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ABSTRACT: Virtual Power Plants (VPPs) are integral to modern energy systems, providing stability and reliability in
the face of the inherent complexities and fluctuations of solar power data. Traditional anomaly detection methodologies
often need to adequately handle these fluctuations from solar radiation and ambient temperature variations. We
introduce the Memory-Enhanced Autoencoder with Adversarial Training (MemAAE) model to overcome these
limitations, designed explicitly for robust anomaly detection in VPP environments. The MemAAE model integrates
three principal components: an LSTM-based autoencoder that effectively captures temporal dynamics to distinguish
between normal and anomalous behaviors, an adversarial training module that enhances system resilience across
diverse operational scenarios, and a prediction module that aids the autoencoder during the reconstruction process,
thereby facilitating precise anomaly identification. Furthermore, MemAAE features a memory mechanism that stores
critical pattern information, mitigating overfitting, alongside a dynamic threshold adjustment mechanism that adapts
detection thresholds in response to evolving operational conditions. Our empirical evaluation of the MemAAE model
using real-world solar power data shows that the model outperforms other comparative models on both datasets. On
the Sopan-Finder dataset, MemAAE has an accuracy of 99.17% and an F1-score of 95.79%, while on the Sunalab Faro
PV 2017 dataset, it has an accuracy of 97.67% and an F1-score of 93.27%. Significant performance advantages have
been achieved on both datasets. These results show that MemAAE model is an effective method for real-time anomaly
detection in virtual power plants (VPPs), which can enhance robustness and adaptability to inherent variables in solar
power generation.

KEYWORDS: Virtual power plants (VPPs); anomaly detection; memory-enhanced autoencoder; adversarial training;
solar power

1 Introduction
Virtual Power Plants (VPPs) are an essential development in power system management. They offer

flexible solutions to challenges such as connecting renewable energy to the grid, keeping the grid stable, and
managing energy demand on the consumer side [1]. Initially, the main idea behind VPPs was to combine
small-scale distributed energy resources (DERs) into one system [2]. Over time, technological movements
have made VPPs more advanced tools. They can now manage a broader range of energy resources, such as
solar panels, wind turbines, energy storage systems, and demand response units [3]. This progress has made
VPPs a necessary part of modern energy systems. They are essential for balancing energy supply and demand
while also helping to promote sustainable development.
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Although the concept of VPPs was first proposed in the 1990s, it only began to gain momentum in the
early 2000s with the widespread adoption of distributed energy resources. In the early days, virtual power
plants mainly focused on coordinating and optimizing the integration of distributed energy resources to
improve operational efficiency and the power grid’s reliability. However, due to technological limitations,
incomplete policies and regulations, and the initial development stage of distributed power generation
technology, the actual deployment of VPPs was still mainly at the theoretical level at that time.

The primary function of Virtual Power Plants (VPPs) is to help integrate renewable energy smoothly
into the grid. They achieve this by bringing together distributed energy resources and improving grid control
to make grid management more efficient [4]. VPPs combine different energy sources, such as solar power,
wind power, energy storage systems, and controllable loads, into one system. As a unified entity, VPPs can
participate in electricity markets and support grid operations by providing energy and additional services.
This approach increases the flexibility of the power grid and helps improve energy efficiency. At the same
time, it lowers carbon emissions, making VPPs an essential part of the movement toward a more sustainable
energy future.

In recent years, the development of virtual power plants (VPPs) has been mainly driven by multiple
essential factors, including the widespread adoption of distributed generation technologies such as solar
photovoltaics and wind energy, the reduction of communication and control system costs, and the increasing
desire of consumers (both producers and consumers) to participate in the energy market and achieve self-
sufficiency [5]. These trends make VPPs more economically feasible and technologically mature.

1.1 Supervisory Control and Data Acquisition (SCADA) System
Earlier, we discussed the different parts that make up virtual power plants. Information and Commu-

nication Technology (ICT), especially SCADA systems, makes VPPs work effectively by enabling efficient
monitoring and control of distributed energy resources. SCADA systems provide advanced solutions for
remote monitoring, control, and optimization of different processes, making them essential in managing the
complexities of VPPs.

SCADA systems were initially designed to manage local industrial processes. Still, as technology has
advanced, they have evolved into powerful tools capable of overseeing complex machinery and sensor net-
works spread across large geographic areas [6]. Today, SCADA systems are widely used in energy production,
manufacturing, water treatment, and transportation to ensure efficient and reliable operations [7].

The concept of SCADA originated in the mid-20th century when industrial organizations sought more
efficient solutions for remote equipment control. In the 1960s, telemetry technology enabled automated
communication between remote sites and central control stations, laying the foundation for developing early
SCADA systems. These systems would allow operators to manage industrial processes without physically
visiting each site, a revolutionary advancement in industrial automation [8]. A typical SCADA system
architecture, as depicted in Fig. 1, showcases the significant components of a SCADA system and how
they interact:

Fig. 1 shows the overall architecture of a SCADA system, including historical databases, commu-
nication links, MTUs, RTUs, human-machine interfaces (HMI), operators, data analysis modules, and
communication between field devices.
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Figure 1: SCADA system structure

Historian stores all real-time data collected from field devices and RTUs [9]. The stored data can be used
for subsequent analysis to optimize equipment operation, improve system efficiency, and provide decision
support. Historical databases’ long-term data storage capabilities provide complete data records for SCADA
systems. Communication Link connects the central terminal unit, the remote terminal unit, and the HMI to
achieve real-time data transmission [10]. Different wired or wireless methods, such as LAN, WAN, optical
fiber, radio, etc., can serve as communication links. It is the data transmission channel of the entire SCADA
system, ensuring reliable data communication between individual modules.

The MTU is the core control unit of the SCADA system [11]. It is responsible for receiving, processing,
and storing data from the RTU and sending commands to the RTU based on pre-set control logic to control
the operation of the field equipment. The MTU is connected to the HMI to provide the operator with real-
time system status and alarm information.

RTU acts as a bridge between SCADA systems and field devices, collecting real-time data from field
devices such as sensors and actuators and sending it to MTU. It can also receive control instructions from
the MTU to adjust the device’s operating status. In addition to RTUs, programmable logic controllers (PLCs)
and intelligent electronic devices (IEDs) are mentioned in the figure, which can be used in more complex
control scenarios to achieve multifaceted control.

This communication section between field devices and RTU/IEDs/PLC represents the data exchange
between field devices (sensors and actuators) and RTUs, IEDs, or PLCs. Through these devices, the SCADA
system can obtain field information in real-time and perform control operations to ensure the system’s
regular operation.

HMI provides the operator with a visual interface through which the operator can monitor the status of
the field equipment in real-time, view system alarms, view historical data, and manually control the system.
HMI is connected to the MTU to monitor and manage the SCADA system. The operator interacts with the
SCADA system via HMI, monitors the system’s operation status, analyzes the data, and takes appropriate
measures as needed.
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The operator plays a vital role in the SCADA system and is responsible for the timely handling of alarm
information and performing system control. Data analytics is in the intranet of SCADA systems and is used
to analyze historical data to help optimize system performance and improve productivity.

Data analysis can identify anomalies in operation, generate trend analysis and reports, and provide
data support for system maintenance and decision-making. Distributed around the company, the Field
Device includes a collection of tools used to track and manage production operations. Many sensors gather
information, while actuators carry out control functions. Specialized communication protocols have been
developed to ensure uninterrupted, dependable, and effective communication among SCADA components.

1.2 Background
As additional renewable energy sources, such as solar, are integrated into the power grid, ensuring these

systems operate consistently and efficiently is critical. This requires real-time monitoring, rapid anomaly
detection, quick problem resolution, and ensuring peak system performance.

Certain technologies, such as autoencoders, are effective in handling time-series data, especially
data produced by power systems. With the increasing integration of renewable energy sources, real-time
monitoring and advanced anomaly detection have become essential to maintaining stability and efficiency.
However, working with solar data can introduce specific challenges. Solar data is often complex and variable
due to environmental factors, making certain minor anomalies challenging to detect. This places higher
demands on autoencoders.

