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ABSTRACT: DDoS attacks represent one of the most pervasive and evolving threats in cybersecurity, capable of
crippling critical infrastructures and disrupting services globally. As networks continue to expand and threats become
more sophisticated, there is an urgent need for Intrusion Detection Systems (IDS) capable of handling these challenges
effectively. Traditional IDS models frequently have difficulties in detecting new or changing attack patterns since they
heavily depend on existing characteristics. This paper presents a novel approach for detecting unknown Distributed
Denial of Service (DDoS) attacks by integrating Sliced Iterative Normalizing Flows (SINF) into IDS. SINF utilizes
the Sliced Wasserstein distance to repeatedly modify probability distributions, enabling better management of high-
dimensional data when there are only a few samples available. The unique architecture of SINF ensures efficient density
estimation and robust sample generation, enabling IDS to adapt dynamically to emerging threats without relying
heavily on predefined signatures or extensive retraining. By incorporating Open-Set Recognition (OSR) techniques,
this method improves the system’s ability to detect both known and unknown attacks while maintaining high detection
performance. The experimental evaluation on CICIDS2017 and CICDDoS2019 datasets demonstrates that the proposed
system achieves an accuracy of 99.85% for known attacks and an F1 score of 99.99% after incremental learning for
unknown attacks. The results clearly demonstrate the system’s strong generalization capability across unseen attacks
while maintaining the computational efficiency required for real-world deployment.

KEYWORDS: Distributed denial of service; sliced iterative normalizing flows; open-set recognition; cybersecurity;
deep learning

1 Introduction
Threat actors execute malicious cyber attacks, and organizations worldwide face a significant risk from

attacks that cause widespread disruption by overwhelming services and denying access to users (DDoS).
Such attacks possess the potential to cripple entire network systems, making them unreachable for legitimate
users and leading to significant interruptions in both service dependability and availability. Cybersecurity
defense teams employ intrusion detection systems (IDS) to minimize the harm inflicted by such attacks [1].

Identifying and counteracting DDoS threats is now crucial to safeguarding the robustness and pro-
tection of essential infrastructure systems. As DDoS attacks grow more frequent and intricate in today’s
cybersecurity realm, establishing robust IDS mechanisms is critical for preserving the stability and continued
accessibility of network frameworks [2]. Anomaly detection (AD) is a key technology in IDS design,
identifying and flagging patterns or behaviors that deviate from normal operations in computer networks,
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systems, or applications [3]. Traditional IDS approaches, which rely on predefined signatures and rules,
often fail to detect novel and sophisticated DDoS attacks. This limitation underscores the necessity for more
advanced detection techniques capable of adapting to evolving attack patterns.

Models based on deep learning have surfaced as a potential solution for identifying and counteracting
these attacks through the autonomous discovery of intricate patterns within network traffic information.
DL outperforms traditional machine learning methods in handling large and complex datasets. A range
of deep learning models is currently being developed to improve the ability to detect DDoS incidents.
Despite its advantages, deep learning models frequently fall short in handling uncertainty, resulting in overly
assertive yet incorrect predictions, which poses a serious challenge in vital fields like cybersecurity [4,5].
The integration of DL in IDS allows for the automatic extraction of features from raw data, eliminating
the need for manual feature engineering and enabling the detection of subtle anomalies that may escape
human analysts.

The ever-changing behavior of attacks and the continual evolution of network vulnerabilities make it
exceedingly difficult to keep models up to date. Another significant challenge is the lack of necessary data for
practical training, resulting in insufficient large, high-quality datasets for training DL models [6]. Uncertainty
in this context is divided into aleatoric (random) and epistemic (knowledge-based). Aleatoric uncertainty
arises from data and can be mitigated by having more training data, whereas epistemic uncertainty stems
from model parameters and can be reduced by improving the model [7]. The continuous evolution of DDoS
attack strategies necessitates frequent model updates to ensure that IDS remains effective against new threats.

Although anomaly-based IDS can detect unknown attacks, current designs still require specific attack
data to train the models. Existing IDS models demand substantial quantities of precisely labeled data for
every attack type and cannot identify novel threats. Unsupervised IDS models can detect new attacks without
training data but suffer from lowered precision and challenges when distinguishing between different forms
of attacks. Current IDS models are not well-adapted to the evolution of modern attacks, which can generate
various variants. Recent research indicates that current models, whether machine learning or deep learning,
are ineffective in handling attacks that have not been previously trained on [8]. This highlights the need for
IDS to adaptively learn from new and unseen data without compromising detection accuracy.

Open-Set Recognition (OSR) helps identify and classify objects or instances not encountered during
training. OSR has achieved significant milestones recently [9]. Traditional closed-set recognition systems are
limited to predefined categories and fail to recognize unknown instances, making OSR a crucial advancement
for IDS in handling unknown DDoS attacks. This paper introduces an OSR technique called Sliced Iterative
Normalizing Flows (SINF), a deep learning algorithm that uses the Sliced Wasserstein distance to transform
probability distributions. SINF can generate high-quality samples and perform efficient density estimation,
particularly well with small datasets. Compared to traditional flow-based or autoencoder-based methods,
SINF incrementally adapts its latent space slicing across iterations. This iterative slicing approach allows the
model to preserve essential properties of the data distribution, thereby robustly estimating tail distributions
necessary for unknown DDoS detection in high-dimensional data with limited samples. This algorithm
is stable, less dependent on hyperparameters, and does not use mini-batching or gradient descent [10].
By incorporating SINF, IDS can maintain high detection performance even when encountering novel
attack patterns.

The ever-growing threat of DDoS attacks necessitates the development of advanced IDS that can detect
and mitigate both known and unknown attacks. Leveraging deep learning and OSR techniques, notably
the SINF algorithm, presents a promising direction for enhancing the robustness and reliability of IDS in
dynamic and evolving cyber threat environments. This paper aims to explore the application of SINF in IDS,
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providing insights into its effectiveness in detecting unknown DDoS attacks and addressing the challenges
of model uncertainty and data scarcity.

The key contributions of this study lie in integrating Autoencoder and SINF for detecting Unknown
DDoS Attacks. The autoencoder, a widely used method for data representation, reduces dimensionality by
eliminating redundant information while preserving essential features. SINF, a state-of-the-art Normalizing
Flow technique, enables the transformation of a simple base distribution into complex ones that effectively
model intricate data patterns. Unlike traditional approaches, our method applies SINF not to raw data but
to the encoded representations generated by the autoencoder. This design enhances the system’s ability to
capture high-dimensional data structures with greater precision and robustness. By optimizing the modeling
process, this framework significantly improves the estimation of sample distributions, ensuring higher adapt-
ability and sensitivity to previously unseen attack patterns. Comparative analysis with established techniques
in unknown DDoS attack detection, including Gaussian Mixture Models (GMM) [11], DBSCAN-SVM [12],
CNN-Geometrical Metrics [13], and AlexNet-Fuzzy C-Means Clustering (FCM) [14] demonstrates the
superior performance of our approach, particularly under conditions of data scarcity and high-dimensional
complexity. This synergy between the autoencoder and SINF modules represents a substantial advancement
in detecting Unknown DDoS Attacks, effectively bridging critical gaps in existing IDS.

