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ABSTRACT: Image tampering detection and localization have emerged as a critical domain in combating the pervasive
issue of image manipulation due to the advancement of the large-scale availability of sophisticated image editing tools.
The manual forgery localization is often reliant on forensic expertise. In recent times, machine learning (ML) and deep
learning (DL) have shown promising results in automating image forgery localization. However, the ML-based method
relies on hand-crafted features. Conversely, the DL method automatically extracts shallow spatial features to enhance the
accuracy. However, DL-based methods lack the global co-relation of the features due to this performance degradation
noticed in several applications. In the proposed study, we designed FLTNet (forgery localization transformer network)
with a CNN (convolution neural network) encoder and transformer-based attention. The encoder extracts local high-
dimensional features, and the transformer provides the global co-relation of the features. In the decoder, we have
exclusively utilized a CNN to upsample the features that generate tampered mask images. Moreover, we evaluated visual
and quantitative performance on three standard datasets and comparison with six state-of-the-art methods. The IoU
values of the proposed method on CASIA V1, CASIA V2, and CoMoFoD datasets are 0.77, 0.82, and 0.84, respectively.
In addition, the F1-scores of these three datasets are 0.80, 0.84, and 0.86, respectively. Furthermore, the visual results
of the proposed method are clean and contain rich information, which can be used for real-time forgery detection.
The code used in the study can be accessed through URL: https://github.com/ajit2k5/Forgery-Localization (accessed
on 21 January 2025).
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1 Introduction
The advancement of digital platforms has increased image manipulation. Today, we share, create

and download image from the internet. The intruder easily tampered the shared images, which posed a
substantial challenge in various industries [1]. In addition, due to the large-scale availability of advanced
image editing tools, fake images can be created. These fake images are challenging to discriminate as they
look natural, potentially causing severe consequences [2]. Due to this, a lack of trust can be noticed in the
media organization, and the credibility of visual journalism is at risk. Moreover, tampered images pose a
significant challenge for legal settings as they can be used for evidence in several crimes [3].

In the manual process of image authenticity validation, the forensic team collects the images of
evidence and examines the image characteristics to identify the anomalies that might indicate tampering [4].
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One classical method is image pixel analysis, which involves an examination of the pixel’s value to identify
inconsistency in the image. The pixel value of the tampered region has different characteristics compared
to the authentic region [5]. Another method is copy-move forgery detection, in which the expert aims
to identify the replicated pixels or regions within the original image [6]. Experts detect differences in
compression levels throughout the image in the ELA (Error Level Analysis) approach. Forged regions that
have been compressed with a different compression level will stand out [7].

The manual methods have done a great job in image authenticity analysis. However, traditional image
authenticity methods require highly expert people, and at the same time, it is time-consuming. In addition,
these techniques largely depend on the expertise of the forensic analyst [8]. In addition, conventional
techniques could be more efficient when dealing with low image resolution and images with excessive noise.
Moreover, professional forgers can produce fake images that closely mimic authentic ones, posing challenges
in their identification through traditional methods [9]. Several machine learning (ML) and deep learning
(DL) techniques have been designed to address these constraints. The ML-based methods leverage manually
designed texture, shape, and colour information to train algorithms. Consequently, the effectiveness of these
approaches relies on the ability of the forensic professional [10]. Furthermore, deep learning-based systems
automatically extract the image features to identify the tampered region [11]. Nevertheless, DL methods
necessitate substantial data and a comprehensive correlation of global information [12]. This affects the
method’s effectiveness when dealing with low image resolution and images containing noise [13].

We designed a CNN-based encoder that focused on local spatial features. Furthermore, a transformer
block is utilized in the encoder, which provides attention. In addition, the transformer block enhanced
the global co-relation of the spatial features. Further, we have used purely CNN block in the decoder to
upsample the spatial features. In addition, we utilized cascading upsampling blocks, with each deconvolution
block consisting of a 2x upsampling operator to generate the tampered mask. We evaluated the model’s
performance on the CASIA V1, CASIA V2 and CoMoFoD datasets. The FLTNet achieved much better
quantitative and visual results than several other methods.