With the rapid development of industrial automation and control technologies, SCADA systems face
increasingly complex challenges when processing time series data. Traditional anomaly detection methods,
such as reconstruction-based autoencoders, sometimes work well. Still, their effectiveness could be improved
when dealing with more complex data patterns, such as contextual or collective anomalies. Fig. 2 shows the
point anomalies captured by the autoencoder.

Figure 2: Point anomalies captured by autoencoders

It uses traditional reconstruction-based methods for anomaly detection. The red line represents an
anomaly, and the blue line represents a reconstruction. Based on previous studies, anomalies can be
categorized into different types, such as point exceptions, contextual anomalies, and collective exceptions.
Reconstruction-based models are generally better at detecting point anomalies because they depend
on point-by-point reconstruction errors (refer to Fig. 3). However, detecting contextual and collective
exceptions is more challenging.

As shown in Fig. 3, the black line represents average data, the blue line represents reconstructed data,
and the red line represents abnormal data. These anomalies only deviate from the usual pattern in certain
situations, and their numerical values remain close to normal.
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Figure 3: Contextual anomalies ignored by autoencoders

The strong generalization capabilities of neural networks enable autoencoders to reconstruct data
with remarkably high accuracy, even in exceptional cases. This is due to overfitting, structural similarities
between normal and abnormal data, and the absence of clear boundaries between the two. In addition, when
abnormal data isn’t adequately labeled during training, autoencoders tend to make reconstruction errors
less noticeable at these abnormal data points, which makes the issue worse. New models integrating modern
technologies, such as generative adversarial networks (GANs) [12], have become a necessary solution to
overcome these limitations.

So, we can see that traditional refactoring-based self-encoders face many challenges in exception
detection, especially when dealing with context and collective exceptions. Point anomalies are easier to
detect because individual data points deviate significantly from standard patterns [13]. However, contextual
anomalies depend on the time series; single-point values may be typical but overall pattern anomalies, while
collective anomalies are reflected in the pattern deviations of a set of data [14]. In addition, there is often
abnormal pollution in actual data; that is, unlabeled abnormal data is mistaken for standard data, which
causes the model reconstruction error to shrink, masking the actual abnormalities and reducing the detection
effect [15]. At the same time, external factors, such as light, temperature, wind speed, etc., in dynamic
environments (such as photovoltaic systems) make the data pattern constantly changing, and traditional
fixed thresholds cannot adapt to these real-time dynamic changes [16]. In addition, the generalization
and robustness of the model are also outstanding. Traditional methods easily overfit standard data are
sensitive to noise data and lack effective memory mechanisms to store and distinguish normal and abnormal
patterns [17].

To address these limitations, this study introduces a Memory-Enhanced Autoencoder with Adversarial
Training (MemAAE) framework [18]. The memory module enables the model to store and distinguish
between normal and abnormal patterns over long-time dependencies, effectively capturing contextual and
collective anomalies [19]. Furthermore, adversarial training strengthens the model’s robustness against noisy
data, mitigating the impact of abnormal contamination and improving generalization. This framework not
only overcomes the shortcomings of traditional autoencoders but also adapts to dynamic environmental
changes, providing a robust solution for real-time anomaly detection in complex time-series data.

2 Related Works
The time series anomaly detection field has attracted much attention in recent years [20–23]. Traditional

anomaly detection methods define anomalies as significantly different values from most data points, which
can be divided into several categories, including distance-based methods [24], density estimation techniques,
isolation-based methods, and statistical inference-driven methods [21,22].

2.1 Prediction-Based Time-Series Anomaly Detection
With the rapid advancement of deep learning technology, the time series anomaly detection field has

entered a new era filled with opportunities and challenges. The latest research literature, including studies
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like “Deep Learning Time Series Anomaly Detection Investigation” and “Deep Learning Time Series Data
Anomaly Detection Review and Analysis” [24], offers a broad overview of deep learning applications in
this area.

These papers explore both the strengths and limitations of various anomaly detection techniques. They
also provide examples of deep anomaly detection in several application fields, showcasing developments
from recent years.

In addition, ALAD’s unsupervised time-series anomaly detection paradigm based on activation learning
provides a new method for anomaly detection [25]. Deep learning models are very good at automating
tasks and being accurate. They can handle multidimensional time series data and pick up on long-term
dependencies. However, they need a lot of training data and computing power, and the models are more
complex to understand, which can be a problem in some situations.

2.2 Reconstruction-Based Time-Series Anomaly Detection
Recently, a new method based on the reconstruction of time series anomaly detection has been

proposed, focusing on improving the model’s robustness and accuracy. Geometric distribution masks are
used to make the training data more varied, and transformer-based autoencoders are trained in the GAN
framework to solve the overfitting problem [26].

In addition, introducing contrast loss to the discriminator helps regulate the GAN and improve the
generalization capability [12]. The experimental results show that the method significantly improves the
accuracy, reproducibility, and F1-score of the real-world dataset.

The ConvBiLSTM-AE model serves as a reference for encoder selection due to its ability to handle
multivariate time series data in industrial control systems [27]. By combining the spatial feature extraction
capabilities of Convolutional Neural Networks RE(CNNs) Mean Squared Error (MSE) with the tempo-
ral dependencies captured by Bidirectional Long Short-Term Memory (BiLSTM) networks, it effectively
addresses the complexities of industrial data. In contrast, the MemAAE model incorporates an LSTM-
based self-encoder, a memory module, adversarial training, and a prediction module to enhance anomaly
detection robustness in virtual power plant environments. This model improves detection performance
by memorizing key patterns and dynamically adjusting thresholds to adapt to environmental changes.
While ConvBiLSTM-AE excels at processing complex industrial data, the MemAAE model offers greater
complexity and adaptability through its innovative memory and adversarial training mechanisms, making it
particularly effective in environments where dynamic thresholds and memory-driven insights are essential
for accurate anomaly detection.

2.3 Memory Models
Memory has played a crucial role in developing anomaly detection systems within deep learning. LSTM

and GRU architecture employ memory cells to retain information about past states, as evidenced by their
reliance on historical data in contrastive learning methods. In time series anomaly detection, memory-based
approaches have been utilized to mitigate the misapplication of anomaly data across datasets [28]. However,
these methods are not explicitly tailored for time series data and do not fully address the critical challenges
inherent in time series anomaly detection.

2.4 Innovations and Contributions
Most current methods use fixed thresholds to judge anomalies, making it difficult to adapt to com-

plex dynamic environments, such as severe fluctuations in environmental variables such as light and
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temperature [29]. This static threshold design can easily lead to the model’s omission or misdetection in non-
stationary time series data. In addition, reconstruction error and prediction error methods are fragile in the
face of noise data, and the generalization ability is weak, which affects the practical application effect [30].
Traditional time-dependent modeling methods, such as LSTM and GRU, have a specific memory capacity
but lack a clear distinction between normal and abnormal patterns, making it challenging to identify complex
abnormal events accurately.

In view of these challenges, an innovative time-series anomaly detection framework combining dynamic
thresholds, self-encoders, and memory modules is proposed. Through the introduction of a dynamic
threshold mechanism, the model can adjust the anomaly detection standard according to real-time input
data to effectively adapt to dynamic environmental changes, especially in photovoltaic systems. At the same
time, this study designed a memory module to store the key features of normal and abnormal patterns,
enhancing the modeling ability of time-dependent relationships and improving the detection effect of
complex time-series anomalies [31]. To further improve the robustness and generalization of the model, this
paper introduces a generative adversarial training mechanism, which effectively suppresses the influence of
noise data through adversarial learning between the generator and the discriminator [12].

2.5 Datasets
2.5.1 Data Preprocessing

The preprocessing steps of the dataset in this paper are shown in Fig. 4.