The remainder of this paper is organized as follows: Section 2 reviews related work; Section 3 details
our methodology; Section 4 presents the experiments, results, and discussion; and Section 5 provides
the conclusion.

2 Related Work

2.1 Traditional and Machine Learning Approaches in Intrusion Detection Systems
IDS has been a vital element in ensuring network security for a considerable period. Traditional IDS

approaches can be broadly categorized into signature-based and anomaly-based systems. Signature-based
intrusion detection systems depend on established patterns and preset rules to recognize existing threats.
While highly efficient in recognizing familiar attack methods, they struggle when confronting novel or
emerging dangers. Conversely, anomaly-based detection systems identify irregularities that deviate from
typical behavioral norms. While more adaptable to unknown attacks, these systems frequently encounter
high false alarm rates, stemming from challenges in precisely characterizing what constitutes’ normal activity,
as noted by [15,16].

Machine learning (ML) approaches have seen growing applications in intrusion detection systems
to overcome the shortcomings of conventional techniques. These methodologies are typically divided
into supervised, unsupervised, and semi-supervised learning approaches. Supervised learning strategies,
including decision trees, support vector machines, and neural networks, rely on labeled data for training and
excel at differentiating between harmless and harmful actions. However, the effectiveness of these models is
significantly influenced by the availability and quality of labeled datasets, as highlighted by [17].

Unsupervised learning techniques, such as clustering methods like k-means and anomaly detection
models like random forests, operate without labeled data and can recognize novel attack patterns. These
methods are beneficial for detecting unknown threats but often struggle with accuracy and interpretability,
as discussed by [18]. Semi-supervised learning methods attempt to leverage labeled and unlabeled data to
improve detection performance, making them a promising area of research for IDS, as indicated by [19].

DL models represent a significant advancement in IDS, offering superior performance in processing
and analyzing large and complex datasets. CNN and Recurrent Neural Networks (RNNs) are among the
most widely used DL architectures for IDS. CNNs are effective at extracting spatial features from network



4884 Comput Mater Contin. 2025;82(3)

traffic data. At the same time, RNNs are well-suited for capturing temporal dependencies in sequential
data. Gueriani et al. [20] developed a robust attack detection model based on the combination of CNN
and RNN. Additionally, Iliyasu et al. [21] have pointed out that CNN and Generative Adversarial Networks
(GANs) are also employed to enhance anomaly detection capabilities, providing robust mechanisms for
identifying deviations from normal network behavior. Chalapathy et al. [22] discussed the application of
these techniques in their comprehensive survey on deep learning for anomaly detection. Recent advance-
ments address these challenges through innovative frameworks and hybrid approaches. For instance, the
BDIP framework integrates tensor-based representation with tensor-train decomposition to efficiently man-
age high-dimensional, multi-modal network data. Combining preprocessing, denoising, and classification
achieves 99.19% accuracy in DDoS detection while maintaining computational efficiency and scalability,
even in big data environments [23]. Similarly, hybrid techniques such as ML-Entropy for SDN environments
combine entropy-based statistical techniques with ML algorithms to enhance detection accuracy and reduce
computational overhead. This approach has demonstrated superior speed in model convergence, achieving
over 99% accuracy with significantly faster training than standalone ML models [24].

Recent advancements in intrusion detection have explored various methodologies to improve accuracy
and adaptability in dynamic environments. Wang et al. proposed a tensor-based network attack detection
framework for SDN security, leveraging principal component analysis to enhance the detection of sophisti-
cated threats through high-dimensional data representation [25]. Similarly, Rabie et al. introduced a hybrid
model combining Decisive Red Fox optimization and Radial Basis Function classification, demonstrating
its efficacy in detecting IoT-based intrusions while optimizing computational efficiency [26]. The research
of Srivastava et al. and Shitharth et al. on intelligent edge computing further highlights the integration of
advanced machine learning techniques with security paradigms to address emerging threats across diverse
IoT and edge systems [27,28].

Despite the advantages of DL models, they cannot often represent uncertainty, leading to overly
confident and sometimes inaccurate predictions. This limitation is particularly problematic in critical
applications like cybersecurity, where false positives and false negatives can have severe consequences [29].
Hariharan et al. [30] utilized XAI (Explainable AI) techniques alongside black-box deep learning models in
developing an intrusion detection system. This approach not only enhances the transparency and reliability
of the model but also improves its performance by optimizing features based on the provided explanations.

Table 1 provides a comparative summary of recent studies, highlighting their methodologies, strengths,
and weaknesses while underscoring the advantages of our approach in achieving superior detection accuracy
and adaptability.

Table 1: Comparison of recent DDoS detection studies

Author(s) Methodology Pros Cons Year
Lin et al. [31] Hybrid Fuzzy

Techniques +
Classifiers, PCA

Efficient feature
extraction

Limited scalability
on modern datasets

2022

Alduaijli et al. [32] Random Forest +
Mutual Information

Strong performance
on CIC datasets

Struggles with
unknown DDoS

attacks

2022

(Continued)
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Table 1 (continued)

Author(s) Methodology Pros Cons Year
Mihoubi et al. [33] Looking-back-

enabled
ML

Reduces false
positives for 101

attacks

Computationally
expensive

2022

Saghzechki
et al. [34]

One Rule, SVM,
random forest

Simple and
interpretable ML

techniques

Limited detection
accuracy

2022

Nguyen et al. [14] 1D AlexNet + SLCPL High detection
accuracy for

unknown attacks

Limited deployment
in computationally

constrained
environments

2024

Balasubramaniam
et al. [35]

Deep Stacked
Autoencoder +

GHLBO Optimization

Efficient for
large-scale cloud

environments

Requires extensive
parameter tuning

2023

Aktar et al. [36] Deep contractive
autoencoder

Strong generalization
across CIC datasets

High memory
requirements for

training

2023

Choobdar
et al. [37]

Stacked
Auto-Encoders (SAE)

Effective multi-class
classification

Computationally
intensive with large

datasets

2022

Phulre et al. [38] Random Forest and
Decision Tree (RF &

DTC)

Strong anomaly
detection capabilities

Limited scalability
for real-time

detection

2024

Halbouni et al. [39] CNN-LSTM Hybrid Improved detection
performance

High training time
complexity

2021

Shieh et al. [40] Gaussian Mixture
Model (GMM)

Effective anomaly
detection

Sensitive to
parameter

initialization

2024

Najafimehr
et al. [12]

