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ABSTRACT: Speech-face association aims to achieve identity matching between facial images and voice segments

by aligning cross-modal features. Existing research primarily focuses on learning shared-space representations and

computing one-to-one similarities between cross-modal sample pairs to establish their correlation. However, these

approaches do not fully account for intra-class variations between the modalities or the many-to-many relationships

among cross-modal samples, which are crucial for robust associationmodeling. To address these challenges, we propose

a novel framework that leverages global information to align voice and face embeddings while e�ectively correlating

identity information embedded in both modalities. First, we jointly pre-train face recognition and speaker recognition

networks to encode discriminative features from facial images and voice segments.�is shared pre-training step ensures

the extraction of complementary identity information across modalities. Subsequently, we introduce a cross-modal

simplex center loss, which aligns samples with identity centers located at the vertices of a regular simplex inscribed on a

hypersphere.�is design enforces an equidistant and balanced distribution of identity embeddings, reducing intra-class

variations. Furthermore, we employ an improved triplet center loss that emphasizes hard sample mining and optimizes

inter-class separability, enhancing the model’s ability to generalize across challenging scenarios. Extensive experiments

validate the e�ectiveness of our framework, demonstrating superior performance across various speech-face association

tasks, including matching, veri�cation, and retrieval. Notably, in the challenging gender-constrained matching task,

our method achieves a remarkable accuracy of 79.22%, signi�cantly outperforming existing approaches. �ese results

highlight the potential of the proposed framework to advance the state of the art in cross-modal identity association.
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1 Introduction

Speech data not only includes physical attributes such as pitch, intensity, duration, and timbre but is

also closely tied to the physiological characteristics of the vocal apparatus. In contrast, facial data provides

abundant structural and visual information. �e latent features in both speech and facial data can re�ect

attributes such as gender, ethnicity, and age [1,2]. Capturing these latent features has enabled remarkable

advancements in face recognition and speaker identi�cation, and these features similarly contribute to

cross-modal matching and retrieval tasks. Previous studies have identi�ed a correlation between voice and

facial characteristics [3], vocal features such as intonation, timbre, and rhythm can re�ect a speaker’s vocal

anatomy, geographic background, and race, which are closely tied to facial features, enabling individuals to

form cognitive impressions of facial appearance even without visual cues. Recent neurological research has

further con�rmed that humans have the innate ability to match faces with voices they hear [4]. With the

growing in�uence of arti�cial intelligence, researchers have begun employing deep learning algorithms to

automate the correlation between these twomodalities [5–8].�is technology has wide-ranging applications
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in areas such as criminal investigation, video conferencing, and entertainment, where information from one

modality can be used to synchronize with the other in real-time, enhancing both system intelligence and the

interactive experience.

�e currently prevalent approach employs a two-stream network architecture (as illustrated in Fig. 1),

where encoders are �rst established for both face and voice modalities to directly map them into a common

feature space. Next, loss functions such as cross-entropy or mean squared error are applied to maximize

inter-class di�erences in the label space of the samples. Finally, a cross-modal matching objective function

is designed to align images and voices within the joint embedding space. �ese methods typically utilize

contrastive loss [5], N-pair loss [7] and triplet loss [8] as objective functions. Under supervised conditions,

triplet loss has demonstrated superior stability and performance in enhancing feature discriminability,

outperforming methods based on contrastive loss and N-pair loss [9].

Figure 1: Two-stream framework for speech-face cross-modal association

However, a signi�cant semantic gap exists between di�erent modalities. Speci�cally, facial images for

each identity display diverse poses, lighting conditions, and styles, while speech varies greatly in content

and emotion. �ese di�erences result in substantial distributional discrepancies between facial and speech

features when mapped to the latent space, leading to two key issues: (a) First, prior studies o�en align

facial and speech features directly in the latent space without incorporating a global cross-modal interaction

process. �is omission can result in pronounced intra-modal gaps, limiting the ability to e�ectively model

correlations between the two modalities. (b) Second, most methods compute similarity loss only for cross-

modal sample pairs, relying on one-to-one distance quanti�cation at the model’s output. �is approach

overlooks the complex many-to-many relationships between speech segments and facial images, hindering

the full exploration of potential connections across modalities.