The significant contribution of the method is as follows:

(a) We extracted spatial features using CNN-based encoders and provided attention using transformer
block to generate fine-grained localized images.

(b) The MSA in classical ViT cannot capture fine grained local spatial features. Therefore, we replaced it
with W-MSA in the transformer block to extract enhanced local attention within a window, followed
by the SW-MSA.

(c) The proposed FLTNet is experimentally evaluated on the three standard datasets and compared with six
state-of-the-art methods. The visual and quantitative results are superior compared to other methods.

The rest of the manuscript is organized as follows:
The detailed literature reviews are added in Section 2, whereas, in Section 3, the FLTNet’s architecture

and loss functions are explained. Furthermore, in Section 4, we have added an analysis of the quantitative
and visual results of the proposed method and several other methods. and finally, the conclusion and future
scope are provided in Section 5.

2 Literature Review
The image forgery localization is a vital problem for digital image security. Several methods have

been utilized to identify and locate the forged region in the image. In this regard, Cozzolino et al. [14]
proposed a localization framework that combines sensor noise, patch-matching, and machine learning
tools, fusing their binary masks using reliability indexes. Initial experiments on the training set show high
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localization accuracy and helpful visual clues. Yarlagadda et al. [15] proposed an algorithm for detecting and
localizing satellite image forgery, focusing on scenarios where objects are added or removed. The algorithm
uses a generative adversarial network (GAN) to learn features from pristine satellite images. A one-class
support vector machine (SVM) is then trained on these features to identify anomalies and detect image
forgeries. Kumar et al. [16] utilized a deep semantic image-inpainting algorithm to generate a synthetic forged
dataset. In addition, an unsupervised domain adaptation network was employed to detect image copy-move
forgery localization.

Le et al. [17] explore image forgery localization, focusing on demosaicing artefacts. They improve
authentication and localization by linking colour filter array patterns, demosaicing algorithm estimation,
and statistical analysis of artefacts. Bi et al. [18] proposed a fake-to-realistic transform generator for tampered
region localization. Through adversarial training, colouring transforms their method and automatically
suppresses tampering artefacts in forged images. Cozzolino et al. [19] utilized a CNN-based method. They
trained it to forge an image dataset distinguishing patches from the same camera model. Bunk et al. [20]
proposed an image tampering detection method using resampling features and deep learning. Guillaro
et al. [21] introduced TruFor, a flexible forensic framework designed to identify several types of image
manipulation. Guo et al. [22] suggested a hierarchical fine-grained method for learning IFDL representation.
They improve the algorithm’s potential for understanding various levels of forgery traits in modified images.
Hao et al. [23] introduced TransForensics, a novel technique for identifying image forgeries, which draws
inspiration from Transformers. This framework comprises compact self-attention encoders that capture
overall context and pairwise interactions among nearby patches.

Bianchi et al. [24] developed an algorithm to identify double JPEG compression in manipulated images
without manually selecting certain regions. The system utilizes an enhanced statistical model to automatically
calculate a likelihood map for every 8 × 8 block, which indicates the possibility of double compression.
Ferrara et al. [25] introduced a forensic tool to distinguish between authentic and manipulated areas in
digital camera images by utilizing demosaicking artefact assessment at a local level and employing a statistical
model, which can determine the likelihood of tampering for each 2 × 2 image block. Li et al. [26] presented
a method that improves the accuracy of identifying forged areas by combining tampering possibility maps.
Singh et al. [27] implemented a CNN to identify fake images on social media networks. The initial layer
of the model employs high pass filters to initialize weights, improving convergence speed and accuracy.
Dua et al. [28] proposed an advanced methodology for examining tampering in JPEG compressed images,
covering splicing and copy-move forgery. The technique utilizes block processing to verify and determine
the exact locations of modified areas. Rao et al. [29] developed a novel approach for detecting and identifying
image forgery. They combined CNN with a multi-semantic Conditional Random Field (CRF) attention
model by utilizing boundary transition artefacts.