DBSCAN +
SVM/DBSCAN + RF

Strong detection
accuracy on

imbalanced datasets

Limited adaptability
to new attacks

2024

Shieh et al. [13] Convolutional Neural
Network +

Geometrical Metrics

High precision and
recall

Computationally
heavy

2024

Proposed method Autoencoder + SINF Computationally
intensive

N/A 2024

2.2 Open-Set Recognition in Cybersecurity
OSR has emerged as a critical advancement in cybersecurity, addressing the limitations of traditional

closed-set recognition systems that can only identify predefined categories of attacks. The fundamental
concept of OSR enables systems to identify and classify objects or instances not encountered during training,
thereby enhancing the ability to detect novel and evolving threats. Wang et al. emphasize the importance of
OSR in scenarios where the diversity of potential threats is vast and constantly changing [41].
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In network security, OSR techniques have shown significant promise in improving the detection of
unknown or zero-day attacks. These techniques differ from traditional anomaly detection methods by
flagging anomalies and providing mechanisms to recognize new attack classes. This capability is particularly
crucial given the rapid evolution of cyber threats. Recent studies have demonstrated the application of
various OSR techniques in network intrusion detection, demonstrating their effectiveness in maintaining
high detection rates while reducing false positives [42].

Significant differences emerge when comparing OSR-based IDS with traditional closed-set systems,
particularly in their ability to handle unknown DDoS attacks. Traditional IDS rely heavily on static signatures
and predefined datasets, which limit their capacity to detect novel or evolving threats. In contrast, OSR-based
systems adopt more adaptive techniques capable of modeling complex data distributions and identifying
anomalies that deviate from expected patterns. These systems offer greater flexibility and robustness in
dynamic network environments, enabling them to effectively address the limitations of static detection
models. For example, clustering techniques such as FCM have been applied to group network traffic patterns,
allowing the identification of anomalous behaviors that may indicate unknown attacks [14]. Similarly,
probabilistic methods like Gaussian Mixture Models have demonstrated their effectiveness in modeling
network traffic distributions, capturing subtle deviations that might signal intrusion attempts [40]. One-
Class Support Vector Machines (OC-SVM) have also been employed to create decision boundaries around
standard traffic data, effectively flagging outliers as potential threats [13].

Additionally, AE has been utilized for reconstructing normal network behavior, where significant
reconstruction errors can signal the presence of anomalous traffic [37]. These approaches excel in dynamic
environments where attack patterns constantly evolve and labeled datasets are often incomplete. By inte-
grating such techniques, OSR-based IDS achieve higher adaptability and accuracy in detecting previously
unseen DDoS attack patterns, outperforming traditional static detection models.

Incorporating probabilistic approaches in OSR, such as the Probabilistic Autoencoder (PAE), allows for
a more flexible representation of latent spaces by learning the distribution of latent weights, which can help
address outliers and anomalies in network traffic. As demonstrated by [43], the PAE leverages a Normalizing
Flow (NF) to produce high-quality latent space representations and detect outliers efficiently. The latent space
density learned from NF offers a robust outlier detection metric, making it highly applicable to the challenges
posed by OSR in Cybersecurity.

Implementing OSR in IDS involves several challenges, including robust models that can accurately
distinguish between known and unknown instances and the requirement for efficient algorithms that can
operate in real-time. Advanced machine learning and deep learning techniques, such as Sliced Iterative
Normalizing Flows (SINF), have been explored to address these challenges. Reference [10] discusses how
SINF leverages the Sliced Wasserstein distance to transform probability distributions, enabling the gener-
ation of high-quality samples and efficient density estimation. By effectively handling the uncertainty and
variability of modern cyber threats, OSR-equipped IDS can provide more robust protection against known
and unknown attacks, ensuring critical network services’ continuous availability and integrity [44].

2.3 Sliced Iterative Normalizing Flows
Sliced Iterative Normalizing Flows (SINF) represent a cutting-edge approach in deep learning, partic-

ularly effective for applications requiring efficient density estimation and sample generation from complex
distributions. Introduced by [10], SINF employs the Sliced Wasserstein distance to transform probability
distributions iteratively. This method has demonstrated significant potential in addressing the challenges
associated with data scarcity and high-dimensional spaces.
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The primary advantage of SINF is its ability to generate high-quality samples and perform robust density
estimation, even with limited data. Unlike many deep learning algorithms that necessitate extensive training
data and complex optimization processes, SINF operates without requiring mini-batching or gradient
descent. This simplification not only enhances the training process but also improves the stability and
scalability of the model, making it highly suitable for real-time applications in cybersecurity. In the context
of Intrusion Detection Systems, SINF provides substantial improvements over conventional methods.
Traditional IDS models often struggle to adapt to new and unseen attack patterns because they rely on
predefined signatures or exhaustive labeled datasets. SINF addresses these limitations by leveraging the
flexibility of iterative normalizing flows, which can dynamically adapt to evolving threat landscapes without
frequent retraining or extensive hyperparameter tuning.

SINF’s application in anomaly detection and OSR is particularly noteworthy. By transforming the
underlying data distribution iteratively, SINF can accurately model known and unknown data points, thereby
enhancing IDS’s ability to detect novel attacks. This capability is crucial for maintaining the security and
integrity of network infrastructures where new threats are constantly emerging. Integrating SINF into OSR
frameworks offers a robust solution to the challenges posed by unknown attacks. OSR techniques are
designed to identify and classify instances that were not encountered during training, a critical requirement
for effective cybersecurity. SINF’s ability to perform efficient density estimation and generate high-quality
samples makes it an ideal candidate for OSR, enabling the IDS to maintain high detection rates while
reducing false positives.

3 Methodology
The training phase of our model follows a structured process, as depicted in Fig. 1. Initially, the training

set undergoes data preprocessing to clean and prepare the data for subsequent stages. This preprocessing
step ensures that the input data is suitable for the model training process.

Figure 1: The training phase of the proposed system



4888 Comput Mater Contin. 2025;82(3)

In the first stage, the preprocessed data is fed into an autoencoder consisting of an encoder and a decoder.
The encoder compresses the input data into a lower-dimensional representation, while the decoder attempts
to reconstruct the original data from this compressed form. The goal is to minimize the reconstruction error,
ensuring that the model learns a compact and efficient representation of the input data. The output of this
stage is the reconstructed data.

In the second stage, the training set, after data preprocessing, is again fed into the trained autoencoder
to generate encoded representations. These representations are then passed to a classifier module, which
utilizes a Deep Neural Network (DNN) to classify the encoded data into benign or malicious categories. The
classifier is trained to distinguish between normal and anomalous patterns based on the features extracted
by the autoencoder.