Figure 4: Data preprocessing workflow for handling missing values and feature engineering

The data preprocessing process consists of the following steps: First, check the source of missing values
in the dataset, analyze the proportion of missing values in each column, delete the column if the missing value
exceeds 50%, and smooth and fill in the missing value. The timestamp data is then processed to extract time
features such as year, month, day, hour, and minute to generate a new column. Subsequently, correlations
between features are calculated, and columns with correlation coefficients greater than 0.2 are retained to
remove low-correlation features. Normalize or standardize reserved features to ensure that data distribution
is appropriate for model inputs. Methods such as linear interpolation are used to fill out the remaining
missing values, while time series data are resampled to ensure that the data intervals are uniform. After the
above steps, complete the data preprocessing to provide high-quality input for subsequent modeling.
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2.5.2 Sopan-Finder Dataset
The data set used in this research paper comes from the Sopan-Finder repository. This repository is

a source for collecting and analyzing data about solar power systems. This data is collected through the
SCADA system, which stands for Supervisory Control and Data Acquisition, as cited in reference. The dataset
includes a variety of time-series features. These features include data on environmental conditions and system
performance indicators. Together, they form a resource that helps detect anomalies in solar power generation.
Because this dataset is directly from solar energy systems, it gives important insights for this study.

The dataset covers about 7703.75 h of data, close to 320 days of important environmental and operational
information. It contains a total of 30,816 separate data points. Each data point has a specific timestamp that
marks the exact time of each measurement. Abnormal system behavior is identified based on power output,
as represented by PV_Demand. When the PV_Demand goes below a threshold of 0.1, it is marked as an
anomaly. However, it is important to note that these anomalies do not originate from Virtual Power Plant
(VPP) operational scenarios but rather stem from solar panel shutdowns or faults.

In this dataset, 15.93% of data points are considered anomalies, highlighting the significance of these
events. Table 1 includes a summary of key indicators for easy reference.

Table 1: Description of the dataset

Feature name Description Quantities Length (h)
Month Month of the record (1–12) 30,816 7703.75

Day Day of the month (1–31) 30,816 7703.75
Hour Hour of the day (0–23) 30,816 7703.75

Minute Minute of the hour (0–59) 30,816 7703.75
PV_Demand Photovoltaic power demand 30,816 7703.75

temp Temperature in Kelvin 30,816 7703.75
wind_speed Wind speed in meters/second 30,816 7703.75

rain_1h Hourly rainfall in mm 7703 7703.75
snow_1h Hourly snowfall in mm 7703 7703.75

Precip_1h Hourly precipitation in mm 7703 7703.75
clouds_all Cloud cover percentage (0%–100%) 7703 7703.75

The dataset’s time features include each record’s month, day, hour, and minute. This level of granularity
provides a detailed timestamp for every observation. Such detail enables accurate time-series analysis,
helping researchers identify patterns, trends, and seasonal changes in the data, especially for critical variables
like temperature and PV_Demand.

Weather events such as rain, snow, and precipitation are recorded hourly as rain_1h, snow_1h, and
precipitation_1h. Each has 7703 records, which suggests that these measurements are either taken less
frequently or only under specific conditions, like when precipitation is detected. These factors can help
identify anomalies in power generation, as they often cause a drop in solar energy production.

The PV_Demand variable contains 30,816 records. Each record represents an important indicator of
PV_Demand within the data collection period. Examining PV_Demand alongside weather data, such as
temperature, wind speed, and cloud cover, provides valuable insights. These insights reveal how environ-
mental factors affect power generation and PV_Demand. Factors like temperature, cloud cover, and rainfall
are important in modeling solar power. They directly influence sunlight availability and the efficiency of solar
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panels. With data over 7700 h, this dataset forms a strong basis for analyzing long-term trends. It also helps
recognize seasonal patterns and identify anomalies that arise due to environmental or operational changes.

This paper also visualizes the anomaly data. PV_Demand and temperature are visualized because
they are important factors in finding anomalies (the highest correlation coefficients with labels are 0.4198
for PV_Demand and 0.5724 for temperature). Fig. 5 shows how these two factors were used to visualize
the anomalies.

Figure 5: Exception data visualization

The visualization results of the anomaly points are presented below. The horizontal axis represents the
photovoltaic system’s power output (PV_Demand, in kW), while the vertical axis represents the temperature
(in Celsius). Each point on the graph corresponds to a specific sample from the dataset, with green dots
representing standard data and red dots representing anomalies. Many anomalies are concentrated on the
far left of the graph, where PV_Demand is close to or equal to zero, suggesting system shutdowns or failures
during these periods. These anomalies primarily occur across a temperature range of approximately −10○C
to 35○C, most concentrated at medium-to-low temperatures. As PV_Demand increases beyond 20 kW,
anomalies become much less frequent, highlighting that the photovoltaic system performs reliably under
higher power generation conditions. This pattern indicates a strong relationship between anomalies, low
PV_Demand, and temperature variations, with anomalies predominantly arising during low-temperature
periods and inactive or shutdown states of the photovoltaic system.

2.5.3 Sunlab Faro PV 2017 Dataset
To further validate our proposed model’s generalization ability, we used the SunLab Faro PV 2017 dataset

obtained from EDP SunLab. This dataset primarily monitors the operational status and performance of two
solar panels, Panel A and Panel B. The dataset includes key time-series features such as voltage, current, and
power output for each panel under vertical, optimal tilt, and horizontal orientations. Additionally, it contains
temperature measurements for the panels’ surfaces in each orientation, reflecting their thermal conditions
during operation. The dataset also includes high-resolution timestamps with year, month, day, hour, and
minute, allowing detailed time-series analysis.

The dataset includes key time-series features such as voltage, current, and power output for each panel
under vertical, optimal tilt, and horizontal orientations. Additionally, it contains temperature measurements
for the panels’ surfaces in each orientation, reflecting their thermal conditions during operation. The



4602 Comput Mater Contin. 2025;82(3)

dataset also includes high-resolution timestamps with year, month, day, hour, and minute, allowing detailed
time-series analysis. The specific features are shown in Table 2.

Table 2: Description of the SunLab Faro PV 2017 dataset

Feature name Description
Year Year of the record

Month Month of the record
Day Day of the month

Hour Hour of the day (0–23)
Minute Minute of the hour (0–59)

A_Vertical-Power DC [W] Power output of Panel A (vertical orientation)
A_Optimal-Power DC [W] Power output of Panel A (optimal tilt)
B_Optimal-Power DC [W] Power output of Panel B (optimal tilt)

A_Horizontal-Power DC [W] Power output of Panel A (horizontal orientation)
B_Horizontal-Power DC [W] Power output of Panel B (horizontal orientation)
A_Vertical-Temperature [○C] Temperature of Panel A (vertical orientation)
A_Optimal-Temperature [○C] Temperature of Panel A (optimal tilt)
B_Vertical-Temperature [○C] Temperature of Panel B (vertical orientation)
A_Vertical-Voltage DC [V] Voltage of Panel A (vertical orientation)

B_Horizontal-Voltage DC [V] Voltage of Panel B (horizontal orientation)

The dataset contains 100,000 data points, corresponding to a time span of approximately
1666.67 h. Table 2 summarizes the dataset’s specific features. Fig. 6 demonstrates the relationship between
temperature, power output, and anomalies for different panels and orientations.

Figure 6: Anomaly visualization

The anomalies observed in the dataset, as shown in Fig. 6 and summarized in Table 2, are primarily
concentrated at low power outputs across all temperature ranges and panel orientations. This suggests that
the anomalies are primarily caused by system faults or shutdowns rather than environmental conditions
alone. While temperature variations influence the overall power generation, clustering anomalies near zero
power output indicate periods of panel inactivity or operational failures.
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3 Process Framework and Model Introduction
To enhance the SCADA (Supervisory et al.) system’s capability for real-time monitoring and anomaly

detection in solar power systems, we integrated the MemAAE anomaly detection model. The model takes
data from the SCADA system, such as solar irradiance, temperature, and power output, and calculates
reconstruction and prediction errors. When errors exceed dynamically set thresholds, the SCADA system
marks the data as abnormal and alerts the operator in real time, enabling prompt investigation and corrective
action. This mechanism ensures rapid intervention and prevents potential failures in solar power systems.