Jabeen et al. [30] proposed a multimodal system that utilizes CNN for forgery detection. InceptionV3
is used to extract spatial features from manipulated regions. Liu et al. [31] proposed a Fusion-Net for
locating tampered areas by tracing borders. They trained on specific splicing forgery types using Base-Net;
Fusion-Net discerns whether an image block is synthesized from different origins after fine-tuning with
a minimal number of images. Lin et al. [32] focused on forgery localization using photo-response non-
uniformity (PRNU) noise. They proposed a segmentation model that leverages local homogeneity to address
the challenges of existing approaches. Rao et al. [33] proposed a self-supervised domain adaptation network
for JPEG-resistant forgery localization. Comprising a vanilla architecture backbone and a Compression
Approximation Network (ComNet), it mimics JPEG compression through self-supervised learning. Kumar
et al. [34] applied CNN model inspired by the VGG16 for the detection of the multiple forgery in the video.
Their model achieved 91% accuracy on the VIFFD dataset.
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3 Proposed Method
In the proposed study, we localized the label mask of the tampered region. Unlike Unet [35], in which

encoder and decoder are CNN blocks, which downsample and upasmple the image to construct the mask.
We provided attention to the features extracted in the encoder block through transformer. The overall
architecture of the proposed method is shown in Fig. 1.

Figure 1: The architecture of the FLTNet for tempered image localization

3.1 Convolution Encoder with Transformer Attention
The input image I ∈ RH×W×3is passed to the convolution block (Conv1) of convolution size 64 having

3 × 3 filter, followed by stride of size 2 and ReLu activation. The ReLu activation squashes the negative value
and produces output between zero and positive values as follows:

F (y) = { 0, y < 0
y, y >= 0 } . (1)

Subsequently, a max-pooling of window size 2× 2 is applied to downsample the spatial features. The next
Conv2 block has convolution size 128 with filter size 3 × 3 followed by stride of size 2 and ReLu activation.
For the Conv3 block, we have utilized convolution size 256, followed by the stride of size 2, ReLu activation
and max-pooling of 2 × 2. The detailed architecture of the convolution blocks used in the encoder is shown
in Fig. 2.

The spatial features extracted from the convolutions blocks are linearly projected, and a batch embed-
ding is performed on a 1 × 1 features map obtained from CNN blocks to generate the tokens as follows:

Z0 = [y1
pE; y1

pEy2
p; y3

pE; ⋅ ⋅ ⋅ ⋅ ⋅⋅; yM
p E] + Epos, (2)
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where yp = Vectorized patches of D-dimensional, E ∈ R(p2 ⋅C)×D = Patch embedding projection and
Epos ∈ RM×D = Position encoding.

Figure 2: The architecture of the convolution blocks used in the encoder

The classical transformer encoder consists of MSA (multihead self-attention), MLP (multi-layer
perceptron) and LN (layer norm). The output of the Jth layer is calculated as follows:

Z̃J =MSA (LN (ZJ−1)) + ZJ−1 ,
ZJ =MLP (LN (Z̃J)) + Z̃J .

(3)

In MSA, the relationship of each token is calculated with other tokens that increase the complexity to
quadratic time. Hence, this makes it less acceptable for high-resolution image segmentation and classification
tasks [36]. We utilized a W-MSA (window multi-head self-attention) and SW-MSA (shifted-window
multi-head self-attention) to reduce the computation burden. The architecture of the classical and swing
transformer block is shown in Fig. 3

Figure 3: The classical and Swin blocks’ architecture

In W-MSA, attention is calculated on the local widows of patch size S × S on the input features. The
output of the Jth layer is calculated as follows:

Z̃J =WMSA (LN (ZJ−1)) + ZJ−1 ,
ZJ =MLP (LN (Z̃J)) + Z̃J .

(4)
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However, it suffers from a lack of interaction among local windows. To overcome the issue, SW-MSA
is incorporated after the W-MSA module, as shown in Fig. 2b. The architecture of SW-MSA differs from
the previous W-MSA layer, as it utilizes an effective batch processing strategy by cyclically shifting towards
the upper left direction. Following this shift, a batch window in the feature map may consist of many non-
adjacent sub-windows while maintaining the same number of batch windows. During the computation of
self-attention in both W-MSA and SW-MSA, the similarity calculation considers the relative location bias
inside local windows. After shifting, the output of the SW-MSA and MLP is calculated as follows:

Z̃J+1 = SWMSA (LN (ZJ)) + ZJ,
ZJ+1 =MLP (LN (Z̃J+1)) + Z̃J+1 .