The preprocessed training data is encoded in the third stage using the trained autoencoder. The encoded
data is then input into the SINF module, specifically the Gaussianizing Iterative Slicing (GIS) component.
This component tries to learn and approximate the complex distribution of the encoded dataset, aiding in
identifying novel and evolving threats. Combining autoencoder-based feature extraction and SINF-based
sample generation enhances the system’s ability to detect known and unknown attacks effectively. Our model
integrates OSR concepts into the third stage, where SINF scores are used to measure how’ familiar’ a sample
is. If the score is below a certain threshold, the system treats it as an unseen type of attack. This approach
helps isolate unknown attacks by design rather than forcing them into known class categories.

The evaluation phase of our system in Fig. 2 begins with the evaluating set undergoing data processing
to clean and prepare it for analysis. The preprocessed data is then passed through a trained autoencoder,
which compresses the data into lower-dimensional representations using its encoder and reconstructs it with
the decoder. These encoded representations are subsequently fed into a classifier module comprising a Deep
Neural Network (DNN), which categorizes the data as benign or malicious based on the features extracted
by the autoencoder. Along with that, for encoded data, the process continues with the Unknown Detecting
Module, utilizing the GIS (Gaussianizing Iterative Slicing) component of the SINF module. This module
performs density estimation from the training set and checks if the incoming data fits within the learned
distributions, flagging data points that deviate as suspicious. Finally, a threshold is applied to determine the
classification, with data points exceeding this threshold marked for further investigation. This comprehensive
evaluation ensures that the IDS effectively detects known and potential unknown threats, enhancing overall
network security.

Figure 2: The evaluation phase of the proposed system



Comput Mater Contin. 2025;82(3) 4889

3.1 Mathematical Notations
To improve clarity and ensure the readability of the mathematical notations used throughout this

manuscript, we provide symbol descriptions in Table 2. This table summarizes the key symbols and
their meanings, enabling readers to follow the equations and understand the underlying principles more
effectively. The descriptions also highlight the relationships between the variables, which are critical for
interpreting the proposed methodology.

Table 2: Description of used mathematical symbols

Symbol Description
x Input data vector in high-dimensional space
h Encoded representation of input data
xˆ Reconstructed data vector

We, Wd Weight matrices for encoder and decoder, respectively
be, bd Bias vectors for encoder and decoder, respectively

σ Activation function (e.g., ReLU, sigmoid)
L(x, xˆ) Reconstruction error (loss function)

p(x) Probability density of the input data
π(z) Base probability distribution (typically Gaussian)

f Invertible transformation in normalizing flows
det(.) determinant of a matrix

Wp(P1, P2) Wasserstein distance between two distributions P1 and P2 SWp (P1, P2)
SWp(P1, P2) Sliced Wasserstein distance

RP(ϑ) Radon transform of distribution P along axis θ
Ψl 1D transport mappings in SINF
Xl Distribution of samples at iteration l
A Matrix of orthogonal axes in SINF

3.2 Auto Encoder
Autoencoders are a type of neural network used to learn efficient representations of input data

unsupervised, making them particularly effective for anomaly detection tasks, such as identifying unusual
patterns in network traffic that may indicate security threats like DDoS attacks. An autoencoder consists of
an encoder and a decoder, as depicted in Fig. 3.

Figure 3: Autoencoder architecture
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The encoder compresses the input data x ∈ Rn into a lower-dimensional representation h ∈ Rm using
the function fθ . As shown in Formula (1), the encoder performs this compression efficiently by applying
weights and biases to the input data.

h = fθ (x) = σ (We x + be) (1)

where We ∈ Rm×n is the weight matrix.
The decoder maps h back to the reconstructed input x̂ ∈ Rn using the function gθ . As described

in Formula (2), the decoder reconstructs the input data using the latent representation h.

x̂ = gθ (h) = σ (Wd h + bd) (2)

where Wd ∈ Rn×m is the weight matrix, bd ∈ Rn is the bias vector, and σ is an activation function.
The objective of training an autoencoder is to minimize the reconstruction error between x and x̂, often,

using the mean squared error (MSE). As expressed in Formula (3), the reconstruction error is measured as
the mean squared error between x and x̂:

L (x , x̂ , ) = 1
n

n
∑
i=1
(xi − x̂ i)2 (3)

Thus, the goal is to find the parameters θ and θ′ that minimize the average reconstruction error across
all training examples. As defined in Formula (4), the objective is to reduce the reconstruction error across
all training:

min
θ ,θ′
= 1

N

n
∑

i
L (x(i), x̂(i)) (4)

In cybersecurity, autoencoders are trained on normal network traffic data to learn a compact represen-
tation of typical behavior. Once trained, the autoencoder can reconstruct new network traffic data, and if the
reconstruction error for a given data point is significantly higher than average, it may indicate an anomaly,
such as a potential intrusion. By monitoring the reconstruction error, an IDS equipped with autoencoders can
effectively detect unusual patterns in network traffic, enabling timely identification and mitigation of security
threats. This method leverages the autoencoder’s ability to capture the underlying structure of normal data,
making it a powerful tool for anomaly-based intrusion detection.

3.3 Principle of SNIF
Sliced Iterative Normalizing Flows (SINF) represent an advanced deep learning algorithm that itera-

tively transforms an arbitrary probability distribution function (PDF) into a target PDF. This transformation
is achieved by performing iterative optimal transport on a series of one-dimensional (1D) slices, leveraging
the Sliced Wasserstein distance to align the marginal distributions along each slice. By selecting orthogonal
slices to maximize the PDF difference, the algorithm efficiently scales to high-dimensional spaces.

Flows use a sequence of differentiable and invertible transformations to map data from a simple
base distribution to a complex target distribution. The target distribution represents the underlying data
distribution we aim to learn and approximate. Formally, a high-dimensional data point x is transformed into a
latent variable z through a series of invertible mappings, such that f = fn ○ fn−1 ○ fn−2 ○ ⋅ ⋅ ⋅ ○ f2 ○ f1z = f (x).
Here, fi denotes the differentiable transformations applied sequentially. The invertibility of these mappings
ensures that the probability density of the target distribution can be computed effectively using the change
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of variables formula. Fig. 4 illustrates this process, where data is iteratively transformed through a series of
flows until it matches the target distribution.