To address the aforementioned challenges, this paper proposes a speech-face association learning

method based on cross-modal simplex center loss. Unlike traditional center loss methods, we select identity

centers from the vertices of a regular simplex inscribed within a hypersphere instead of relying on learnable

parameters. �is approach ensures that the identity centers have equal Euclidean and cosine distances,

facilitating the optimization of inter-class relationships and improving the stability and performance of

the model. However, due to the involvement of both speech and face modalities, directly minimizing the

distances between the features of these two modalities and their respective class centers may lead to poor

generalization. To overcome this limitation, we introduce a cross-modal projection mechanism during
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center alignment to promote intra-class consistency across modalities. Additionally, to enhance the model’s

ability to distinguish challenging samples, we incorporate an improved triplet center loss.�is loss function

e�ectively identi�es hard negative samples within the dataset, enabling the model to di�erentiate between

samples belonging to di�erent identities that appear similar in the feature space.�is further strengthens the

understanding of the relationships between speech and facial features.�e experimental results demonstrate

that our proposed method outperforms recent speech-face association approaches.

�e primary contributions of this work can be summarized as follows:

• We propose a novel cross-modal simplex center loss, which is easier to optimize and enhances inter-

class relationships while providing improved stability compared to traditional center loss methods.

• We introduce a new framework for cross-modal retrieval tasks that combines joint pretraining, cross-

modal simplex center loss, and an improved triplet center loss,making it extensible to various supervised

cross-modal retrieval tasks.

• We validate the e�ectiveness of the proposed method through experiments on speech-face cross-modal

matching, veri�cation, and retrieval tasks under di�erent settings.

2 RelatedWork

In this section, we �rst introduce the task details and common solutions for cross-modal retrieval.

Next, we analyze the existing methods for speech-face cross-modal association learning and identify their

limitations. Based on these analyses, we propose our improvements to address these shortcomings.

2.1 Cross-Modal Retrieval

Cross-modal learning facilitates the transfer of information between data from di�erent sensory

modalities, such as images, speech, and text.�is approach explores the correspondence between samples by

leveraging the correlation or complementarity among di�erent modalities and has widespread applications

in �elds such as transformation, generation, and retrieval [10–12]. Among these applications, cross-modal

retrieval methods primarily consist of two stages: feature extraction and feature alignment [13].

In the feature extraction stage, there are primarily two approaches.�e �rst approach involves encoding

eachmodality independently by designing separate encoders tailored to the characteristics of eachmodality.

Recent methods utilize pre-training on large-scale datasets to extract deep semantic information from

di�erent modalities [14–16]. Additionally, some approaches adapt the encoding architecture based on the

characteristics of the modality data, employing LSTM, Transformer, or other architectures for encoding

sequential data such as video, speech, and text, while using convolutional neural networks for image

encoding [17]. In contrast, the second approach adopts interactive learningmethods. To leverage inter-modal

correlation information during encoding, You et al. [18] proposed an improvedCLIPwith parameter-sharing

encoders across di�erent modalities, where certain modules or layers of the model are modality-shared,

thus narrowing the semantic similarity gap between modalities. Jiang et al. [19] constructed a multi-modal

interactive encoder that employs self-attention and cross-attention mechanisms to establish associations

between vision and text.

�e feature alignment stage primarily encompasses two approaches. �e �rst approach is joint embed-

ding space learning,where cross-modal data are projected into a shared latent space for direct comparison. To

address the di�erences betweenmodalities, Zhang and Lu [20] employ a cross-modal projectionmethod that

classi�es the vector projections of representations from one modality to another during feature alignment,

thereby enhancing the compactness of features for each category. Peng and Qi [21] introduce adversarial

training to eliminate di�erences between modalities, generating modality-invariant features within the
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common space.�e second approach is pairwise similarity learning, which focuses on developing a similarity

function that ensures the similarity of cross-modal sample pairs with the same label is greater than that of

negative pairs. Many cross-modal retrieval studies optimize the networkmodel bymaximizing the similarity

of cross-modal sample pairs [17,19,22]. Unlike works that only consider matched pairs, Yan et al. [23]

separately learn single-modal and cross-modal proxies during the feature encoding process, e�ectively

capturing cross-modal similarities between samples. Liu et al. [24] adopt vector quantization methods to

learn shared discrete embeddings for cross-modal samples with the same label in the latent space. Jing

et al. [25] extend center loss into a cross-modal version, learning center vectors for each category in the joint

latent space and minimizing the distance between data, such as 2D images, 3D point clouds, and meshes,

and their corresponding category center vectors.

