.00 1.00

Fig. 3 shows the classification results for SVM (top) and Logistic Regression (bottom) using confusion
matrices. The matrices display True Positive (TP), True Negative (TN), False Positive (FP), and False Negative
(FN) values, offering detailed insights into model prediction accuracy. In the Original dataset, both SVM
and Logistic Regression achieved perfect performance (TN = 26,575, TP = 4985, FP = 0, FN = 0), indicating
a well-defined feature space and effective learning.

Figure 3: Confusion matrices for SVM and logistic regression

In the Encoded dataset, SVM showed reduced performance with an increase in FN to 7 and a decrease in
TP to 4978, suggesting that some attack samples were misclassified as normal. However, Logistic Regression
maintained perfect performance (TN = 26,575, TP = 4985, FP = 0, FN = 0), demonstrating its robustness
in the Encoded feature space. For the Compressed dataset, SVM slightly improved its performance (FN
= 5, TP = 4980) compared to the Encoded dataset but still underperformed relative to the original dataset.
Logistic Regression, however, continued to deliver perfect performance (TN = 26,575, TP = 4985), indicating
its adaptability to compressed feature spaces. The confusion matrices, with bright colors highlighting TP
and TN values, confirm the high accuracy of Logistic Regression and its ability to handle compressed data
transformations effectively.
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These results reveal that while SVM experienced a slight performance drop in Encoded and Compressed
datasets due to margin settings in high-dimensional feature spaces, Logistic Regression maintained consis-
tent accuracy across all datasets. The Encoded and Compressed methods demonstrate significant advantages
in edge computing environments by reducing data size and increasing computational efficiency. Although
minor performance degradation was observed in specific models, such as SVM, the impact was minimal, and
certain models, like Logistic Regression, achieved perfect results. Overall, the DNA conversion techniques
proposed in this study offer a practical and efficient solution for data transmission and processing in edge
computing environments, balancing resource efficiency with robust performance.

4.4 Performance Comparison of Malware Classification
We analyzed the performance of five machine learning models (Decision Tree, Random Forest, K-

Nearest Neighbors, SVM, and Logistic Regression) in terms of Precision, Recall, and F1-Score to evaluate
the classification effectiveness of GENOME’s data transformation methods. Comparisons were made across
three datasets: the original training dataset, the DNA-transformed dataset, and the compressed DNA dataset.
This evaluation aimed to identify the correlation between data efficiency and learning performance in edge
computing environments.

Tables 3 to 5 present the performance results of each model across the three datasets. In contrast
to Table 2, which reflects binary classification, Tables 3 to 5 present multiclass classification results. In mul-
ticlass settings, the model must distinguish between multiple attack types, such as Ransomware, Backdoor,
and XSS, increasing the complexity of the task. This complexity leads to reduced performance for certain
attack types, as observed for Ransomware and Backdoor. The Edge-IIoTset dataset, as the original dataset,
was used under optimal training and evaluation conditions for all models. Random Forest and Decision
Tree achieved perfect classification performance, consistently maintaining Precision, Recall, and F1-Score
values of 1.0 for all attack types, demonstrating their ability to effectively capture complex patterns and
nonlinear characteristics. K-Nearest Neighbors exhibited strong performance with F1-Scores exceeding 0.99
in most attack types, though slight performance degradation was observed for Ransomware and Backdoor
attacks. SVM showed stable overall performance but recorded marginally lower F1-Scores (0.96–0.97) for
XSS and Port Scanning attacks. Logistic Regression demonstrated the weakest performance, particularly for
Ransomware (F1-Score = 0.92) and Backdoor (F1-Score = 0.95), reflecting its limitations in learning complex
and nonlinear features.