Fig. 7 shows the MemAAE model, an anomaly detection process based on the LSTM self-encoder. This
model is mainly used for data monitoring and anomaly detection in solar power systems.

Figure 7: Memory-augmented adversarial autoencoder for anomaly detection

First, the SCADA architecture collects the data, including sensors, PLC/RTUs, and server infrastructure,
which are cleaned and normalized during the data preprocessing phase. The preprocessed data is fed into
the MemAAE model, where the core consists of an LSTM self-encoder. The model consists of an input layer,
a hidden layer, and an output layer, and the LSTM network is responsible for learning the time-dependent
patterns of the data and reconstructing the input data.

Memory modules are introduced into the network to store and retrieve critical standard data patterns
and enhance the model’s ability to recognize abnormal data. In addition, the model includes a predic-
tion branch that generates predictions for future steps to assist in reconstruction tasks and improve the
effectiveness of anomaly detection.

The model judges the authenticity of the data by combining reconstruction error with prediction error.
The output module classifies the anomalies by dynamic threshold detection mechanism, and the results are
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divided into standard (blue) and outlier (red). The framework utilizes MemAAE’s memory mechanism and
LSTM’s time modeling capabilities to accurately capture anomaly data and improve the system’s anomaly
detection performance in complex time series environments.

3.1 Time-Series Data Preprocessing
Larger values in the vibration data expand its scale. This makes the model insensitive to subtle changes

in smaller values and may cause it to overlook important features. We need to address this issue and consider
sensor context data simultaneously. Therefore, raw data for all time dimensions must be standardized.
Standardization ensures that all features are within the same scale range, preventing features with larger
values from disproportionately affecting the model. It also helps to capture small but critical changes. This
process speeds up the model’s convergence and improves numerical stability [32].

The raw data D ∈Rn×T is a matrix consisting of n time series samples, each with a length T , representing
data collected during each sampling cycle. The first step is standardization to ensure the data is normalized
during model training, which scales all features to the same range. Eq. (1) for standardization is shown as
follows:

Xscal ed =
X − μ

σ
, (1)

where X is the raw data matrix, μ is the mean of each feature, calculated as:

μ = 1
n∑

n
i=1 Xi , (2)

where σ is the standard deviation of each feature, calculated as:

σ =
√

1
n∑

n
i (Xi − μ)2. (3)

Standardization transforms the data into a mean of 0 and a standard deviation of 1, ensuring that
different features are processed on the same scale.

Next, the sliding window technique is applied to the standardized data to segment it, enabling the
capture of temporal dependencies in the time series. The sliding window divides the data into multiple fixed-
length windows, each containing a series of time steps. The sliding window operation can be represented by:

Xw indows = {[Xi , Xi+1 , . . . , Xi+k−1] ∣i = 1, 2, . . . , n − k + 1} , (4)

where k is the size of the sliding window, i is the window’s starting index and n is the data’s total length.

3.2 Autoencoder (Encoder-Decoder)
The encoder encodes the input data using two LSTM layers. The main reason for choosing an LSTM

self-encoder over a GRU is that LSTM is better suited to handle long-term dependencies, has better memory
capabilities, and has higher modeling accuracy. LSTM’s three-door structure (input gate, forget gate, output
gate) allows it to control the flow of information more finely, especially for complex time series reconstruction
and anomaly detection tasks. While GRU calculations are more efficient, LSTM performance is more stable
and reliable when dealing with tasks requiring long sequences and high precision. Fig. 8 illustrates the
architecture of a single LSTM network.
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Figure 8: The architecture of a LSTM

3.2.1 Forget Gate
The forget gate determines how much of the previous cell state ct−1 should be retained or forgotten.

See Fig. 8 and Eq. (5):

ft = σ (Wf ⋅ [ht−1 , xt] + b f ) , (5)

c f = ct−1 × ft . (6)

The activation function of the forget gate is the sigmoid function, which guarantees that the output
vector from the gate produces continuous values ranging from 1 (retain) to 0 (discard). The subscript ‘ f ’ on
the matrix and bias in Eq. (5) denotes their association with the forget gate.

3.2.2 Input Gate
The input gate controls how much new information will be added to the cell state. The corresponding

formulas are presented below, labeled as Eqs. (7) to (9):

c̃t = tanh (Wc ⋅ [ht−1 , xt] + bc) , (7)

mt = σ (Wm ⋅ [ht−i , xt] + bm) , (8)

ct = c f + c̃t ∗mt . (9)

This gate employs two operational units. The first functional unit employs a tanh activation, producing
outputs within the range of−1 to 1, which determines the modification of the cell state c̃t . The former employs
a sigmoid activation function. It accounts for the extent of the shift mt . Upon multiplying the outputs of
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these two functional units, the input gate incorporates the result into the cell state, as delineated in Eq. (9),
finalizing the update of the cell state ct .

3.2.3 Output Gate
The output gate controls the amount of the cell’s hidden state that is disclosed. These denoted as Eqs. (10)

and (11), respectively, describe the output gate:

ot = σ (Wo [ht−1 , xt] + bo) , (10)

ht = ot ∗ tanh (ct) . (11)

To retrieve useful information from the input and the preceding output, the output gate employs a
trained matrix Wo and bias bo , as shown in Eq. (10). To forecast the subsequent output, ht . Eq. (11) uses the
above information with the recently modified cell state ct . The output is designed to recur so that it may be
used by the following iteration. This output serves as both the prediction and an input to the subsequent
layer in the case of multi-layer architectures.

The LSTM layers handle sequential data, producing a hidden state ht at each time step t as the function:

z = LSTM (xt , ht−1 , ct−1) , (12)

where z is the hidden state, and ct is the cell state of the first LSTM layer at time step t.
The workflow of a typical memory module is shown in Fig. 9.

Figure 9: Memory module structure

The memory module consists of a dense layer to compute memory vectors and attention weights using
a SoftMax function:

Mi = ReLU (Wm ht + bm) , (13)

where Mi is the Memory Slots, Wm and bm are learnable parameters, and ht is the hidden state.
The Memory Weights are calculated using a SoftMax function:

Memor y Weighti =
ex p (Mi)
∑ j ex p (M j)

. (14)



Comput Mater Contin. 2025;82(3) 4607

The Memor y Weighti are the attention weights applied to each memory vector. This formula normal-
izes the memory vectors to generate attention weights ai , where each ai represents the importance of the
corresponding memory vector Mi .

The SoftMax function ensures that the sum of the weights is 1, which helps focus on the most relevant
memory vectors while downweighing less important ones.

The memory output is computed as a weighted sum of the memory vectors:

ẑ = ∑i Memor y Weighti Mi , (15)

where ẑ is the weighted memory output. Here, ai is the attention weight applied to the memory vector Mi ,
indicating its contribution to the final memory output.

The decoder reconstructs the time series data using the weighted memory output and input:

h
′

t = LSTM1 (ẑ, h
′

t−1 , c
′

t−1) , (16)

x̂t = Dense (h
′

t) , (17)

where h
′

t is the hidden state at time step t for the first LSTM layer in the decoder. ẑ is the memory output
(from the memory module) used as input to the LSTM. h

′

t−1 and c
′

t−1 are the previous hidden and cell
states, respectively, passed from the previous time step t − 1. x̂t is the reconstructed data point at time step t,
generated by applying a dense (fully connected) layer to the hidden state h

′

t .
This part of the model reconstructs the original input sequence based on the memory representation.

The LSTM layers in the decoder take the memory output and sequentially generate hidden states h
′

t , which
are then transformed by the dense layer into reconstructed data points x̂t . This process allows the model
to recover the original input sequence from its compressed latent form, enabling tasks such as anomaly
detection by comparing the reconstructed sequence to the original one. LSTM layers ensure that the data’s
temporal dependencies are kept during reconstruction. The dense layer connects the LSTM’s hidden state to
the space it came from.