(5)

The SA of the W-MSA and SW-MSA blocks is defined as follows:

Q = ZJWQ, K = ZJWK, V = ZJWV,

Attn (ZJ) = Softmax (QKT/
√

d + B)V
(6)

where Q, K, and V are the query, key and value of the matric WQ, WK, and WV, respectively, and B is the
relative bias position of the transformer layer. The hidden features sequence obtained from the transformer
block is reshaped and passed to the decoder block.

3.2 The Convolution-Based Decoder
In the decoder block, we have utilized only CNN blocks. Each CNN block consists of 3× 3 filters followed

by BN and ReLu activation. The sizes of Dconv1, Dconv2, and Deconv3 are 256, 128 and 64, respectively. The
architecture of the deconvolution blocks used in the decoder blocks is shown in Fig. 4.

Figure 4: The architecture of the deconvolution blocks used in the decoder

The features obtained from the Conv1, Conv2 and Conv3 are concatenated with the Dconv1, Dconv2
and Deconv3, respectively. Further, to obtained the image of size HxW from the H

p ×
W
p patches. We applied

a cascading upsampling block, with each block consisting of a 2x upsampling operator. Finally, the 1 × 1
convolution and sigmoid activation are applied to obtain the tampered region of the image. The proposed
FLTNet has three major components: a CNN encoder to extract local spatial features, a ViT block for local
and global attention and a decoder for upsampling the features. Several studies suggest that CNN may miss
the boundary and edge region. To complement the issue, we applied a ViT block based on the SW-MSA,
which provides local and global contextual information through shift-window interaction. Furthermore,
a skip connection from the encoder is applied to the decoder block that passes information. The decoder
block upsamples the feature map, generating a detailed localized forged image. Similar to our work, the
recent trends of a hybrid CNN-transformer framework utilized pre-trained ResNet50 and a ViT encoder
having MSA (multi-head self-attention), which computes attention pairwise in the token and provides
global attention. Due to this, it misses the local contextual features, and computation cost rises to quadratic
time complexity.
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3.3 The Loss Function
The loss for all experiments was calculated using a composite of the dice and binary focal loss functions.

The similarity between the ground truth (GT) and the segmented picture was determined using the dice
loss. The binary focal loss penalizes hard-to-classify regions more strongly than easy-to-classify regions. The
mathematical description of the loss function is as follows:

DSC = (2∣M ∩N∣)
(∣M∣ + ∣N∣) . (7)

Here, M = Labelled GT, N = Segmented image. The BFL (binary focal loss) is defined as follows:

BFL (X, P) = −βX (1 − P)α log (P) − (1 − y)Pα log (1 − P) (8)

Here, α = Focusing parameters, β = Trade-off between recall and precision, X = Binary class labelled
and P = Estimated probability of tampered class.

Loss = DSC + (1 × BLF) (9)

Here, DSC is the dice coefficient for foreground and background pixels.

4 Results
In this section, we have discussed quantitative and visual results on three datasets, CASIA V1, CASIA

V2 and CoMoFoD, of the proposed model and six other models.

4.1 Dataset
In this section, we have discussed the three datasets CASIA V1, CASIA V2 and CoMoFoD.

4.1.1 CASIA V1 Dataset
The CASIA V1 dataset has 1721 images with a resolution of 384 × 256 pixels. It has 921 tampered and

800 authentic images stored in JPEG format. Most of the images in the authentic class are taken from the
Corel image dataset. Meanwhile, tampered images are generated from authentic images through copy-paste
and crop operations [37]. The GT (Ground Truth) images are generated using the procedure described in
the literature [38]. A sample image and its ground truth are shown in Fig. 5.