In audio-visual cross-modal retrieval tasks, Surís et al. [26] employ a two-stream network with stacked

fully connected layers. �e network maps videos and audio to a joint embedding space, achieving audio-

visual retrieval by optimizing the Euclidean distance and cosine similarity between video-audio cross-modal

samples. Gabeur et al. [27] introduce a pre-trainingmethod to learn video representations, alternating the use

of RGB, audio, and transcribed speech as supervision during training. Unlike the aforementioned methods

that consider only pairwise similarity, Hao et al. [28] develop a common attention module to interactively

process video and audio inputs, thereby better uncovering the semantic relationships between them. Yuan

et al. [29] �rst perform cross-modal fusion on the raw data and then adopt an Attention-Fuse-then-Separate

strategy to implicitly capture cross-modal dependencies and common representations. �e development of

these studies highlights the potential for machines to associate visual events with sound signals. �is paper

aims to explore the more speci�c task of face-speech biometric matching.

2.2 Speech-Face Association

Unlike most previous audio-visual cross-modal retrieval tasks, speech-face association primarily

focuses on identity for feature alignment. It aims to investigate whether potential attributes—such as gender,

age, race, pronunciation structure, and language habits—contained in faces and voices correspond to one

another. Kim et al. [8] have experimentally demonstrated that humans canmatch unfamiliar voices and faces

with an accuracy exceeding chance, indicating that automatic association through deep neural networks

holds great potential. Current research treats the matching problem as a binary classi�cation task [6], where

samples from one modality serve as queries to predict positive cases with the same identity in the other

modality. Nagrani et al. [5] integrate cross-modal veri�cation and retrieval into the speech-face association

task, establishing it as the mainstream evaluation standard for this �eld. Most studies map speech and face

features to the same dimensional latent space using two-stream networks, followed by deep metric learning

methods for feature alignment, such as contrastive loss, N-pair loss and triplet loss. In supervised cross-

modal learning, Nawaz et al. [30] and Wen et al. [31] have shown that optimizing feature discriminability

with a modality-shared ID classi�er can implicitly achieve modality alignment. Inspired by existing cross-

modal retrieval methods, Wen et al. [32] introduce common variables of speech and face modalities, such as

gender and age information, as supervision to establish a connection between voice and face. Zheng et al. [33]

propose a modality discriminator-based method that reduces the discrepancy between the two modalities

in the latent space through adversarial learning.

Although existing methods have attempted to address the heterogeneity between modalities from

various perspectives, such as employing extensive manual annotations or designing complex encoding

networks, they o�en face challenges in fully leveraging global cross-modal interactions and addressing the

intricate many-to-many relationships inherent in cross-modal data. In this work, we propose a joint pre-

training strategy that leverages identity supervision, aligning shared identity features during the feature
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encoding stage to bridge modality di�erences. Unlike traditional similarity functions, our proposed cross-

modal simplex center loss not only captures the many-to-many relationships between speech segments and

facial images but also learns highly discriminative representations, thereby improving cross-modalmatching

and retrieval performance.

3 Methods

Our goal is to align the modality-independent identity information contained in voice segments and

facial images, thereby enabling a range of tasks, including face-speech/speech-face matching, veri�cation,

and retrieval. �e framework of the proposed method is illustrated in Fig. 2. First, for feature extraction,

we jointly pre-train face recognition and speaker recognition networks as encoders for images and voice

segments. A�er extracting face and speech embeddings, we introduce a new alignment strategy based on

cross-modal simplex center loss in Section 3.2 (Fig. 2b). �is strategy encourages face and speech features

to align in a many-to-many manner according to identity by minimizing the distance between the mutual

projections of the two modalities and the identity center vectors corresponding to the vertices of the regular

simplex. To address the common issue of similar samples that do not belong to the same identity in large-

scale face and speech open sets, we present cross-modal triplet center loss in Section 3.3 (Fig. 2c), which

mines hard negative samples in the mini-batch as an e�ective supplement to center alignment.

Figure 2: Proposed speech-face association framework based on cross-modal simplex center learning

3.1 Joint Pre-Training

Previous work has demonstrated that identity classi�cation in a single modality facilitates cross-modal

associations between speech and facial images. Based on this �nding, this work utilizes identity as supervi-

sory information to jointly pre-train face recognition and speaker recognition tasks on the training set. �e

pre-trained networks are then used to extract feature embeddings for facial images and speech segments,

which are subsequently aligned through further feature alignment learning. To validate the e�ectiveness of

the proposed joint pre-training strategy, all experiments are conducted using baseline networks.

For face recognition, we utilize VGG-Face [34], which accepts 112 × 112 × 3 RGB facial images as input.