3.3 Discriminator (Adversarial Training)
The discriminator distinguishes between real and generated (reconstructed) data points. The discrimi-

nator’s output is given by:

D (x) = σ (Wd ⋅ x + bd) , (18)

where D (x) is the output probability that the input x is real, Wd ⋅ x and bd are the weights and biases, and
σ is the sigmoid function. The discriminator acts as a classifier, determining whether the input data is “real”
(from the actual dataset) or “fake” (reconstructed by the autoencoder). Outputting a probability between
0 and 1 reflects the model’s confidence about the input’s authenticity. The closer the value is to 1, the more
confident the discriminator is that the input is authentic.

The discriminator loss function measures how well the discriminator performs in distinguishing
between real and fake (generated) data. The loss is split into two parts: one for real data and one for counterfeit
data. The following are the formulas for Real Data Loss and the Fake Data Loss, respectively:

Lreal = −log (D (xreal)) , (19)
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L f ake = −log (1 − D (x f ake)) , (20)

where D (xreal) is the output probability that the discriminator assigns to the real data xreal .
The negative log-likelihood function is applied to encourage the discriminator to output a value close

to 1 for real data. If the discriminator correctly identifies real data, D (xreal) will be close to 1, making the
loss small. If it is mistaken, the loss becomes large.

D (x f ake) is the output probability that the discriminator assigns to the fake (generated) data x f ake . The
term 1 − D (x f ake) reflects the discriminator’s confidence that the input is fake. The negative log is applied
here to encourage the discriminator to output a value close to 0 for fake data. If the discriminator correctly
identifies fake data, D (x f ake) will be close to 0, resulting in a small loss. If it fails, the loss will be high.

The total discriminator loss function helps the discriminator learn to differentiate between real and
generated data by minimizing the error in both cases:

LD =
1
2
(Lreal + L f ake) . (21)

The total discriminator loss, LD is calculated as the average of the real data loss and the fake data loss.

3.4 Combined Model (Autoencoder +Discriminator)
The autoencoder and the discriminator are combined and trained adversarial to improve the model’s

performance. Eq. (22) for calculating Generator Loss is as shown:

Lreconstruc t ion =
1
T ∑

T
t=1 ∥xt − x̂t∥2 , (22)

where xt is the original input and x̂t is the reconstructed data. T is the total number of time steps, ∥xt − x̂t∥2

is the squared error between the original and reconstructed data at each time step. The reconstruction
loss minimizes the difference between the original input and the reconstructed data. The autoencoder is
encouraged to generate outputs as close as possible to the original input by minimizing this loss, preserving
important information from the input sequence.

The generator adversarial loss evaluates how effectively the autoencoder deceives the discriminator into
classifying the generated (reconstructed) data as real. Eq. (23) is as follows:

Lgenerator = − log (D (x f ake)) , (23)

where D (x f ake) is the probability assigned by the discriminator that the generated (fake) data x f ake is real.
Eq. (24) is the sum of the reconstruction loss and the generator adversarial loss:

Lcombined = Lreconstruc t ion + Lgenerator . (24)

The combined loss balances the autoencoder’s two main objectives: minimizing the difference between
the original and reconstructed data to ensure the autoencoder can accurately reproduce the input and
deceiving the discriminator into thinking that the generated data is real.

3.5 Prediction Module
The prediction module forecasts future values in the time series based on past observations. It is being

shown on Fig. 10.
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Figure 10: Prediction module

It utilizes an LSTM (Long Short-Term Memory) layer to predict the next step in the sequence. The
prediction output is represented as:

ŷT = LSTM (xin put) , (25)

where xin put represents the input time series data. ŷT is the predicted value for the future time step T . The
LSTM model captures the temporal dependencies in the input data and makes predictions for the next step
in the time series. By learning patterns from historical data, the LSTM can generate a forecast for ŷT , the
predicted value at the next time step T .

The prediction loss measures the accuracy of the model’s forecast by comparing the predicted values ŷT
with the actual values yT . Eq. (26) for prediction loss:

Lpred ic t ion =
1
T ∑

T
t−1 ∥yT − ŷT∥2 , (26)

where yT is the actual value at time step T . ŷT is the predicted value at time step T . T is the total number of
time steps. ∥yT − ŷT∥2 is the squared error between the actual and predicted values at each time step. The
prediction loss is used to quantify how close the predicted values ŷT are to the actual values yT .

The goal is to minimize this loss, encouraging the model to make more accurate predictions over
time. By reducing the squared error, the model improves its forecasting capability for future time steps in
the sequence.

3.6 Anomaly Detection Criteria
Both reconstruction and prediction errors are used to detect anomalies in the system. The idea is to

compare actual data with reconstructed and predicted values, and if these errors exceed certain thresholds,
the data points are considered abnormal. This process is shown in Fig. 11.

The reconstruction error measures how well the autoencoder can recreate the input data. It compares
the original input xt with the reconstructed data x̂t . Eq. (27) is as follows:

Ereconstruc t ion =
1
N ∑

T
t=1 ∥xt − x̂t∥2 , (27)

where xt is the original data point at time step t, x̂t is the reconstructed data point at the same time step, N
is the total number of data points, T is the number of time steps, ∥xt − x̂t∥2 is the squared error between the
actual and reconstructed data points.
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Figure 11: Sliding window-based anomaly detection process

The prediction error evaluates how well the model can forecast future values in the time series. It
compares the actual future value yT with the predicted value ŷT . The prediction from the following Eq. (28):

Epred ic t ion = ∥yT − ŷT∥2 , (28)

where yT is the actual future value at time stepT , ŷT is the predicted value at time step T , ∥yT − ŷT∥2 is the
squared error between the actual and predicted values. Dynamic thresholds are computed using the mean
and standard deviation within each partition of the errors [33]. For each partition Eq. (29):

Ti = μ (Ei) + σ (Ei) , (29)

where μ (Ei) and σ (Ei) represent the mean and standard deviation, respectively. Ti is the dynamic threshold
for the ith partition. For each data point, an anomaly is identified if its error exceeds the calculated threshold.
The decision rule Eq. (30):

ypred =
⎧⎪⎪⎨⎪⎪⎩

1 i f ei > Ti

0 i f ei ≤ Ti
, (30)

where ei is the error for a given data point. Ti is the threshold for the partition to which the data point
belongs. ypred = 1 denotes an anomaly, and ypred = 0 denotes a normal point. In the anomaly detection rule,
for each data point, an anomaly is identified if its error ei exceeds the calculated dynamic threshold Ti for
the partition it belongs to.

In this context, the rationale for selecting the 85th percentile in the dynamic threshold mechanism
is to strike a reasonable balance between false positives and false negatives. A higher percentile, such
as the 85th, effectively reduces false positives caused by environmental fluctuations or non-anomalous
conditions, thereby preventing the system from overreacting. While a higher threshold may increase the risk
of false negatives, the 85th percentile typically captures the majority of anomalies and mitigates the risk of
overly narrowing the detection range. Furthermore, the dynamic threshold mechanism adapts to real-time
environmental data, allowing the system to maintain good flexibility under varying conditions. Therefore,
selecting the 85th percentile as the threshold ensures a reduction in false positives while maintaining
sufficient sensitivity to detect significant anomalies.
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4 Results and Discussion

4.1 Metrics
We used accuracy and F1-scores to assess how well the model performs. Accuracy represents the

proportion of samples that are correctly classified. It compares this number to the total sample size. This
metric gives a straightforward and clear view of how the model performs across the whole dataset. The
formula for accuracy is shown in Eq. (31):

Accurac y = TP + TN
N

, (31)

where TP (True Positives) refers to the number of samples correctly classified as positive (anomalies), while
TN (True Negatives) represents the number of samples correctly classified as negative (normal data).

The total sample count, denoted as N , includes both positive (anomalous) and negative (normal) classes.
However, using only accuracy to assess performance is not enough for anomaly detection tasks. This is
because most data points are usually classified as normal. A model might achieve high accuracy by predicting
every sample as normal. However, this would not reflect the model’s true ability to identify anomalies. To
handle this limitation, other metrics are required to complement accuracy. The F1-score is such metric. It is
the harmonic means of Precision and Recall, providing a more complete measure of performance. This score
is especially valuable when addressing class imbalances.