Table 3: Performance of classification models on Edge-IIoTset

Alg Metr Normal Back Fing TCP HTTP XSS Scan SQL Rans
Pr 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

DT Rc 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
f1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Pr 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99

RF Rc 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
f1 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Pr 1.00 0.99 1.00 1.00 0.99 0.99 0.99 0.99 0.99

KNN Rc 1.00 0.99 0.99 0.99 1.00 0.99 0.99 1.00 0.99
f1 1.00 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
Pr 1.00 1.00 1.00 1.00 0.99 0.98 0.99 0.99 0.89

SVM Rc 1.00 0.96 0.91 0.99 1.00 0.99 0.98 1.00 0.99

(Continued)
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Table 3 (continued)

Alg Metr Normal Back Fing TCP HTTP XSS Scan SQL Rans
f1 1.00 0.98 0.95 0.99 0.99 0.99 0.99 0.99 0.94
Pr 1.00 0.99 0.81 0.98 0.99 0.98 0.99 0.99 0.91

LR Rc 1.00 0.95 0.68 0.97 1.00 0.99 0.98 1.00 0.92
f1 1.00 0.97 0.74 0.98 0.99 0.99 0.99 0.99 0.91

Note: Decision Tree (DT), Random Forest (RF), K-Nearest Neighbors (KNN), Support Vector Machine (SVM), Logistic
Regression (LR), Algorithm (Alg), Metrics (Metr), Backdoor attack (Back), Fingerprinting attack (Fing), TCP SYN
FloodDDoS attack (TCP), HTTP floodDDoS attack (HTTP), Vulnerability scanner attack (Scan), SQL injection attack
(SQL), Ransomware attack (Rans), Precision (Pr), Recall (Rc), F1-Score (f1)

Table 4: Performance of classification models on Edge-IIoTset with DNA encoding

Alg Metr Normal Back Fing TCP HTTP XSS Scan SQL Rans
Pr 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

DT Rc 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
f1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Pr 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99

RF Rc 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
f1 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Pr 1.00 0.99 1.00 1.00 0.99 0.99 0.99 1.00 0.99

KNN Rc 1.00 0.99 0.99 1.00 0.99 0.99 0.99 1.00 0.99
f1 1.00 0.99 0.99 1.00 0.99 0.99 0.99 1.00 0.99
Pr 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 0.97

SVM Rc 1.00 0.97 0.99 1.00 1.00 1.00 0.99 1.00 0.99
f1 1.00 0.98 0.99 1.00 1.00 1.00 0.99 1.00 0.98
Pr 1.00 0.93 1.00 1.00 1.00 1.00 1.00 1.00 0.86

LR Rc 1.00 0.84 0.99 1.00 1.00 1.00 0.99 1.00 0.94
f1 1.00 0.88 0.99 1.00 1.00 1.00 0.99 1.00 0.90

Table 5: Performance of classification models on edge-IIoTset with compressed DNA encoding

Alg Metr Normal Back Fing TCP HTTP XSS Scan SQL Rans
Pr 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

DT Rc 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
f1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Pr 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99

RF Rc 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
f1 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Pr 1.00 0.99 1.00 1.00 0.99 0.99 0.99 1.00 0.99

KNN Rc 1.00 0.99 0.99 1.00 0.99 0.99 0.99 1.00 0.99
f1 1.00 0.99 0.99 1.00 0.99 0.99 0.99 1.00 0.99
Pr 1.00 0.98 1.00 1.00 1.00 0.99 1.00 1.00 0.97

SVM Rc 1.00 0.97 1.00 1.00 1.00 1.00 0.99 1.00 0.98

(Continued)



4032 Comput Mater Contin. 2025;82(3)

Table 5 (continued)

Alg Metr Normal Back Fing TCP HTTP XSS Scan SQL Rans
f1 1.00 0.98 1.00 1.00 1.00 0.99 0.99 1.00 0.98
Pr 1.00 0.70 1.00 1.00 1.00 0.99 1.00 1.00 0.74

LR Rc 1.00 0.74 1.00 1.00 1.00 1.00 0.99 1.00 0.69
f1 1.00 0.72 1.00 1.00 1.00 0.99 0.99 1.00 0.72

To explain the high F1-Scores for certain models after data transformation and compression, it is
important to note that Random Forest, Decision Tree, and K-Nearest Neighbors adapt well to nonlinear
data characteristics. The GENOME framework transforms datasets into a nonlinear feature space through
DNA encoding and compression, preserving critical information while removing redundant or noisy
details. This transformation highlights essential patterns, enabling these models to effectively learn decision
boundaries. In contrast, linear models such as Logistic Regression rely heavily on linear separability and face
challenges with nonlinear transformations, leading to performance degradation, particularly for attacks like
Ransomware and Backdoor.