Data augmentation strategies, including random rotation and random cropping, are employed during pre-

training. Two stacked fully connected layers are added at the end of the network, mapping the output

dimensions to a 128-dimensional speech-face common space as the face image representation. For speaker
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recognition, we employ VGGish [35]. Each voice segment is �rst divided into non-overlapping 960 ms

frames, fromwhich one frame is randomly selected for Short-Time Fourier Transform (STFT), resulting in a

96 × 64 Log Mel Spectrogram. During the extraction of Log Mel Spectrogram features, the window size and

hop size of the STFT are set to 0.025 and 0.010 s, respectively.�e 96 × 64 LogMel Spectrogram is then input

into VGGish.�e data augmentation strategy for audio primarily involves random cropping along the audio

time axis. �e output remains consistent with that of the face recognition task, yielding a 128-dimensional

representation for speech.

During the pretraining process, this work employs a shared-parameter classi�er to jointly train the

two modalities. We de�ne the training data as D = {( f i , v i , y i)}
N
i=1, where f i represents the facial image

embedding generated by the face recognition network belonging to identity y i , and v i denotes the voice

segment embedding of identity y i . �e weight matrix of the classi�er is represented as W = [ω1 ,ω2 , ⋅ ⋅

⋅⋅,ωN] ∈ RD×N , whereN andD represent the number of identities and feature dimensions, respectively.Given

the strong performance of norm-so�max in classi�cation tasks [20], the weight matrix is normalized. �e

learning objective for the pre-training phase is de�ned as follows:

LID = −
1

N
∑N

i=1
log

exp (ωT
y i
f i)

∑M
j=1 exp (ωT

j f i) −
1

N
∑N

i=1
log

exp (ωT
y i
v i)

∑M
j=1 exp (ωT

j v i) s.t. ∥w j∥ = r (1)

where f i and v i represent the face features and speech features corresponding to identity y i , respectively.�e

losses from both modalities are calculated and jointly backpropagated to update the network parameters.

Track the loss LID during the training process to ensure it gradually decreases and stabilizes.

�is method integrates identity supervision into joint training to achieve uni�ed representations, pro-

viding an e�ective solution for cross-modal tasks. Furthermore, it establishes a scalable foundation for other

applications, such as emotion analysis and multimodal recognition. Subsequently, the pre-trained network

is utilized to encode facial images and speech segments, facilitating the development of a cross-modal

alignment module for these features.

3.2 Cross-Modal Simplex Center Loss

Most existing methods primarily align face and speech features by optimizing the distance between

sample pairs. In contrast, we introduce a cross-modal center loss to model the many-to-many relationship

between speech and face, leveraging global information to learn andminimize the distance between samples

and their corresponding class centers.

Given N classes andM modalities of feature embeddings {emi }Ni=1 (wherem ∈ [1,M]), the single-modal

center loss [36] is directly extended, leading to the formulation of the cross-modal center loss [21] as shown

in Eq. (2):

Lc =
1

2
∑N

i=1∑M

m=1
∥emi − Cy i∥22 (2)

where Cy i ∈ R
D represents the center of identity y i in the semantic space, where D is the feature dimension.

However, this cross-modal loss still relies on the so�max loss function and its variants to learn the spacing

between di�erent classes. Furthermore, the data distributions across di�erent modalities exhibit signi�cant

di�erences, and aligning centers without cross-modal interaction inevitably hampers the generalization

performance of the model.

To this end, we introduce a simplex classi�er [37–39] to enhance the cross-modal center loss. Studies

have shown that high-dimensional data tends to distribute near the outer surface of a hypersphere, and as the
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dimensionality increases, the data points converge toward the vertices of a regular simplex inscribed within

the hypersphere [40]. We leverage the vertices of a regular simplex inscribed in the hypersphere as identity

centers, driving the alignment of face and speech embeddings around their corresponding identity centers.

When the feature dimension D is greater than or equal to the number of categories minus one (D ≥ N − 1),
a regular N-simplex can be constructed circumscribed about the hypersphere. Assuming the radius of the

hypersphere is 1, the vertices of the regular simplex are de�ned as:

C i = { (N − 1)− 1
2 1, i = 1

κ1 + ηe i−1 , 2 ≤ i ≤ N
(3)

where

κ = −
1 +
√
N(N − 1 3
2 ) , η =

√
N

N − 1
(4)

Here, 1 denotes a vector of all ones, and e i represents the natural basis vector with a 1 in the i-th position

and 0 s elsewhere.

�e radius r of the hypersphere can serve as a scaling parameter in the optimization objective and should

be set to an appropriate value greater than 1 in high-dimensional spaces. Speci�cally, for the speech-face

association task, the identity centers to be learned are de�ned as follows:

C i = rx i , i = 1, . . . ,N (5)

Here, x i represents the vertices of a regular N-simplex circumscribed about a unit hypersphere.