In anomaly detection tasks, where class imbalance is expected, the model must identify anomalies and
minimize false positives. Therefore, while accuracy alone may lead to a misleading assessment of model
performance, the F1-score provides a more balanced and comprehensive measure of the model’s effectiveness
in detecting anomalies. The formula for Precision is given in Eq. (32):

Precision = TP
TP + FP

. (32)

The formula for Recall in Eq. (33):

Recal l = TP
TP + FN

, (33)

The formula for F1-score in Eq. (34):

F1 − score = 2 × Precision × Recal l
Precision + Recal l

, (34)

where FP (False Positives) refers to the number of negative (normal) samples that are incorrectly predicted
as positive (anomalies), while FN (False Negatives) represents the number of positive (anomalous) samples
that are incorrectly predicted as negative (normal).

4.2 Experiment Environment Settings
The autoencoder is structured with LSTM layers to capture long-term temporal dependencies effec-

tively. The encoder comprises an LSTM layer with 128 units (activation = Rectified Linear Unit (ReLU),
return_sequences = True), followed by a Dropout layer (rate = 0.2) for regularization, and a subsequent
LSTM layer with 64 units (activation = ReLU, return_sequences = False). To further enhance the model’s
ability to memorize critical patterns, a memory module is incorporated, consisting of a Dense layer with
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200 Memory Slots (activation = ReLU) and a SoftMax function to compute Memory Weights, which are
then combined via a Multiply layer. The decoder’s memory output is repeated across the temporal dimension
using a RepeatVector layer with a predefined window size. The reconstruction phase employs an LSTM
layer with 64 units (activation = ReLU, return_sequences = True), followed by a Dropout layer (rate = 0.2)
and another LSTM layer with 128 units (activation = ReLU, return_sequences = True). The final output is
generated through a TimeDistributed Dense layer to match the original input dimensions. The autoencoder
is trained using the Adam optimizer (learning rate = 0.001), with mean squared error (MSE) as the loss
function, over 50 epochs with a batch size of 64, utilizing early stopping (validation loss monitoring, patience
= five epochs) to mitigate overfitting.

The discriminator aims to differentiate between real and generated sequences, contributing to adver-
sarial training for improved reconstruction quality. Its architecture includes two LSTM layers: the first with
64 units (activation = ReLU, return_sequences = True) and the second with 32 units (activation = ReLU,
return_sequences= False). A Dense layer with 1 unit and a sigmoid activation function is employed for binary
classification. The discriminator is optimized using the Adam optimizer (learning rate = 0.001) with binary
cross-entropy as the loss function.

The prediction module is designed to forecast future values, further supporting anomaly detection
through predictive errors. The module comprises three LSTM layers with progressively decreasing units 128,
64, and 32 (all with activation = ReLU), with appropriate return_sequences settings. Two Dropout layers
(rate = 0.2) are interleaved to enhance generalization. The final output is produced using a Dense layer to
match the target dimension. The prediction module is trained using the Adam optimizer (learning rate =
0.001) with mean squared error (MSE) as the loss function for 50 epochs with a batch size of 64, incorporating
early stopping (patience = 5 epochs).

Finally, a dynamic thresholding mechanism is introduced to identify anomalies adaptively. The thresh-
old is computed as the 85th percentile of combined reconstruction and prediction errors within a sliding
window of size 50, enabling the model to adapt to evolving data distributions and detect anomalies effectively.

4.3 Visualization of Anomaly Detection Results
To illustrate the proposed model’s performance, we provide a visualization of the results on the Sopan-

Finder dataset. Specifically, Fig. 12 shows the raw, reconstructed, and predicted values for the last 300 samples
of the test dataset. In addition, two samples of anomalies were randomly selected and highlighted for
further analysis.

In Fig. 12, we observe the original values (solid blue line), reconstructed values (dashed green line), and
predicted values (dashed red line) for the test data. At the anomalous points indicated by the arrows, both the
reconstructed and predicted values deviate significantly from the original values, indicating that the model
fails to reconstruct or predict these anomalous samples effectively. This deviation increases reconstruction
and prediction errors, causing the combined error to exceed the dynamic threshold, thereby marking these
points as anomalies. For instance, the anomalous point indicated by the left arrow shows a significant
deviation between the reconstructed and original values, suggesting that the data pattern does not conform to
the standard temporal dependencies. Meanwhile, the point indicated by the right arrow exhibits a deviation
between the predicted and original values, revealing that the model fails to capture the future trend at this
point accurately.
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Figure 12: Comparison of reconstructed values. Comparison of predicted values. Comparison of original values

In most normal samples, reconstructed, predicted, and raw values are highly consistent, indicating
that the model learns, predicts, and reconstructs standard data better. In some locations, the predicted and
reconstructed values are significantly biased because the model cannot accurately predict or reconstruct
abnormal data points. These points may be anomalous data points. There are also points in the graph where
reconstruction errors are significant. Still, prediction errors are minor, and sometimes, these points are
not considered exceptions because the model determines whether the point is an outlier by referring to
both prediction and reconstruction errors. In this experiment, we also show an anomaly point visualization
matrix, as shown on Fig. 13.

The above images reveal that the feature data for specific time steps deviates significantly from the
model’s expectations. Every image shows the features’ dimensions on the horizontal axis and their data point
errors for each time step. The vertical axis in the original, reconstructed, and predicted images represents the
time step index, indicating data at a specific point in time.

The Original Image shows a subset of the input data, representing multiple features within a particular
time step. The brighter the color, the larger the value; the darker the color, the smaller the value. From the
visual pattern of the image, it can be observed that the values of some features change regularly at specific
time steps. The Reconstructed Image displays data generated by the autoencoder model, showing how the
model regenerates the original data compared to the original image. Ideally, the reconstructed image should
closely resemble the original image. The reconstructed and original images show almost the same pattern
upon visual comparison, indicating that the model captures the standard data patterns well. However, subtle
differences suggest possible anomalous regions.

Abnormal Highlights (Reconstruction) display areas with significant reconstruction errors. These are
areas where the model struggles to capture data accurately during reconstruction, possibly pointing to
anomalies. The brighter parts of the graph show regions with larger reconstruction errors. Some highlighted
columns indicate that certain time steps combined with specific features have high reconstruction errors,
which may suggest an anomaly in the data.
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The prediction image shows the predictive model results, forecasting data for future time steps. From
the image, we can observe that the predicted image pattern differs from the original data, suggesting that
there may be anomalies at specific time steps.

Figure 13: Anomaly detection heat map

We also provide partial Fig. 14 of the error generated by model anomaly detection.
We can see that the model’s two misjudgments in time steps 65–75 are mainly due to the failure to

effectively capture features with large fluctuations in the data while showing excessive sensitivity to edge
features. The fourth and fifth characteristics of the raw data showed significant high-value fluctuations during
this time interval. However, the reconstruction data was not accurately restored, resulting in dispersed
reconstruction errors that were not recognized as anomalies. In addition, the prediction module’s future
trend judgment on feature 9 is biased, resulting in a significant difference between the predicted and actual
values, leading to misjudgment. The model cannot model high fluctuation regions, and edge features (such
as features 0 and 9) become the focus of anomaly judgment. Therefore, improving the model’s reconstruction
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capabilities (such as introducing attention mechanisms) and future trend prediction capabilities, as well as
optimizing feature weight allocation, will help reduce misjudgment and improve anomaly detection accuracy.

Figure 14: Analysis of model misjudgment in reconstruction and prediction anomalies
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4.4 Comparison of MemAAE with Representative Models
This section presents a performance comparison between the proposed MemAAE model and nine

other anomaly detection models, evaluated on two real-world datasets: Sopan-Finder and Sunalab Faro PV
2017. Table 3 reports two key evaluation metrics—accuracy and F1-score—which are essential for assessing
the overall effectiveness of anomaly detection methods and the trade-off between precision and recall.