The DNA-transformed dataset maintained high classification performance across models. Random
Forest and Decision Tree retained perfect scores across all attack types, confirming the transformation
process did not impair their learning and inference capabilities. K-Nearest Neighbors consistently achieved
F1-Scores above 0.99 for most attack types, with a slight decrease to 0.98 for Ransomware. SVM showed
moderate degradation, with F1-Scores of 0.97 for Backdoor and 0.93 for Ransomware, while Logistic Regres-
sion exhibited the most significant decline, particularly for Backdoor (F1-Score = 0.88) and Ransomware
(F1-Score = 0.90).

The DNA transformation and compression processes retain the variance and structural patterns of
the dataset by emphasizing nonlinear characteristics. This aligns with the principles of nonlinear decision
boundary learning in models like Random Forest and Decision Tree, which excel at capturing complex
interrelationships within the data. These characteristics explain the sustained high classification performance
in compressed datasets, particularly for models designed for nonlinear feature spaces. The DNA-Compressed
dataset further reduced data size through additional compression, offering advantages in network bandwidth
and storage efficiency. Random Forest and Decision Tree continued to deliver perfect performance (Preci-
sion, Recall, and F1-Score = 1.0) for all attack types, unaffected by compression. This robustness is attributed
to their ability to capture complex patterns and adapt to changes in feature space through ensemble learning
and recursive partitioning.

SVM and KNN also performed stably, with high F1-Scores ranging from 0.97 to 0.99 across most
attack types. Logistic Regression, however, experienced a significant decline in performance, particularly
for Backdoor (F1-Score = 0.74) and Ransomware (F1-Score = 0.72), due to its reliance on linear separability.
This highlights the need for nonlinear modeling approaches in scenarios involving transformed and
compressed data.

4.5 Evaluation of Training Data Compression
The Edge-IIoTset-DNA and Edge-IIoTset-DNA-Compressed datasets proposed in this study effectively

reduce the size of the original dataset (Edge-IIoTset) while maintaining classification performance. Fig. 4
shows the changes in dataset size during the conversion process and evaluates the efficiency of the proposed
methods by comparing the Original, Encoded, and Compressed datasets.
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Figure 4: Dataset size reduction across original, DNA-encoded, and DNA-compressed formats

The original dataset, the unprocessed baseline, has a size of approximately 78.3 MB. The Encoded
dataset, which applies the DNA encoding method, is reduced to 67.3 MB, achieving a size reduction of
about 14%. This demonstrates that DNA-based encoding compresses the data while minimizing information
loss. Further applying the DNA-Compressed method results in a dataset size of 45.1 MB, representing a
42.4% reduction compared to the original dataset and an additional 32.9% compression relative to the
Encoded dataset. These results highlight the significant potential for reducing data transmission and storage
costs in edge computing environments. This reduction in dataset size directly addresses the constraints
of edge computing environments, where devices often operate under limited network bandwidth and
storage capacity. Large-scale data transfers can lead to bottlenecks, particularly during data synchronization
between edge devices and cloud systems. The ability of GENOME to reduce data size without compromising
classification performance underscores its transformative impact on resource-constrained IoT systems,
enabling practical and scalable solutions for real-time applications. By substantially reducing the size of
the dataset, both the Encoded and Compressed formats improve the efficiency of data processing and
transmission. The DNA-Compressed dataset, in particular, minimizes transmission costs and ensures that
real-time processing requirements are met, making it a critical solution for resource-constrained systems.

In conclusion, as illustrated in Fig. 4, proposed data conversion methods effectively reduce data
size while preserving critical information. These findings demonstrate the practicality of the GENOME
framework in improving data transmission and storage efficiency, facilitating the deployment and operation
of machine learning-based systems in edge computing environments.