Figure 4: Architecture of the normalizing flows method

The density of x can be computed using the change of variables as presented in Formula (5):

p (x) = π ( f (x)) ∣det(∂ f (x)
∂x
)∣ (5)

where π(z) is typically chosen to be a standard normal distribution and det ( ∂ f (x)
∂x ) is the Jacobian

determinant of the transformation.
This determinant must be easy to compute for density evaluation, and the transformation f should be

easy to invert for efficient sampling. The SINF algorithm iteratively solves for the orthogonal axes where the
marginals of two distributions are most different, defined by the maximum K-sliced Wasserstein Distance
(max K-SWD). The distance between two probability distributions, P1 and P2, is defined in Formula (6):

Wp (P1 , P2) = inf
γ∈Π(P1 ,P2)

(E(x , y)∼γ [∥x − y∥p])
1
p (6)

where Π (P1 , P2) is the set of all possible joint distributions with marginals P1 and P2.
The core principle of SINF lies in its ability to iteratively transform a base probability distribution

into a more complex target distribution. Unlike traditional Wasserstein metrics, SINF leverages the Sliced
Wasserstein Distance (SWD), which projects high-dimensional distributions onto one-dimensional slices
using the Radon transform, simplifying the computation while retaining essential information about the
distribution. SWD is defined in Formula (7):

SWp (P1 , P2) = (∫
Sd−1

W p
p (RP1 (⋅, θ) , RP2 (⋅, θ)) dθ)

1
p

(7)

where RP (⋅, θ) denotes the projection of the distribution P onto the slice determined by the axis θ. By
averaging the Wasserstein distances over all possible slices, SWD provides a robust measure of similarity
between two distributions. To enhance efficiency in high-dimensional settings, SINF employs max K-Sliced
Wasserstein Distance (max K-SWD), which optimizes over a set of Korthonormal axes θ1 , . . . , θK , focusing
on directions where the distributions differ most significantly, which is detailed in Formula (8):

max−K − SWDp (P1 , P2) =max{θ 1 , . . . ,θ K} orthonormal (
1
K

K
∑
k=1

W p
p ((RP1) (⋅, θk) , (RP2) (⋅, θk)))

1
p

(8)
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where Rp denotes the Radon transform of P projecting the distribution onto 1D slices. This targeted
optimization allows SINF to concentrate on informative dimensions, significantly improving performance
in high-dimensional spaces.

The SINF algorithm iteratively optimizes the orthonormal axes θk and matches the 1D marginals along
these axes, as follows:

a. Initialization: Randomly initialize the matrix A ∈ VK (Rd), where VK (Rd) is the Stiefel manifold of
orthonormal K-frames in R

d .
b. Iterative Optimization: For each iteration, update the orthogonal axes to maximize the max K-SWD

and compute the optimal transport mapping for each axis.
c. Marginal Matching: Apply the 1D transport maps along the optimized axes to transform the distribution.

The transformation at the iteration l of samples Xl can be written as Formula (9):

Xl+1 = AΨl (AT Xl) + Xl (9)

where X�l = Xl −AlAT
l Xl contains the components orthogonal to the axes θk and Ψl = [Ψl 1 , . . . , Ψl K]T

represents the 1D marginal mappings, which are monotonic and differentiable. This transformation can be
inverted easily by following Formula (10):

Xl = Al Ψ−1
l (AT

l Xl+1) + X�l (10)

The Jacobian determinant of this transformation is as Formula (11):

det(∂Xl+1

∂Xl
) =

K
∏
k=1

dΨl k (x)
dx

(11)

The algorithm iteratively minimizes the max K-SWD between the transformed and target distributions,
leveraging the inverse Radon transform and Cramer-Wold theorem to match the high-dimensional distri-
butions by aligning their 1D slices. This approach ensures that the SINF algorithm can effectively handle
high-dimensional data and generate high-quality samples, making it a powerful tool for density estimation
and sample generation in complex applications such as cybersecurity. Fig. 5 illustrates the functioning of the
SNIF algorithm.

Figure 5: Illustration of the SNIF algorithm
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Fig. 5a shows the initial alignment significant deviation between the initial and target distribu-
tions. Fig. 5b shows the slicing of the axis with the most difference between the two PDFs. Fig. 5c illustrates
the reduced discrepancy between the updated and target distribution after applying the SINF algorithm.

3.4 Computational Complexity Analysis
The time complexity of the proposed algorithm primarily arises from two key stages: the Autoencoder

module and the SINF module. In the Autoencoder module, the complexity per training epoch can be
expressed as shown in Formula (12).

O (L ⋅ n ⋅m) (12)

where L represents the number of layers in the autoencoder, n is the dimensionality of the input data, and m
is the dimensionality of the encoded representation.

In the SINF module, the iterative density estimation and transformation contribute to the overall time
complexity, represented in Formula (13).

O (K ⋅ D) (13)

where K denotes the number of slicing directions per iteration, and D represents the dataset dimensionality.
The combination of these two stages results in an overall time complexity approximately expressed

in Formula (14).

O (L ⋅ n ⋅m + N ⋅ K ⋅ D) (14)

This indicates that the computational time scales linearly with the size of the dataset and the number of
iterations in the SINF module.

The space complexity is primarily dictated by the need to store model parameters and intermediate
representations from both the Autoencoder and SINF stages. The autoencoder requires space proportional
to Formula (15).

O (n ⋅m +m) (15)

where n ⋅m represents the weight matrices and m accounts for bias terms.
For the SINF module, additional memory is required to store density estimation parameters and

intermediate slice mappings, as shown in Formula (16).

O (K ⋅ D) (16)

Combining both stages can approximate the overall space complexity using Formula (17).

O (n ⋅m +m + K ⋅ D) (17)

This space requirement grows linearly with the number of optimized slicing directions and the
dimensionality of the dataset.

The system was tested on our computational platform. The Autoencoder module completed training
in approximately 2.5 h per epoch on the CICIDS2017 dataset during our experiments. The SINF module,
performing iterative density estimation, required an average of 3.2 h per iteration for a dataset of similar scale.
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These empirical observations demonstrate that while the computational requirements are non-trivial,
they remain feasible within standard hardware configurations. Moreover, incremental learning significantly
reduces the retraining burden, ensuring scalability for real-world deployment scenarios.

3.5 Unknown Detection Module
We propose a novel method for the unknown detection module by combining SINF with an autoen-

coder. The SINF method is a prominent and advanced recent Normalizing Flow technique that transforms
a base distribution into a more complex one. It allows for learning and approximating the complex
distribution of the dataset. The autoencoder excels in compressing data, retaining essential features, and
eliminating redundancies.

Here, SINF is not applied directly to the raw data but rather to the data encoded by the autoencoder.
In other words, SINF approximates the data distribution represented in a different space where critical
information has been condensed. Using the autoencoder before applying SINF helps reduce the complexity
of the data and eliminate unnecessary noise, thereby making the learning process of SINF more effective.
Through this combination, the distribution of the dataset can be learned and estimated efficiently, enabling
more accurate identification of unknown samples compared to traditional methods.

After performing the density estimation for the training dataset, we obtain a set of density values
corresponding to each sample. To define the threshold for our system, we calculate the percentile of these
density values. The threshold is selected based on this percentile to effectively distinguish between normal
and anomalous samples. This threshold will later serve as a key parameter in the detection phase, determining
whether new data points are classified as anomalies. The following Algorithm 1 outlines the detailed steps of
the threshold selection mechanism.