Table 3: Performance comparison between MemAAE and nine other models

Model Sopan-finder dataset Sunlab Faro PV 2017 dataset

Accuracy F1-score Accuracy F1-score
Random Forest 0.8142 0.4036 0.9096 0.7014
One-Class SVM 0.8176 0.3485 0.8265 0.5867

LOF 0.8161 0.3370 0.8177 0.4759
K-Means 0.8221 0.1515 0.3712 0.2924

AE 0.8023 0.2688 0.8339 0.4491
GRU 0.8432 0.3221 0.9162 0.8311
VAE 0.8098 0.3141 0.8427 0.3889

Isolation Forest 0.8338 0.5312 0.8188 0.3181
Z-Score 0.8186 0.2453 0.8166 0.3709

MemAAE 0.9917 0.9579 0.9767 0.9327

The results in Table 3 demonstrate that the MemAAE model performs exceptionally well on both
datasets, significantly outperforming all comparative models. On the Sopan-Finder dataset, MemAAE
achieves an accuracy of 99.17% and an F1-score of 95.79%, while on the Sunalab Faro PV 2017 dataset, it
achieves an accuracy of 97.67% and an F1-score of 93.27%. In contrast, other models, such as Random Forest,
GRU, and Isolation Forest, show relatively strong performance but remain slightly inferior to MemAAE
overall. Furthermore, traditional methods like K-Means and One-Class SVM exhibit poorer F1-scores,
underscoring their limitations in handling anomaly detection tasks.

The ROC results in Fig. 15 demonstrate that the MemAAE model achieves exceptional performance on
both datasets. In the Sopan-Finder dataset, MemAAE achieves an AUC (Area Under the ROC Curve) of
0.97, showcasing its excellent ability to distinguish anomalies. Similarly, in the Sunalab Faro PV 2017 dataset,
MemAAE achieves an AUC of 0.93, further validating its robustness and effectiveness in anomaly detection
tasks. These results highlight the model’s capability to maintain a high true positive rate while minimizing
the false positive rate.

Combining Table 3 and Fig. 15, we observe that the MemAAE model effectively addresses the key
limitations of traditional methods by integrating reconstruction error, prediction error, and a dynamic
thresholding mechanism, demonstrating exceptional performance in time series anomaly detection. The
model leverages an LSTM-based autoencoder to capture temporal dependencies, ensuring low reconstruc-
tion errors for standard data, while the prediction module forecasts future trends to identify deviations
effectively. A memory module with 200 slots and SoftMax-based weighting enhances the model’s ability to
focus on critical patterns, improving its capacity to distinguish anomalies from standard data, something
conventional LSTM and GRU models struggle to achieve. Furthermore, based on the 85th percentile of
combined errors within a sliding window, the dynamic thresholding mechanism allows the model to adapt to
local data fluctuations, enhancing its sensitivity to diverse anomaly patterns while reducing false detections
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caused by static thresholds. Robustness to complex fluctuations and edge features is further strengthened
through adversarial training, enabling the model to maintain stability where traditional methods such as K-
Means and Z-Score fail. Experimental results validate the effectiveness of MemAAE: it achieves an accuracy
of 99.17% and an F1-score of 95.79% (AUC = 0.97) on the Sopan-Finder dataset and an accuracy of 97.67%
with an F1-score of 93.27% (AUC = 0.93) on the Sunalab Faro PV 2017 dataset. These findings confirm
that MemAAE achieves a higher actual positive rate (TPR) while minimizing the false positive rate (FPR),
demonstrating its robustness and adaptability to dynamic and complex time series anomaly detection tasks.

Figure 15: Comparison of roc curves for different models. (a) ROC curves of all models on the SoPan-Finder dataset.
(b) ROC curves of all models on the Sunlab Faro PV 2017 dataset

We visualized the test results of all models on the Sopan-Finder Dataset. Each subplot illustrates the
detected expected points (green) and anomalies (red) for a specific model and compares them with the actual
label distribution (top-left) for reference, as shown in Fig. 16.

Fig. 16 shows the relationship between temperature (○C) and PV_Demand (kW), where the outlier (red)
is concentrated near zero and distributed over different temperature ranges, indicating significant anomalies
in system behavior when PV_Demand is low. Our MemAAE model (LSTM-based self-encoder) can
accurately identify the complex relationship between temperature fluctuations and PV_Demand anomalies
by introducing memory modules to store normal data patterns efficiently. In addition, MemAAE combines
reconstruction error with prediction error so that it has strong robustness and detection accuracy even when
the data distribution is uneven.

MemAAE performs the best, with anomaly points being highly consistent with the real labels and
demonstrating strong anomaly detection capabilities. We also present the confusion matrices of multiple
models in anomaly detection tasks. The vertical axis of each confusion matrix represents the true labels, while
the horizontal axis represents the model’s predicted results. By observing the performance of each model,
it is possible to compare their effectiveness in detecting normal points (TN) and abnormal points (TP), as
shown in Fig. 17.
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Figure 16: (Continued)
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Figure 16: Visual comparison of anomaly distribution

True Negative (TN): The actual normal sample, and the model predicts the normal sample. False Positive
(FP): Actual normal sample, but model error prediction as exceptional sample (false positives). False Negative
(FN): Actual exception sample, but model error prediction is normal sample (missing report). True Positive
(TP): The actual exception sample and the model correctly predicts the exception sample.

Based on the analysis of the confusion matrices, we can see that MemAAE model has excellent
performance and high accuracy and recall rate, indicating that the model’s overall performance is stable when
detecting abnormalities. Although the false positives rate is low, some exceptions (42) are missing, and in
sensitive application scenarios, the omission can be reduced by adjusting the model’s threshold.
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Figure 17: Confusion matrix comparison
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4.5 Applicability Experiments for the Proposed Module
We compared the complete MemAAE model with versions that excluded either the memory or

prediction modules. When both modules are removed, the MemAAE model reverts to a standard
LSTM autoencoder.

According to Table 4, memory modules significantly enhance the model’s accuracy, recall, and F1-score.
Without these modules, the model’s ability to classify anomalies drops considerably, suggesting that memory
modules are essential for interpreting historical data and supporting accurate anomaly detection.

Table 4: Performance comparison of MemAAE variants

Model Sopan-finder dataset Sunlab Faro PV 2017 dataset

Accuracy F1-score Accuracy F1-score
MemAAE-non memory 0.7537 0.5338 0.7924 0.5361

MemAAE-non prediction 0.8677 0.6718 0.8236 0.6375
MemAAE-non(prediction and memory) 0.7530 0.4614 0.7842 0.4251

MemAAE 0.9917 0.9579 0.9779 0.9327

The prediction module also plays a crucial role by allowing the model to forecast future values in the
latent space and compare them to observed values. This approach enhances the model’s focus on current
data while utilizing predictive insights for more thorough anomaly detection. The experiments confirm that
removing either module alone results in a marked decline in the model’s performance, underscoring the
importance of both memory and prediction modules. Consequently, maintaining both modules is crucial
for effective, reliable, and accurate anomaly detection.

4.6 Memory Size
Memory modules are essential for the MemAAE model’s learning and anomaly detection capabilities.

They allow the model to capture and retain critical information in steps of time. By adjusting the memory
size, we can directly control the model’s ability to store and process information.

Naturally, different memory sizes also directly affect the model’s accuracy and overall performance in
anomaly detection. To understand the impact of varying memory sizes on the model’s anomaly detection
capabilities, we compare the effectiveness of different memory sizes in anomaly detection, as detailed
in Fig. 18.

Fig. 18 illustrates the impact of varying memory sizes on the F1-score and accuracy of the MemAAE
model across two datasets. Performance exhibits fluctuations as memory size changes in the Sopan-Finder
dataset (a) and the Sunalab Faro PV 2017 dataset (b). The optimal performance is achieved at a memory
size of 200, with both accuracy and F1-score peak, indicating the model’s ability to capture critical patterns
effectively. Beyond this point, a slight decline in performance is observed, suggesting that substantial memory
sizes may introduce redundancy or overfitting. These findings underscore the importance of selecting an
appropriate memory size to balance model capacity and performance.
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Figure 18: The impact of different memory sizes. (a) Comparison across memory sizes on the Sopan-Finder dataset.
(b) Comparison across memory sizes on the Sunalab Faro PV 2017 dataset

4.7 Weighting Factor
Fig. 19 illustrates the effect of varying weighting factors on the accuracy and F1-score of the MemAAE

model. Across both datasets, performance improves as the weighting factor increases, reaching its peak at 0.7.
Beyond this point, a slight decline is observed, suggesting that 0.7 represents the optimal balance between
reconstruction and prediction errors. This optimal weighting factor ensures the highest accuracy and F1-
score, underscoring the critical importance of balancing these two error components to achieve optimal
anomaly detection performance.