Figure 5: The original image, forged image and its GT. (a) Original image (b) Forged image and (c) GT

4.1.2 CASIA V2 Dataset
The CASIA V2 dataset contains 5123 tampered and 7200 authentic images widely used in image forgery

detection. It contains 9 categories of images with varying size ranges from 320 × 240 to 800 × 600 pixels. In
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addition, CASIA V2 dataset images are stored in TIFF and BMP formats. The images in the authentic class
are taken from the Corel image dataset. The GT (Ground Truth) images are generated using the procedure
described in the literature [38]. The sample images are shown in Fig. 6.

Figure 6: The original image, forged image and its GT. (a) Original image (b) Forged image and (c) GT

4.1.3 The CoMoFoD Dataset
The CoMoFoD dataset consists of 200 images with a resolution of 512 × 512 pixels. Images are generated

using five types of manipulations. Each category contains 40 images. After applying preprocessing, the
dataset is enlarged to 8500 images. In the dataset, GT masks exhibit manipulated and source regions [39].
For our localization problem, changes were made in the image to generate GT masks of the manipulated
region according to the method used for the CASIA V2 dataset. The sample images of the CoMoFoD dataset
are shown in Fig. 7.

Figure 7: The original image, forged image and its masked and GT images. (a) Original image (b) Forged image (c)
Masked image and (d) GT

4.2 Experimental Setup
We evaluated the proposed method on NVIDIA Quadro RTX-4000 GPU, which has 128 GB RAM and

a dual graphics card of 8 GB. The script is written using Python 3.9. Each experiment is carried out for 200
epochs in a batch size of 64 using the sigmoid optimizer.

4.3 Quantitative Results
In the proposed study, we evaluated the performance of the FLTNet on the three datasets. To evaluate

the performance on the CASIA V1 dataset for each experiment, images are reshaped to 300 × 300 pixels.
After that, each model is trained for 200 epochs in a batch size of 64 by dividing the dataset randomly into
80% and 20% for training and validation. We compared EDTNet performance with SegNet [40], Unet [41],
ManTra-Net [42], LSTM-EnDec [43], RGB-N [44], SPAN [45]. The SegNet is a based encoder and decoder
network inspired by the VGG16. In SegNet, the encoder uses the first 13 layers of the VGG16, and the
decoder consists of 4 convolution blocks. Each convolution block in the encoder is followed by a BN (batch
normalization) stride and a max-poling layer. The Unit is also an encoder and decoder-based model designed
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using 2D convolution blocks consisting of 23 layers. ManTra-Net is a self-supervised end-to-end network
used for image forgery detection and localization. LSTM-EnDec is a hybrid model designed using LSTM
(long short-term memory) and CNN-based encoder and decoder. The RGB-N utilized a ResNet-101 network
as a backbone to extract spatial features. In addition, a pre-trained Faster-RCNN is used to enhance the
image forgery localization. SPAN uses the VGG network as the backbone and 2D CNN for the spatial feature
extraction. In addition, the mask is generated using a 2D convolution layer and sigmoid activation function.

Furthermore, the performance indicators IoU (Intersection over union), precision, recall, F1-score and
loss are calculated as shown in Table 1. Table 1 shows that the RGB-N achieved the least IoU of 0.43 and loss
of 0.76. Slightly improved precision and IOU values can be observed in SegNet. The second highest IoU and
the precision value obtained by the SPAN. Meanwhile, the FLTNet achieved the IoU with 0.77 precision.

Table 1: Comparative performance on CASIA V1 dataset

Methods Precision Recall F1-score IoU Loss
SegNet 0.57 0.49 0.53 0.47 0.72
Unet 0.52 0.46 0.49 0.44 0.85