According to the properties of a regular simplex, the distances between vertices are equal and remain

invariant under rotation or translation. By learning to align embeddings from di�erent modalities with their

respective identity centers, the model simultaneously optimizes inter-class distances in both Euclidean space

and angular space.

Considering the distribution di�erences between face and speech modal embeddings in the latent

space, we employ a cross-modal projection mechanism during the alignment process of the simplex centers.

�is mechanism projects the feature vector of one modality onto the direction of the feature vector of the

other modality. Subsequently, using the vertices of the regular N-simplex as identity centers, we perform

center alignment on these cross-modal projection vectors. �e �nal model optimizes the many-to-many

relationship between speech and face features in the common identity space using Eq. (6):

Lc =
1

N
∑N

i=1
∥ f̂ i − Cy i∥22 + 1

N
∑N

i=1
∥v̂ i − Cy i∥22 (6)

where f̂ i represents the vector projection of the face feature f i onto the normalized speech feature v i , while

v̂ i denotes the vector projection of the speech feature v i onto the normalized face feature f i . As illustrated

in Fig. 2b, opposite directions of the two vectors will result in negative scalar projections, which justi�es the

multiplication by the two normalized features in the formula.

f̂ i = f i
T
v i ⋅ v i , v̂ i = v i

T f i ⋅ f i (7)

Here, v = v
∥v∥

and f =
f

∥ f ∥
. As the direction of the face and speech feature vectors becomes more similar,

the scalar of the projection vector increases.�is process is consistent with the alignment of simplex centers,

optimizing both Euclidean space and angular space distances simultaneously. �is cross-modal projection
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operation, which focuses on speech and face embeddings, aims to enhance the correlation between di�erent

modalities. It mitigates the signi�cant di�erences in direction and amplitude between the two modalities

in the shared space, thereby accelerating the central alignment process. By optimizing the distance between

the cross-modal projections and the centers, it ensures that features from di�erent modalities are e�ectively

aligned, improving retrieval accuracy.

Compared to the original cross-modal center loss, the proposed cross-modal simplex center loss

provides more robust centers and takes into account the interactions between modalities, enhancing

intra-class compactness while maximizing inter-class distances.

3.3 Triplet Center Loss

In the task of speech-face association, it is essential not only to align features based on identity categories

but also to learn discriminative features between speech and facial samples from di�erent identities.

Intuitively, large-scale face and speech datasets o�en contain hard negative samples, such as individuals with

similar facial appearances but distinct voices, and vice versa. To handle these challenging cases, inspired by

the triplet loss [41,42], we construct triplets consisting of a query, a positive sample, and a hard negative

sample during model training.�is approach enhances the model’s ability to distinguish between samples of

visually or audibly similar individuals.

In this framework, the identity center Cy i mentioned in Section 3.2 is set as the query. During model

training, each mini-batch contains N identities, with each identity represented by a pair of positive speech-

face samples, while samples from di�erent identities act as negatives for one another. �e local relationships

between sample pairs are optimized using the following loss function:

Ld is =∑N

i=1
[m+ < f i ,Cy i > −min

j≠y i
< f j ,Cy i >]

+

+∑N

i=1
[m+ < v i ,Cy i > −min

j≠y i
< v j ,Cy i >]

+

(8)

Here, m is the margin, < ⋅, ⋅ > denotes the distance metric, which is implemented as Euclidean distance

in this work, and [x]+ =max (0, x). Since the number of identities in the dataset far exceeds the batch size,

each query sample has only a fewpositive exampleswithin a batch. To address the imbalance between positive

and negative samples andmitigate its adverse impact on gradient optimization, the model penalizes only the

hardest negative sample, i.e., the one with the highest similarity to the query identity center.

Under the training of the triplet-center loss, samples from the same category demonstrate high

similarity, while samples from di�erent categories exhibit low similarity. �rough the joint training of the

cross-modal center loss and triplet center loss, we e�ectively learnmodality-independent and discriminative

features.

Loss = Lc + αLd is (9)

In the formula, α is a hyperparameter for the weight of the triplet center loss.