Algorithm 1: Threshold selection mechanism
Input: Training density values {d1, d2, . . ., dn}, desired percentile p
Output: Selected threshold T

1: Compute the density values di = Density(xi) for each sample xi, for i = 1, 2, . . ., n.
2: Sort the density values in ascending order: d(1) ≤ d(2) ≤ . . ., ≤ d(n).
3: Determine the percentile index by calculating i = ⌈p × n⌉.
4: Set the threshold as the density value at index i: T = d(i).
5: Apply the threshold to classify new samples. A sample xj is classified as an anomaly if Density(xj) < T.
6: Return the threshold T.

Here, we set the threshold to the 1st percentile of the output. We can adjust the threshold based on our
experience on the dataset and our domain to perform well. Fig. 6 illustrates the process of detecting unknown
attacks. Fig. 7 illustrates the process of selecting the threshold.

Figure 6: Unknown detection mechanism
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Figure 7: Threshold selection mechanism

3.6 Incremental Learning
After passing through the Unknown DDoS Detection module, suspicious traffic samples will be

stored by the system and manually verified by network experts. The network experts will analyze the new
unknown samples flagged by the system and label them as normal or attack. Subsequently, the system will
perform incremental learning on the newly labeled data. Incremental learning, also known as continuous
learning, enhances this adaptability by enabling the system to update dynamically with newly labeled
data without retraining from scratch. This approach is particularly valuable in dynamic environments
like network security, where new data types and attacks frequently emerge. Incremental learning ensures
sustained performance in real-world scenarios with constantly evolving threats by complementing static
detection strategies.

LetDt = {(xi , yi)}Nt
i=1 represent the dataset at time t, where xi is the input data and yi is the correspond-

ing label. In incremental learning, the model parameters θt are updated iteratively as new data Dt arrives,
rather than retraining the model from scratch using the entire dataset.

The goal is to minimize the loss function L (θt ;Dt), which measures the discrepancy between the
predicted and actual outputs. The update rule for the parameters θt at time t can be expressed as Formula (18).

θt+1 = θt − η∇θ t L (θt ;Dt) (18)

where η is the learning rate, and∇θ t L (θt ;Dt) is the gradient of the loss function with respect to the model
parameters θt .

4 Methodology

4.1 Datasets
In this research, we evaluated our Intrusion Detection System (IDS) utilizing two datasets, namely

CICIDS2017 and CICDDoS2019. These datasets, widely respected in the cybersecurity community, were
created by the Canadian Institute for Cyber Security (CIC). Their purpose is to simulate a variety of cyber
threats and typical network behaviors in realistic scenarios, providing a comprehensive setup that includes
actual traffic data and network configurations. This setup enables detailed analyses of IDS effectiveness,
algorithm refinement, and feature extraction.

The CICIDS2017 dataset contains network activity from Wednesday and Friday, showcasing a mix of
benign traffic and various attack types. On Wednesday, the dataset records 319,186 benign packets (64.26%)
and 159,049 packets from DoS Hulk attacks (32.021%), alongside smaller attack instances like DoS GoldenEye
(7647 packets), DoS Slowloris (5071 packets), and DoS Slowhttptest (5109 packets). Additionally, 11 packets
were associated with the HeartBleed vulnerability.

The proposed model uses all 80 features from the CICIDS2017 dataset, comprehensively representing
flow-level, packet-level, temporal, and protocol-specific network traffic characteristics. No additional fea-
tures were engineered as the dataset’s existing features already cover the critical indicators for detecting DDoS
attacks. Basic flow metrics such as Flow Duration, Total Fwd Packets, and Total Backward Packets capture
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traffic volume and direction, which is essential for identifying unusual activity. Packet size statistics, including
Fwd Packet Length Mean, Bwd Packet Length Max, and Packet Length Variance, provide insights into data
distribution, which is often disrupted during DDoS attacks. Temporal features, such as Flow IAT Mean, Idle
Mean, and Active Std, highlight abnormalities in inter-arrival times and connection activity, which are strong
indicators of attack behavior.

Additionally, flag-based features (e.g., SYN Flag Count, RST Flag Count, and ACK Flag Count) help
detect patterns associated with TCP-based flooding attacks. Rate-based metrics like Flow Bytes/s and Fwd
Packets/s further support anomaly detection by capturing traffic bursts typical in DDoS attacks. To justify the
inclusion of these features, each category contributes uniquely to attack prediction by capturing deviations in
network behavior caused by malicious traffic. For instance, temporal and flag-based features are particularly
effective in identifying attack traffic that mimics legitimate flows but exhibits subtle anomalies.

On Friday, the CICIDS2017 dataset logs 128,027 benign packets (56.713%) and 97,718 DDoS attack
packets (43.287%). The CICDDoS2019 dataset, meanwhile, focuses on DDoS attacks and other network
threats. For example, the LDAP attack dominates with 2,179,928 packets (99.927%), while only 1602
benign packets (0.073%) were recorded. Other significant attacks include MSSQL (4,522,489 packets), DNS
(5,071,002 packets), NetBIOS (4,093,273 packets), and UDP (3,134,643 packets), with NTP and SYN attacks
also recorded in substantial numbers.

These datasets serve as a pivotal foundation for tasks like training, validating, and benchmarking IDS
models and assessing the comparative performance of different detection algorithms. Furthermore, they
enable researchers to refine feature selection methodologies and test IDS robustness under various condi-
tions.

4.2 Preprocessing Steps
Data preprocessing is a crucial step to ensure the accuracy and reliability of experimental results. In our

research, we applied several data-cleaning techniques to address errors and inconsistencies in the dataset.
Preprocessing also helps remove noise, handle missing values, and normalize features, improving the model’s
performance and ability to generalize to unseen data. Precisely, we followed these procedures:

– For data samples where any feature value is missing, we eliminated those samples.
– For data samples where any feature value is NaN, we eliminated those samples.
– Any features possessing INF values were substituted by 1010.
– In the case of negative values, these were swapped out for 0.

For feature transformation, we used the following Formula (19):

X ←
log10 (X + 1)

10
(19)

After transformation, all feature values were scaled to fall within the range of [0, 1].
For label encoding, we used the One-hot Encoding method. In this study, we focus on binary

classification. Therefore, we are only concerned with whether the traffic is normal traffic or an attack. Table 3
describes the labels grouped as attacks from CICIDS2017 and CICDDoS2019.