4.6 Evaluation of DNA-Based Training Time Performance
KNN consistently required minimal training time approximately 0.016 s across all datasets. This reflects

the fact that KNN does not involve a traditional training phase but rather stores data points and performs
computations during inference, making it unaffected by dataset size or transformations. Logistic Regression
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demonstrated minimal variability in training time, taking 61.00 s for the original dataset, 61.63 s for the
Compressed dataset, and 62.57 s for the Encoded dataset. These results suggest that as a simple linear
model, Logistic Regression is not significantly impacted by dataset transformations. However, the additional
complexity of features in the compressed dataset may have slightly increased computational costs during
training. The Decision Tree model showed the most significant improvement, with training time reduced
from 1.20 s on the original dataset to 0.66 s on the Compressed dataset, a 45.0% decrease. This highlights the
ability of Decision Tree models to efficiently learn from concise representations of data, benefiting from the
compressed dataset’s reduced size while preserving critical information.

The results indicate that both encoded and compressed datasets significantly decrease training time
for the majority of machine learning models. The GENOME framework’s ability to accelerate training
while maintaining high detection accuracy demonstrates its utility in edge environments, where real-
time performance is crucial. The Compressed dataset, on average, attained the briefest training durations,
highlighting the efficacy of data transformation techniques in minimizing data volume while preserving
critical information for training. Encoded and compressed datasets provide substantial benefits in edge
computing settings characterized by restricted network capacity and compute capabilities. They diminish
data transmission expenses, enhance data processing efficacy, and facilitate real-time learning and inference.
By offering a 42% reduction in dataset size and up to 45% faster training times without compromising
detection accuracy, GENOME addresses a critical need in IoT systems for lightweight and efficient solutions
that meet real-time demands. The suggested transformation strategy resulted in training time reductions of
up to 45.0% relative to the original dataset, while preserving high classification performance. This renders it
an effective alternative for reconciling efficiency and accuracy in resource-limited contexts.

In summary, encoded and compressed datasets significantly decrease training duration and enhance
resource efficiency, rendering them suitable for edge computing contexts. Fig. 5 demonstrates that the
observed enhancements in training duration highlight the practicality and applicability of this method for
real-world scenarios.
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Figure 5: Training time comparison of machine learning models on original, DNA-encoded, and DNA-compressed
datasets

4.7 Verification of GENOME Framework Scalability
To verify its applicability in resource-constrained IoT environments, the GENOME framework was

initially evaluated using ML models. These evaluations showed that GENOME could reduce dataset size
by up to 42% while decreasing training time for certain ML models by as much as 45%. However, the
scope of these evaluations was limited to the Edge-IIoTset dataset and ML models, leaving questions about
GENOME’s broader scalability and versatility unanswered.

To address this gap, additional experiments were carried out to explore how GENOME performs
when applied to Deep Learning (DL) models and other datasets. For this purpose, we used the CIC-IoT-
23 dataset, which is a modern, real-world dataset that captures diverse IoT network traffic and attack
scenarios. Specifically, we focused on classifying three major attack types: DDoS-ICMP (36,554 records),
DDoS-PHSACK (21,210 records), and DDoS-SynonymousIP (18,189 records). To ensure consistency across
experiments, all models were evaluated using default hyperparameters.

This extended evaluation incorporated three DL models—DNN, CNN, and LSTM—as well as two
cutting-edge ML models: XGBoost and LightGBM. XGBoost was chosen for its efficiency in handling large-
scale data and its ability to deliver high accuracy in high-dimensional datasets, making it particularly valuable
for IoT environments where identifying key features is critical. LightGBM, on the other hand, was selected
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for its speed and memory efficiency, which make it highly suitable for resource-limited IoT devices. Its ability
to perform real-time analysis in large-scale datasets further supports its use in such scenarios.

Table 6 presents the results of these experiments. Interestingly, GENOME’s performance on the CIC-
IoT-23 dataset was largely consistent with the earlier results on Edge-IIoTset. While some models exhibited
slight performance improvements or declines, these variations could likely be addressed through further
optimization of hyperparameters. Overall, the framework demonstrated strong adaptability to both the
dataset and the models used. The results underline the robustness of GENOME’s data transformation and
compression techniques. Nonlinear models such as Random Forest, Decision Tree, and K-Nearest Neighbors
continued to perform exceptionally well, taking full advantage of GENOME’s ability to retain critical patterns
while discarding unnecessary details. Similarly, DNN and CNN demonstrated stable performance, likely
due to their inherent compatibility with the nonlinear patterns emphasized by GENOME’s encoding. LSTM,
however, showed slight declines in performance for certain attack types, potentially because its reliance on
temporal features was not fully addressed by the encoding process. These findings confirm that GENOME is
not only scalable but also versatile, adapting seamlessly across a range of algorithms and datasets. Its ability
to reduce data size without compromising real-time processing capabilities makes it an ideal solution for
IoT environments, where resource constraints are a significant challenge. The framework’s demonstrated
effectiveness with both traditional ML and advanced DL models highlights its potential for widespread
adoption in edge computing systems.