3.4 Optimization

In this subsection, we provide a detailed and step-by-step explanation of the optimization process for

the proposed speech-face cross-modal association learning framework.�e optimization details are outlined

in Algorithm 1. �e entire process is divided into two stages: joint pretraining and cross-modal simplex

center alignment.
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Algorithm 1:�e proposed method

Input:

Dataset D: face image and voice pairs {x f
i , x

v
i , y i}Ni=1;

Simplex center parameters: radius of the hypersphere r, total number of identities N ;

Training hyperparameters: learning rate lr, margin m, loss weight α;

# Step 1: Joint Pre-Training

1. Randomly initialize the face network θ f , voice network θv , and classi�er weight W ;

2. While not converged do:

Extracting face embeddings f i = fθ f
(x f

i );
Extracting voice embeddings v i = fθv(xvi );
Compute Identity Supervision Loss LID by Eq. (1);

Update θ f , θv ,W by descending the gradient;

End While;

# Step 2: Cross-Modal Simplex Center Alignment

1. Initialize the face encoder θ f , voice encoder θv with the joint pre-training results;

2. Create regular simplex by Eqs. (3)–(5);

3. Extracting embeddings f ′i = fθ f
(x f

i ), v′i = fθv(xvi );
4. While not converged do:

Re-encoding f i = fφ f
( f ′i ), v i = fφv

(v′i);
Compute Cross-Modal Simplex Center Loss LC by Eq. (6);

Compute Cross-Modal Triplet Center Loss Ld is by Eq. (8);

Compute total loss Loss by Eq. (9);

Update φ f , φv by descending the gradient;

End While;

Return: Optimized face encoder φ f , voice encoder φv ;

First, the shared parametersW of the classi�er are randomly initialized.VGGNet andVGGish are jointly

pretrained on the training set under identity supervision, resulting in the optimized network parameters θ f

and θv a�er iterative updates. Next, the pretrained parameters are used to initialize and freeze the face and

speech networks, which are then employed to extract face and speech embeddings as inputs for the cross-

modal simplex center alignmentmodule. Subsequently, the extracted embeddings undergo further encoding

and alignment, utilizing face and speech encoders with parameters φ f and φv , respectively.�e optimization

of these encoder parameters is guided by a weighted combination of the cross-modal simplex center loss and

triplet center loss, as de�ned in Eq. (9).

4 Experiment

4.1 Datasets

Following prior works [31,32,43], we evaluated the proposed method using publicly available datasets,

VoxCeleb [44] and VGGFace [34], which were originally introduced in these references. VoxCeleb is a large-

scale human speech dataset collected from YouTube, containing speech-video pairs from 1251 identities,

while VGGFace is a face dataset consisting of facial images from 2622 identities.

To conduct our experiments, we utilized the overlapping subset of these datasets as described in the

referenced works, which includes 1225 shared identities with high-quality speech and facial image data.

�e face images and speech segments were partitioned into training, validation, and test sets based on the
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protocol speci�ed in these references. �e partitions were carefully designed to ensure that identities in the

training, validation, and test sets do not overlap, thereby preventing any identity leakage during evaluation.

�e division of the dataset is summarized in Table 1. Speci�cally, the training set was used for model

learning, the validation set for hyperparameter tuning and performance monitoring, and the test set for

�nal evaluation. Queries for validation and testing were generated following the evaluation protocol outlined

in Section 4.3.

Table 1: Details relating to the datasets

Facial images Voice segments Identities

Train 104,724 113,322 924

Validation 12,260 14,182 112

Test 20,076 21,850 189

Total 137,060 149,354 1225

4.2 Implementation Details

�e training process consists of two stages: a pre-training stage for joint face recognition and speaker

recognition, followed by a feature alignment stage where the recognition network is frozen.�e implementa-

tion details of the pre-training network are described in Section 3.1. For the raw data, images are cropped to

112 × 112 × 3 to capture the full face, while voice segments are resampled at 16,000 Hz and randomly cropped

to a duration between 2.5 to 5.0 s, then converted into log-Mel spectrograms. A�er pre-training, the image

data and speech data are encoded into 128-dimensional face features and speaker features, respectively. In

the feature alignment stage, both the structure of the vocal system and language habits can re�ect a person’s

identity, so the face and speech encoders are designed similarly, consisting of two stacked self-attention

blocks. �is design facilitates the learning of modality-independent identity information, which is then

concatenated with a multi-layer perceptron (MLP) layer to expand the dimensionality to 1024, satisfying the

condition D ≥ N − 1.

To ensure the model’s generalization ability in the association task, we randomly sample multiple

identities during each iteration to maintain balanced participation in training. For each selected identity, we

then randomly choose one face image and its corresponding speech audio segment as the training samples.

�e proposed method is implemented using PyTorch. For model training, we utilize a Stochastic

Gradient Descent (SGD) optimizer with a batch size of 64 and a momentum of 0.9. �e learning rate is

initialized at 0.1 and decays by a factor of 0.1 at the 2000 and 3000 iteration marks. Regarding parameter

settings, we set r = 90 (Eq. (4)), m = 3 (Eq. (7)), and α = 0.2 (Eq. (8)), with a maximum iteration limit of

10,000. �e best-performing model on the validation set is retained for evaluation.