After processing the data according to the outlined steps, we directly utilize them for training and eval-
uation. In this study, we prioritize evaluating the model performance on the original dataset. Consequently,
techniques like outlier removal or data augmentation are not applied.
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Table 3: Label categories

Normal Attack
BENIGN BENIGN, DoS Hulk, DoS GoldenEye, DoS Slowloris, DoS Slowhttptest,

HeartBleed, DDoS, LDAP, MSSQL, DNS, NetBIOS, NTP, UDP, SNMP, SSDP, Syn

4.3 Evaluation Metrics
In machine learning, performance metrics are indispensable for evaluating how well a model operates

and its overall efficiency. Such metrics offer a mechanism to gauge and contrast how models perform when
faced with specific challenges or tasks. In this study, the following key metrics were applied for performance
evaluation:

– Accuracy (Acc): Measures the proportion of predictions that were accurate out of the total predictions
made by the model.

– Precision (Prec): Measures the proportion of true positive outcomes in relation to the overall predicted
positive cases.

– Recall: Determines the fraction of true positives compared to the total number of actual posi-
tive instances.

– F1 score (F1): Delivers a harmonized metric that incorporates both precision and recall to give a
balanced evaluation.

– Fowlkes-Mallows Index (FM) [45]: Represents the geometric average of precision and recall, providing
a well-rounded measure particularly effective for reducing both false positives and false negatives.

The choice of metrics accuracy, precision, recall, F1 score, and Fowlkes-Mallows Index (FM) was driven
by the multifaceted nature of intrusion detection tasks. Accuracy provides a general overview of the model’s
correctness but may be misleading in imbalanced datasets where the majority class dominates. precision is
critical in minimizing false positives, especially in cybersecurity contexts where misclassifying benign traffic
as malicious can lead to resource wastage. On the other hand, recall emphasizes the ability to identify actual
attacks, minimizing false negatives that might leave threats undetected. F1 score harmonizes precision and
recall, offering a balanced metric for overall performance assessment. Finally, the Fowlkes-Mallows Index
complements these by providing a geometric mean of precision and recall, ensuring robustness in scenarios
with skewed distributions. In our study, precision and recall hold particular significance, as they directly
influence the system’s reliability in detecting and responding to threats. Precision ensures that detected
threats are genuine, while recall ensures comprehensive coverage of all potential attacks. This balance is
essential for an IDS to operate efficiently and effectively in dynamic and high-risk environments.

The calculations for these performance indicators are outlined in Formulas (20)–(24):

Accuracy = TP + TN
TP + FP + TN + FN

(20)

Precision = TP
TP + FP

(21)

Recall = TP
TP + FN

(22)
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F1 score = 2 × Precision × Recall
Precision + Recall

(23)

FM =
√

Precision × Recall (24)

where

– the TP is the number of true positive predictions.
– the TN is the number of true negative predictions.
– the FP is the number of false positive predictions.
– the FN is the number of false negative predictions.

4.4 Framework
For this research, a system running Ubuntu 20.04 was utilized. The machine is equipped with powerful

hardware, including an AMD Ryzen 5700X processor with eight cores and 16 threads, 96 GB of DDR4
RAM, and two GPUs—the Nvidia RTX2060 and RTX3070—serving as computational accelerators. As for
the framework employed in model development, we used PyTorch 2.0.1 + cu118, Sklearn 1.3.0 and Python
3.11.5, for programming and testing purposes.

In this experiment, the PyTorch framework was leveraged to construct the model, while Sklearn was
used to compute the performance metrics. To evaluate how well the model performed, we performed
ten distinct training iterations, each using a different random seed to vary the training process. Adam
was selected as the optimizer to enhance the model’s learning efficiency. The detailed configuration of the
parameters is presented in Table 4.

Table 4: Training parameters

Parameters Value
Learning rate 0.005
Weight decay 0.003

Optimizer Adam
Batch size 512

Training split ratio 0.7 training, 0.3 testing
Random seeds 0, 19, 58, 101, 205, 333, 487, 691, 827, 902, 1103, 1229, 1453, 1721, 27,449, 920,987

We employed 16 distinct random seeds to train the suggested model twenty times. Subsequently, we
calculated the average results to validate the model’s performance in closed sets. The data presented in Table 5
and Fig. 8 demonstrates the high efficacy of the model when applied to the closed dataset.

Table 5: Training outcomes on CICIDS2017-Wednesday

Dataset Acc Prec Recall F1 FM
2017/Wednesday 0.9985 0.9962 0.9995 0.9979 0.9978
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Figure 8: Known attack confusion matrix for CICIDS2017-Wednesday

4.5 Results and Analysis
4.5.1 Density Estimation

In the density estimation method, selecting the threshold based on the training sample’s log(Density)
values plays a crucial role, as it directly affects the system’s ability to classify samples. Data samples evaluated
with log(Density) values lower than the threshold are considered unknown samples. When a low threshold
is used, the system applies a stricter check, identifying fewer unknown samples. This helps reduce the
number of samples that require labeling by network experts and lowers the cost of system updates through
incremental learning. However, if the threshold is too low, the system risks missing important unknown
samples, decreasing detection efficiency.

In contrast, when a higher threshold is used, the system becomes less strict, resulting in more unknown
samples being identified. This includes some previously known samples, increasing the workload of network
experts for labeling and raising the cost of updates. Therefore, the threshold should be chosen carefully to
be small enough to detect unknown samples effectively but not so low that it misses important ones. A
well-considered threshold will optimize system performance and minimize operational costs.

In this study, we will estimate the Density of the CICIDS2017-Wednesday dataset in the training phase.
As mentioned earlier, the threshold here is set as the 1st percentile of the results, with a value of −23.30. Fig. 9
shows the density estimation for CICIDS2017-Wednesday.

In the evaluating phase, we will estimate the Density of other datasets to detect unknown attacks. If the
density value is smaller than the threshold, −23.30, the traffic will be marked as an unknown attack. Fig. 10
shows the density estimation for CICIDS2017-Friday.
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Figure 9: The Density histogram chart of CICIDS2017-Wednesday

Figure 10: The Density histogram chart of CICIDS2017-Friday

4.5.2 Density Estimation
The proposed methodology has demonstrated strong efficacy in countering known attacks. Afterward,

we initiated an evaluation to determine how well we could defend against unidentified DDoS threats. At the
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start, the CICIDS2017-Friday dataset was used to measure the effectiveness of our model. Table 6 displays
the outcomes and the comparisons.

Table 6: Results for detecting previously unknown DDoS attacks using CICIDS2017

Dataset Acc Prec Recall F1 FM
2017/Wednesday 0.9985 0.9962 0.9995 0.9979 0.9978

2017/Friday 0.7809 0.9964 0.6159 0.7612 0.7834

When analyzing the CICIDS2017-Friday dataset, the model achieved an accuracy score of 0.7809, with
other performance metrics showing favorable results. Since the CICIDS2017-Friday and -Wednesday datasets
were collected under similar conditions, they share specific characteristics, especially within the benign
traffic. However, the findings reveal that the standalone model struggles to detect newly emerging attacks.
Following this, we applied CICDDoS2019 to conduct additional assessments of the framework’s perfor-
mance. Table 7 highlights the detection outcomes and association analysis for the CICDDoS2019 dataset.