ManTra-Net 0.69 0.73 0.71 0.65 0.61
LSTM-EnDec 0.72 0.69 0.70 0.67 0.57

RGB-N 0.45 0.49 0.47 0.43 0.76
SPAN 0.75 0.79 0.77 0.73 0.51

Proposed 0.78 0.83 0.80 0.77 0.37

Further, FLTNet performance on CASIA V2 dataset images is evaluated by reshaping them to 300× 300
pixels. After that, each model is trained for 200 epochs in a batch size of 64 by dividing the dataset randomly
into 80% and 20% for training and validation using a sigmoid optimizer. Furthermore, the performance
indicators IoU, precision, recall, F1-score and loss are calculated as shown in Table 2. In Table 2, we can see
that the precision of the RGB-N is 0.58, which is the lowest in the table. Unet has improved slightly to 0.63.
The SegNet and ManTra-Net have almost identical precision values. The second-highest precision value was
obtained using SPAN. Meanwhile, the proposed FLTNet achieved the highest precision. The recall value of
the FLTNet is slightly low compared to SPAN. However, the loss is much lower than that of SPAN.

The FLTNet performance was evaluated on the CoMoFoD dataset under the same experimental
conditions that have been used for the CASIA V2 dataset. The performance indicators IoU, precision, recall,
F1-score and loss on the CoMoFoD dataset are shown in Table 3. We can see that the F1-score of the Unet is
0.58 lowest in the table. Meanwhile, RGB-N achieved an F1-score of 0.61. The loss of the Unet and RGB-N
are very close. The SPAN and FLTNet have an F1-score of 0.84 and 0.86, respectively. At the same time, the
loss of these two models is 0.27 and 0.24, respectively.

Table 2: Comparative performance on CASIA V2 dataset

Methods Precision Recall F1-score IoU Loss
SegNet 0.72 0.65 0.68 0.66 0.63
Unet 0.63 0.69 066 0.61 0.56

ManTra-Net 0.71 0.78 0.74 0.79 0.49
LSTM-EnDec 0.75 0.81 0.78 0.71 0.43

(Continued)
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Table 2 (continued)

Methods Precision Recall F1-score IoU Loss
RGB-N 0.58 0.62 0.60 0.56 0.61
SPAN 0.79 0.84 0.81 0.77 0.57

Proposed 0.83 0.85 0.84 0.82 0.32

Table 3: Comparative performance on CoMoFoD dataset

Methods Precision Recall F1-score IoU Loss
SegNet 0.67 0.71 0.69 0.64 0.52
Unet 0.57 0.60 0.58 0.53 0.53

ManTra-Net 0.76 0.73 0.74 0.71 0.41
LSTM-EnDec 0.71 0.76 0.78 0.75 0.31

RGB-N 0.57 0.67 0.61 0.52 0.56
SPAN 0.83 0.86 0.84 0.71 0.27

Proposed 0.78 0.85 0.86 0.84 0.24

The CASIA V2 dataset contains images of varying resolution, and the tampered region is relatively large
compared to CoMoFoD. The CoMoFoD dataset contains images of 512 × 512 resolution and 5 categories
of tampering. We presented the quantitative performance of the FLTNet on the CASIA V2 and CASIA V3
in Tables 2 and 3, respectively. The performance of the model is relatively consistently high on both datasets.
The FLTNet contains a multiscale CNN encoder for high-resolution spatial and coarse-grain local features.
In addition, the ViT encoder provides local and global attention through W-MSA and SW-MSA to capture
detailed information from the complex tampered region. Moreover, the hybrid loss function uses dice loss
to preserve spatial coherence and binary focal loss to punish hard-to-classify regions. Overall, the multiscale
CNN-based encoder and ViT with local and global attention focused on the edge and boundary region and
CNN decoder upsample the feature, which leads to consistent performance across diverse datasets.