4.3 Testing Protocol

We evaluate the overall e�ectiveness of the proposed cross-modal center learning framework in the

speech-face association learning task through three key tasks. For each task, we assess the model’s perfor-

mance in both voice-to-face (V-F) and face-to-voice (F-V) directions. In the matching and veri�cation tasks,

we incorporate gender constraint settings to evaluate themodel’s performance inmore challenging scenarios.

1:NMatching. In this task, a voice segment or a face image is used as a query, and the goal is to identify the

corresponding instance fromN candidate instances in the other modality, with only one candidate matching

the query identity. In the experiments, the value of N varies from 2 to 10, and cosine similarity is employed

for comparison to assess the test accuracy (ACC) across di�erent values of N.
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Veri�cation. In this task, a face image and a voice segment are presented as inputs, and the objective is

to determine whether they correspond to the same identity, e�ectively framing it as a binary classi�cation

problem. �e performance is evaluated using the Area Under the ROC Curve (AUC).

Retrieval. In this task, a face image or a voice segment serves as the query, and candidates from the

respective collections are ranked. �e gallery contains one or more instances that correspond to the query.

�e goal is to rank the candidates such that those matching the query appear at the top. Performance is

evaluated using Mean Average Precision (mAP).

4.4 Results and Comparison

Comparison Experiments. To validate the superiority of the proposed method, we compared it with

well-established baseline approaches and subsequent improved models, including SVHF [6], DIMNet [32],

Wang’s model [43], and Wen’s model [31]. �ese methods have demonstrated strong performance in

prior works and are widely recognized within the research community. By benchmarking against these

competitive approaches, we aimed to provide a comprehensive evaluation of our method’s e�ectiveness

in addressing the challenges of cross-modal association and retrieval. It should be noted that SVHF-Net

achieves forcedmatching through a three-stream convolutional neural network and feature fusion. However,

this architecture is not suitable for cross-modal veri�cation and retrieval tasks. DIMNet leverages common

covariates between speech and face, using a modality-shared classi�er for non-joint mapping. Both Wang’s

and Wen’s models adopt a joint learning strategy combining identity loss and pairwise loss. Wang’s model

introduces hard negative sample mining, while Wen’s model incorporates an adaptive identity reweighting

mechanism. Table 2 highlights the performance of our proposed simplex center learning method relative to

these existing approaches in 1:2 matching and veri�cation tasks. �e best results are shown in bold. In this

context, ‘G’ denotes gender-constrained scenarios, where both the query and candidate samples belong to

the same gender, whereas ‘U’ indicates unrestricted genders.

Table 2: Comparison of model performance in 1:2 matching, veri�cation and retrieval

Methods 1:2 Matching (ACC) Veri�cation (AUC) Retrieval (mAP)

V-F(U) F-V(U) V-F(G) F-V(G) V-F(U) F-V(U) V-F(G) F-V(G) V-F F-V

SVHF [6] 80.15 78.96 63.29 63.01 – – – – – –

DIMNet [32] 81.02 81.46 69.65 69.33 80.49 81.21 69.51 68.76 4.08 3.64

Wang’s [43] 83.51 84.23 72.07 71.58 82.54 82.80 70.26 70.09 4.35 3.32

Wen’s [31] 86.92 86.15 76.74 75.21 86.92 86.64 76.47 75.79 5.32 5.51

Ours 88.23 87.74 79.22 78.43 88.19 88.07 78.29 78.11 5.87 5.95

As shown in Table 2, our method outperforms the compared methods in 1:2 matching, veri�cation,

and retrieval tasks. Speci�cally, without gender constraints, the proposed method improves by 1.3%–8.8% in

matching and veri�cation tasks, and by 0.6%–2.5% in retrieval, demonstrating stable performance whether

from voice to face or from face to voice. In more challenging gender-constrained scenarios, the model

demonstrates a signi�cant improvement in accuracy. Particularly in the face-to-speech matching task, it

achieves a 3.4%–7.0% improvement compared to the recent works of Wang and Wen, outperforming the

baseline methods by 15.6%. Our analysis suggests that although Wang’s approach employs pairwise hardest

negative mining for discriminative feature learning, our improved triplet center loss directly uses identity

centers as queries tomine the hardest negatives, resulting in amore stable learning process. In contrast,Wen’s

adaptive identity reweighting mechanism inevitably leads to information loss, causing a noticeable drop in



5180 Comput Mater Contin. 2025;82(3)

performance when handling challenging samples. Fig. 3 displays examples of constrained matching results,

indicating that ourmethod e�ectively learns various identity-related deep features beyond gender from faces

and voices, revealing profound associations between them.