Figure 19: Comparison of weighted effect graphs for different reconstruction and prediction errors. (a) Performance
metrics vs. weighting factor on the Sopan-Finder dataset. (b) Performance metrics vs. weighting factor on the Sunalab
Faro PV 2017 dataset

4.8 Statistical Significance Analysis of MemAAE Performance
Fig. 20 illustrates the statistical significance analysis of the MemAAE model’s performance across the

Sopan-Finder and Sunalab Faro PV 2017 datasets. The t-statistic values (blue bars) indicate significant
deviations, while the—log10 (p-values) (red dashed lines) confirm the statistical significance of the results.
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Notably, the lower p-values, particularly in the Sopan-Finder dataset, provide strong evidence of the
robustness and reliability of the MemAAE model’s performance in anomaly detection tasks.

Figure 20: Comparison of t-statistic and p-values

4.9 Confidence Experiments and Confidence Intervals
In the confidence experiment, the Sopan-Finder and Sunlab Faro PV 2017 datasets were randomly

selected 2000 times from the test set to evaluate the AUC, Accuracy, and F1-score distributions and
corresponding 2.5% and 97.5% percentiles. As shown on Fig. 21.

The results showed that the model performed better on the Sopan-Finder dataset than on the Sunlab
Faro PV 2017 dataset, with AUC, Accuracy, and F1-score more concentrated and higher values: AUC was
mainly distributed from 0.965 to 0.975, and F1-score from 0.920 to 0.940. By comparison, on the Sunlab
Faro PV 2017 dataset, the AUC and Accuracy range from 0.930 to 0.940, and the F1-score ranges from 0.930
to 0.945. Overall, the confidence intervals on both data sets are narrow, indicating stable performance and
reliable results. At the same time, the model’s performance on different data sets verifies its stability and
generalization ability, supporting the reliable evaluation of model performance.
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Figure 21: Confidence experiment performance metric distributions across different datasets. (a) Confidence experi-
ment on the Sopan-Finder dataset. (b) Confidence experiment on the Sunalab Faro PV 2017 dataset

5 Future Work
Future work will focus on further optimizing the performance and practical application of the MemAAE

model to address current challenges related to computational overhead, lack of generalization, and real-
time deployment. Firstly, the computational complexity of memory modules and adversarial training will be
reduced through model pruning and quantization techniques, which will improve the efficiency of the model
in real-time environments. Secondly, the validation of extended models on multiple datasets, especially
tests under different climatic conditions, geographical regions, and with larger datasets, will enhance the
generalization and scalability of the models.

Additionally, to further enhance model robustness, advanced attention mechanisms and multi-variable
memory modules will be integrated. These techniques will help reduce the impact of large data fluctuations by
focusing on the most relevant features in the time series data, improving the model’s ability to capture long-
range dependencies and mitigate noise. By applying attention mechanisms, the model can better allocate its
focus to critical anomalies, while a multi-variable memory module can help preserve important contextual
information across different variables, making the system more resilient to data volatility.

At the same time, future research will drive the practical deployment and integration of models,
combining SCADA systems and existing VPP management platforms for field testing to assess their stability
and performance in industrial environments. Furthermore, the interpretability of the model will be a
key focus, making detection results more transparent through visualization tools and feature importance
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analysis, which will aid in the construction of decision support systems. Finally, more advanced deep learning
methods such as Variational Autoencoders (VAE), Graph Neural Networks (GNN), and Transformer models
will be explored further to improve anomaly detection in complex time series data.

6 Conclusions
This paper presents a hybrid memory-enhanced adversarial autoencoder (MemAAE) model for virtual

power plant (VPP) anomaly detection by combining an LSTM self-encoder, memory module, adversarial
training, and prediction module. The MemAAE model improves the detection capability of complex
anomalies by combining reconstruction error and prediction error. The dynamic threshold mechanism is
based on the 85-quadrant adaptive adjustment of the sliding window. In addition, the memory module
captures critical normal patterns through 200 memory slots and SoftMax weighting mechanisms, improving
the model’s ability to distinguish between normal and abnormal data.

Experimental results show that MemAAE performs well on both real-world solar power datasets. On
the Sopan-Finder dataset, MemAAE achieved 99.17% accuracy, an F1-score of 95.79%, and an AUC of 0.97.
On the Sunalab Faro PV 2017 dataset, MemAAE achieved 97.67%, an F1-score of 93.27%, and an AUC of 0.93.
These results demonstrate MemAAE’s effectiveness and robustness in time-series anomaly detection tasks
while outperforming various benchmark models, including Random Forest, GRU, and Isolation Forest.

Further experiments and visualizations reveal the effect of different memory sizes and weighting
factors on model performance. The model’s performance is optimal when the memory size is 200, and the
reconstruction error is 0.7. This reflects MemAAE’s ability to balance reconstruction errors with prediction
errors and the effectiveness of memory modules in capturing key features.

However, there are certain limitations to consider. The memory module introduces additional com-
putational overhead, which could affect real-time deployment, particularly in large-scale VPP systems. The
memory size, while critical to model performance, can lead to overfitting when excessively large, especially
in datasets with a high anomaly rate, where the model might excessively memorize normal data patterns.
Additionally, the dynamic nature of real-time anomaly detection might be impacted by these factors,
potentially limiting the model’s practical application in highly volatile environments.

The dataset and code for this experiment are available on GitHub: https://github.com/kikigo201012/
Solar-Time-Series-Anomaly-Detection-Codes-and-Datasets-Based-on-MemAAE-Model (accessed on 15
December 2024).
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Nomenclature
μ Mean of the feature values
σ The standard deviation of the feature values
MSE Mean squared error
AUC The area under the ROC curve
TP True positives
FP False positives
FN False negatives
TN True negatives
F1 F1-score, the harmonic means of precision and recall.
ŷ Predicted value
y Actual value
Ti Dynamic threshold
ei Error for a given data point
Wd Weights of the discriminator
Lreal Real data loss
Lfake Fake data loss
W0 Weights of the output gate
b0 Bias of the output gate
ot Output from the output gate
ht Hidden state at time step
cf Cell state after forget gate control
Wf Weights of the forget gate
bf Bias of the forget gate
ypred Predicted outcome
PV_Demand Photovoltaic power demand
temp Temperature

Table of Mathematical Variables and Notations
Symbol/Abbreviation Description
X Raw data matrix
μ Mean of the feature values
σ The standard deviation of each feature
Xscal ed Standardized data matrix
k Size of the sliding window
i Starting index of the window
ht Hidden state at time stept
ct Cell state at the time step t
ft Activation value of the forget gate
ĉt Candidate cell state in the input gate
mt Activation value of the input gate
ot Activation value of the output gate
x̂t Reconstructed data point
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z Hidden state output by the LSTM
Mi Memory slot i
Memor yWeighti Attention weight for memory vector i
ẑ Weighted memory module output
D(x) Discriminator output probability
Lreconstruc t ion Reconstruction loss function
Lgenerator Generator adversarial loss
Lcombined Combined loss function
ŷT Predicted value at time step T
yT Actual value at time step T
Ereconstrut ion Reconstruction error
Epred ic t ion Prediction error
Ti Dynamic threshold for partitioni
ypred Predicted anomaly label
ei Error for data point i
TP True Positives (correctly classified anomalies)
TN True Positives (correctly classified anomalies)
FP False Positives (incorrectly classified normal points)
FN False Negatives (incorrectly classified anomalies)
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