4.4 Visual Results
The visual results on CASIA V1, CASIA V2 and CoMoFoD are shown in Figs. 8–10. In Fig. 8, we can

see that the masked image of the SegNet has a high level of noise. Since the SegNet encoder and decode
are based on CNN, which ignores the boundary region features. The Unet generates a slightly improved
localized image; mantra-net adopted a self-supervised technique to enhance the visual quality. However,
the noise level is high. Furthermore, LSTM-EnDec utilized LSTM and CNN-based encoders and decoders
that enhance the spatial features and co-relation of the features. The RGB-N utilized ResNet-101 as the
backbone and a single Faster-RCNN to reduce noise. The SPAN utilized a pyramid structure and VGG16 to
minimize the noise and generate a visual map better than the previous one. In the proposed FLTNet, we used
a CNN-based encoder and transformer-based attention. The transformer attention block is based on sliding
to provide MHA that improves the edge and corner features. The localized masked image has less noise and
is closer to GT. In the decoder, we utilized multiple convolution layers for local spatial feature enhancement
and cascade upsampling for reconstruction of the masked image. We applied a 2x upsampling operator to
preserve the edge and boundary region. In addition, a skip connection from the encoder to the decoder
block preserves the forged image’s high-resolution texture. The Unet and SegNet contain CNN blocks as
encoders and decoders. Due to this, noises can be transmitted through a skip connection. In addition, the
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decoder block in the SegNet relies on the max-pooling operation, which misses the detailed information
about the objects.

Figure 8: The visual map on CASIAV1 dataset (a) GT (b) SegNet (c) Unet (d) ManTra-Net (e) LSTM-EnDec (f) RGB-N
(g) SPAN and (h) FLTNet

Figure 9: The visual map on CASIAV2 dataset (a) GT (b) SegNet (c) Unet (d) ManTra-Net (e) LSTM-EnDec (f) RGB-N
(g) SPAN and (h) FLTNet

Figure 10: The visual map on CoMoFoD dataset (a) GT (b) SegNet (c) Unet (d) ManTra-Net (e) LSTM-EnDec (f)
RGB-N (g) SPAN and (h) FLTNet
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We can notice that the visual results of the FLTNet are close to GT and contain better edge and boundary
regions compared to SPAN and RGB-N. The RGB-N utilized ResNet-101 as the backbone and a single Faster-
RCNN to reduce noise. However, the RGB-N visual results contain noises, where the texture difference
between forged and authentic images is less. The SPAN utilized a pyramid structure and VGG16 to minimize
the noise. However, it struggles in the small tampered region due to self-attention. In the FLTNet, we utilized a
CNN encoder. We provided attention using W-MSA and SW-MSA, which provided local and global attention
to focus on the boundary and edge region of the tampered images. The detailed information and sharp
boundaries in the visual results can provide better insight into the tempered images to the expert.

4.5 The Training Loss
We plotted the training loss of the FLTNet on CASIA V1, CASIA V2, and CoMoFoD datasets for 200

epochs, as shown in Fig. 11. In Fig. 11a, we can observe that model loss is initially very high. It started gradually
decreasing after 25 epochs. In addition, several high and low peaks can be observed between 25 to 165 epochs.
However, these peaks have a value below 0.50. After 175 epochs, it reaches close to 0.1. In Fig. 11b, FLTNet
loss is initially more than 0.5. After 25 epochs, it reaches below 0.4. After that, it gradually decreased and
reached close to 0.2 after 75 epochs. The training loss of the model on the CoMoFod dataset shown in Fig. 11c
initially has several high and low peaks. After 50 epochs, it started decreasing and reached below 0.25. Finally,
it reaches close to zero after 190 epochs.

4.6 Ablation Study
We rigorously anlayzed the effect of the different components of the FLTNet on three datasets. When

only CNN CNN-based encoder and decoder are applied to three datasets, the IoU value is relatively less.
Furthermore, the inclusion of the CNN+ViT in the encoder and pure CNN as the decoder improves the IoU
value by almost 1%. In addition, we replaced MSA with W-MSA in the ViT, and the IoU value increases in
the three datasets. In a final experiment, we can see in Table 4, that the highest value of IoU is obtained on
the CASIA V1, CASIA V2 and CoMoFoD datasets. The MSA (multi-head self-attention) compute attention
pairwise in the token and provides global attention. At the same time, W-MSA calculates local spatial
attention using a no-overlapping window; due to this, it misses the global context. Therefore, we applied SW-
MSA along with W-MSA, which computes attention by shifting the window cyclically and ensures spatial
features from neighbor windows are brought in the same local window. In this way, both local and global
feature interactions are enhanced in the ViT block.