Table 6: Evaluation of classification models on IoT-23 dataset using GENOME framework

Alg Metr IoT-23 IoT-23 DNA encoding IoT-23 compressed DNA
encoding

ICMP PSHACK SynIP ICMP PSHACK SynIP ICMP PSHACK SynIP
Pr 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 1.0

DNN Rc 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
f1 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
Pr 0.99 0.99 1.0 0.99 0.99 0.99 0.99 0.99 1.0

CNN Rc 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
f1 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
Pr 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 1.0

LSTM Rc 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
f1 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
Pr 1.0 1.0 1.0 1.0 0.99 0.99 0.99 0.99 0.99

XGBoost Rc 1.0 1.0 1.0 1.0 1.0 0.99 0.99 0.99 0.99
f1 1.0 1.0 1.0 1.0 0.99 0.99 0.99 0.99 0.99
Pr 1.0 1.0 1.0 0.99 1.0 1.0 0.99 0.99 0.99

LightGBM Rc 1.0 1.0 1.0 1.0 1.0 0.99 0.99 1.0 0.99
f1 1.0 1.0 1.0 0.99 1.0 0.99 0.99 0.99 0.99

Note: Algorithm (Alg), Metrics (Metr), Backdoor attack (Back), DDoS-ICMP_Flood (ICMP), DDoS-PSHACK_Flood
(PSHACK), DDoS-SynonymousIP_Flood (SynIP), Precision (Pr), Recall (Rc), F1-Score (f1)

In summary, this extended evaluation validates GENOME’s scalability and applicability beyond its
initial scope. By delivering consistent performance across diverse models and datasets, GENOME provides
a practical and efficient framework for addressing the unique challenges of IoT environments.
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5 Conclusion
This study proposed an innovative DNA-based framework, GENOME, for malware detection and

classification in edge computing environments. GENOME tackles significant issues in edge environments by
converting malware artifacts into DNA-like sequences, hence minimizing data size and facilitating effective
processing. GENOME attained substantial enhancements in data size reduction and detection accuracy
through two methodologies: basic DNA encoding and compressed DNA encoding. Employing the Edge-
IIoTset dataset, GENOME achieved a data size reduction of up to 42% while preserving superior classification
performance in models including Random Forest and Decision Tree. The results indicate that GENOME
is an effective solution for malware detection in resource-limited edge situations. Specifically, compressed
DNA encoding markedly diminished network bandwidth consumption and computing demands, render-
ing it very appropriate for real-time applications. Nonetheless, a decline in performance was noted in
linear models, including Logistic Regression, when utilizing compressed datasets. This underscores that,
although GENOME adeptly combines data efficiency and detection accuracy, the selection of the machine
learning model is essential for achieving optimal outcomes. To further validate GENOME’s scalability
and adaptability, experiments with Deep Learning models and the CIC-IoT-23 dataset demonstrated its
effectiveness across diverse datasets and algorithms, reinforcing its potential for broader applicability in
modern IoT scenarios.

In summary, GENOME offers a pragmatic and effective method for malware detection and classification
in edge computing settings. By attaining equilibrium between data efficiency and detection efficacy, it tackles
the principal security constraints of edge systems and illustrates its capability to resolve these issues in
practical applications. Future research will concentrate on the development and assessment of RNA-based
algorithms that consider sequence integrity and temporal relationships. We anticipate that this method will
enhance the monitoring and identification of evolving malware. By converting malware artifacts into RNA-
like sequences, we seek to enhance the identification of both known and modified malware, hence improving
the efficacy of malware detection systems in dynamic edge environments.
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