Figure 3: Qualitative experimental results under gender constraints

As illustrated in Fig. 4, the 1:N matching task becomes increasingly challenging as N grows, resulting

in a general decline in accuracy across all methods. However, our proposed method (red curve) consistently

demonstrates higher accuracy throughout the process, with a relatively minor decrease. �is suggests that

our approach exhibits greater robustness and adaptability in larger-scale matching tasks. �is advantage

is primarily attributed to the proposed cross-modal simplex center learning framework, which e�ectively

captures the many-to-many relationships between faces and voices, thereby sustaining superior matching

performance in a broader search space. Moreover, in gender-constrained matching tasks, the performance

of all models tends to be lower than in scenarios without gender constraints.We attribute this to the presence

of more similar samples from di�erent identities within the same gender, making the task inherently more

di�cult. Nevertheless, our method still outperforms the others in these challenging conditions, reinforcing

its potential advantages in addressing complex matching tasks.

Figure 4: Quantitative results on 1:N matching task

Ablation Experiments. To assess the e�ectiveness of the proposed speech-face association learning

framework, we conducted ablation studies focusing on two key components: the cross-modal simplex center

loss and the triplet center loss. �is led to three ablated variants: (1) a model utilizing the original Cross-

modal Center Loss (CCL) instead of our proposed cross-modal simplex center loss (denoted as -C in Fig. 3),
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(2) a model with the Triplet Center Loss (TCL) omitted (denoted as -T in Fig. 3), and (3) a model using the

original CCL while removing the triplet center loss, resulting in a model (denoted as -C -T in Fig. 3). �is

con�guration allows us to evaluate the impact of both losses on the model’s overall performance.�e results

are presented in Table 3, highlighting the accuracy of the model and its variants in the 1:2 matching task for

clearer comparison. �e best results are shown in bold.

Table 3: Ablation experiment results of 1:2 matching

Methods V-F(U) F-V(U) V-F(G) F-V(G)

w/original CCL 85.79 85.63 76.14 75.87

w/o TCL 85.76 85.27 75.74 75.63

w/o CSCL&TCL 83.26 83.49 73.26 73.01

Ours 88.23 87.74 79.22 78.43

As shown inFig. 4, whennot combinedwith triplet center loss, the proposed cross-modal simplex center

loss outperforms the original cross-modal center loss in 1:N matching tasks, and this advantage becomes

more pronounced as N increases.We speculate that, compared to the original method, the proposedmethod

provides stronger robustness by maximizing the distance between identity centers. A�er combining with

triplet center loss, this performance advantage is further expanded, con�rming that our method achieves

e�ective cross-modal interaction.�e learned face and voice embeddings cluster closely around the identity

centers, demonstrating a clear advantage in inter-class distinction.

In Table 3, we observe that even with only the joint pretraining model, it maintains higher accuracy

and stability compared to baseline methods, rea�rming that parameter-sharing unimodal classi�cation

aids cross-modal association. Notably, in the gender-constrained 1:2 matching task, the triplet center loss

provides substantial performance enhancements, indicating that hard negative mining e�ectively captures

deep associations between faces and voices.

However, attempts to increase the weight of the triplet center loss during experimentation resulted in

signi�cant performance degradation. We speculate that this may cause the model to focus excessively on

hard negative samples, leading to over�tting. �erefore, enhancing the model’s generalization ability and

robustness when dealing with complex samples remains an area for further exploration.

5 Conclusion

In this paper, we present a novel speech-face association framework based on cross-modal sim-

plex center learning, which e�ectively enhances feature alignment between speech and facial images. By

employing a joint pretraining approach, our method leverages well-established face recognition and speaker

recognition techniques, signi�cantly reducing themodel’s training costs while ensuring robust performance.

�e combination of cross-modal simplex center loss and improved triplet center loss, has proven e�ective

in enhancing both intra-class compactness and inter-class separability of cross-modal features. Quantitative

evaluations validate the superiority of our method, compared with existing methods, our method achieved

improvements in matching, validation, and retrieval tasks, especially in challenging gender constrained

experiments, with an accuracy increase of 2.48%–15.93%. �ese results underline the practical potential of

our framework for real-world applications in cross-modal feature alignment.

Future work will focus on re�ning the framework to address inter-modal discrepancies further, such

as by integrating advanced self-supervised learning or domain adaptation techniques. Additionally, we aim

to explore its applicability to other challenging cross-modal scenarios, including emotion recognition and
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multi-modal biometric authentication, thereby extending the impact of this research to a broader range

of applications.
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