We performed an ablation study on the IMD2020 Real-Life Manipulated Images dataset. This dataset
contains 2000 real-world diverse manipulated images. For each image, their forged image and corresponding
mask are provided for localization in the manipulated region [46]. We utilized the same experimental
condition discussed in Section 4.2, and the quantitative results presented in Table 5. Table shows that the
model achieved IoU and F1-score of 0.74 and 0.78, respectively.
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Figure 11: The training loss on CASIA V1, CASIA V2 and CoMoFoD dataset

Table 4: Effect of different component on performance

Components CASIA V1 CASIA V2 CoMoFoD

IoU IoU IoU
CNN (Enoder) +CNN (decoder) 0.73 0.78 0.81

CNN+ViT+MSA (Encoder)+CNN (decoder) 0.74 0.79 0.82
CNN+ViT+W-MSA (Encoder)+CNN (decoder) 0.75 0.81 0.83
CNN+ViT+W-MSA+SW-MSA (Encoder)+CNN

(decoder)
0.77 0.82 0.84
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Table 5: Performance of the proposed model on IMD2020 dataset

Precision Recall F1-score IoU Loss
0.76 0.80 0.78 0.74 0.51

Furthermore, we depict the visual results of the proposed model in Fig. 12. We can observe that the
output of the FLTNet is close to GT. However, some portions of the top right edges need to be sharpened.
This can be done by utilizing an attention mechanism to decoder block.

Figure 12: The sample images of IMD2020 dataset. (a) Original image (b) Manipulated image (c) GT and (d) Output

The summary of the different hyper parameters is depicted in Table 6. We experimented with batch sizes
8, 16, 32, 64, and 128 models, and the highest performance was achieved with a batch size of 64. For lower
batch size models, training time also increased. At the same time, performance was also less. Furthermore,
we selected 8, 16, and 32 heads in the ViT encoder for global attention. However, with the 8 heads model
achieved better performance. Moreover, lower embedding dimensions resulted in lower performance, and
higher dimensions increased computation costs.

Table 6: Different hyper parameters used in the study

Hyper parameters Value Details
Batch size 64 Used in training

No of heads 8 Assigned in the ViT encoder
Embedding dimension 512 Assigned in the ViT encoder

Window size 7 × 7 Used in W-MSA

(Continued)
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Table 6 (continued)

Hyper parameters Value Details
Focusing parameter 2.0 Used in binary focal loss

Trade-off value 0.73 Used in binary focal loss

5 Limitation and Conclusion
Digital platforms are widely used for sharing images. Due to the large-scale availability of advanced

image editing tools, tampered images are generated. The tampered images potentially cause serious conse-
quences. Several manual techniques have been utilized to detect forged images, which is time-consuming
and requires forensic experts. Recently, ML and DL have been successfully used to automate tampered image
localization. The ML-based method requires hand-crafted features for the model training. Therefore, the
probability of error is associated with these techniques. On the other hand, the based model improved
the localization of tampered regions by automatically extracting the spatial features. However, DL-based
methods require extensive data to train the model. In addition, the shallow CNN-based encoder and decoder
model lacks the global co-relation of the features. Therefore, a CNN-based encoder with spatial attention
using a transformer has been developed. The CNN encoder extracts local high-dimension features and global
co-relation of the spatial features provided by the transformer. Our decoder is a purely CNN-based module,
which upsamples the features to localized tampered mask images.

We validated the model on three standard datasets and compared it with six different methods. The
FLTNet achieved an F1-score of 0.80, 0.84, and 0.86 on the CASIA V1, CASIA V2, and CoMoFoD datasets.
In addition, the loss of the model on the three datasets is much less compared to the other methods.
Furthermore, the AUC value of the model is 87%, 92% and 95%, respectively. The FLTNet performance needs
to be tested on diverse real-time datasets. In addition, the computation costs of the algorithm need further
reduction. Future studies will explore transformer-based lightweight encoders and decoders for tampered
image localization. In addition, an explainable AI module can be implemented for better decision-making
that will build more trust in the model.
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Abbreviations
RGB Red Blue Green
IFDL Image Forgery Detection and Localization
JPEG Joint Photographic Experts Group
PRNU Photo Response Non-Uniformity
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