Table 7: Detection outcomes for unknown DDoS attacks prior to incremental learning

Dataset Acc Prec Recall F1 FM
2017/Friday 0.7809 0.9964 0.6159 0.7612 0.7834
2019/DNS 0.0006 0 0 0 0

2019/LDAP 0.0024 0 0 0 0
2019/MSSQL 0.0004 0.4 0 0 0.0004

2019/NTP 0.0117 0 0 0 0
2019/NetBIOS 0.0003 0.5 0 0 0.0004
2019/Portmap 0.0246 0 0 0 0
2019/SNMP 0.0002 0 0 0 0
2019/SSDP 0.0002 0.2142 0 0 0.0005
2019/Syn 0.0467 0.9992 0.0388 0.0747 0.1969

2019/UDP 0.0825 0 0 0 0

The model’s performance is significantly inadequate when assessing it using the CICDDoS2019 dataset.
Despite being collected by the same organization, the CICDDoS2019 and CICIDS2017 datasets exhibit
notable differences. The simulation environments and gathered features vary, and the model is unfamiliar
with the attack behaviors in the CICDDoS2019 dataset. As a result, the trained model erroneously classified
new attacks as normal network activity. In order to resolve this problem, incorporating an Unknown DDoS
Detection module into the model is crucial to enhance the system’s overall functionality.

4.5.3 Outlier Detection
In this study, the Outlier Detection Rate (ODR) was computed to evaluate how well the module performs

in detecting unknown DDoS attacks.

ODR = N
NOutl i er

(25)
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where NOutl i er indicates the quantity of unidentified samples flagged by our system for further examination
by network specialists, and N is the total number of samples processed.

Table 8 demonstrates that our Unknown DDoS Detection module performs exceptionally well in
identifying outlier samples.

Table 8: Unknown DDoS detecting module result

Datasets Outlier total detected Total samples Detection rates Detection rates (%)
2017/Friday 3216 225,745 0.0142 1.42
2019/DNS 1,855,348 5,074,382 0.3656 36.56

2019/LDAP 237,444 2,113,221 0.1124 11.24
2019/MSSQL 4,816,008 5,775,779 0.8338 83.38

2019/NTP 1,055,045 1,216,976 0.8669 86.69
2019/NetBIOS 2,087,032 3,455,893 0.6039 60.39
2019/Portmap 32,486 191,693 0.1695 16.95
2019/SNMP 1,317,863 5,161,365 0.2553 25.53
2019/SSDP 2,248,327 2,611,372 0.8610 86.09
2019/Syn 933,100 4,320,447 0.2160 21.60

2019/UDP 2,181,200 3,782,202 0.5767 57.67

CICIDS2017-Friday and -Wednesday datasets, having been gathered under identical conditions, show
high similarity. Consequently, the ODR for CICIDS2017-Friday is as low as 0.0142. On the other hand, the
ODRs for the CICDDoS2019 datasets show notable variation, spanning from 0.11 to 0.86.

4.5.4 Incremental Learning Results
Network specialists will examine and label suspicious samples after processing them using the Unknown

DDoS Detection module. The newly labeled data will then be utilized for incremental learning. This method
improves the machine learning model without necessitating total retraining. Our incremental learning
approach was comprehensively evaluated across multiple data splits from CICIDS2017 and CICDDoS2019,
where we gradually introduced new DDoS attack variants to update the model’s knowledge while retaining
performance on previously learned attacks. Throughout these successive training rounds, we carefully
tracked accuracy, F1 score, and open-set detection rates before and after each incremental step to confirm that
the system maintained robust recognition of older threats. This design closely mimics real-world scenarios
where novel DDoS vectors emerge over time, and our results show stable performance, indicating minimal
forgetting of existing knowledge and effective assimilation of unfamiliar traffic patterns. We also examined
precision/recall on old classes, accuracy and F1 scores on newly added attacks, and open-set detection
metrics for genuinely unknown behaviors to provide a balanced evaluation. The consistency across multiple
incremental phases, combined with consideration of practical constraints such as limited appearances of
newly emerging attacks, demonstrates the sufficiency of our current experiment design.

To ensure the robustness and generalization of our proposed model, we adopted multiple strategies
to mitigate potential overfitting issues. Cross-validation was employed using multiple random seeds to
evaluate the model’s performance across different data splits, reducing bias from a specific data partition.
The model was trained and validated for each iteration across varying subsets of the CICIDS2017 and
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CICDDoS2019 datasets. The average metrics over these folds confirm the consistency of the model’s
performance, demonstrating minimal variance.

Additionally, we incorporated Dropout regularization within the autoencoder layers to prevent the
model from over-relying on specific neurons during training. Dropout randomly deactivates a subset of
neurons, enhancing the model’s generalization ability to unseen data. This technique proved effective in
stabilizing performance and avoiding overfitting on known attacks. Experimental results validate that the
model maintains high accuracy and F1 scores, even after incremental learning on unseen datasets. The
model’s output after incremental learning is shown in Table 9.

Table 9: Comparison of DDoS detection performance before and after incremental learning

Dataset Incremental learning Acc Prec Recall F1 FM

2017/Wednesday Before 0.9985 0.9962 0.9995 0.9979 0.9978
After 0.9972 0.9975 0.997 0.9972 0.9972

2017/Friday Before 0.7809 0.9964 0.6159 0.7612 0.7834
After 0.9972 0.9988 0.9962 0.9975 0.9975

2019/DNS Before 0.0006 0 0 0 0
After 0.9999 0.9999 0.9999 0.9999 0.9999

2019/LDAP Before 0.0024 0 0 0 0
After 0.9998 0.9999 0.9999 0.9999 0.9999

2019/MSSQL Before 0.0004 0.4 0 0 0.0004
After 0.9999 0.9999 0.9999 0.9999 0.9999

2019/NTP Before 0.0117 0 0 0 0
After 0.9942 0.9995 0.9946 0.997 0.997

2019/NetBIOS Before 0.0003 0.5 0 0 0.0004
After 0.9999 0.9999 0.9999 0.9999 0.9999

2019/Portmap Before 0.0246 0 0 0 0
After 0.9991 0.9997 0.9993 0.9995 0.9995

2019/SNMP Before 0.0002 0 0 0 0
After 0.9999 0.9999 0.9999 0.9999 0.9999

2019/SSDP Before 0.0002 0.2142 0 0 0.0005
After 0.9927 0.9999 0.9928 0.9963 0.9963

2019/Syn Before 0.0467 0.9992 0.0388 0.0747 0.1969
After 0.9998 0.9999 0.9999 0.9999 0.9999

2019/UDP Before 0.0825 0 0 0 0
After 0.9999 0.9999 0.9999 0.9999 0.9999

The model has significantly improved in performance after incremental learning. An accuracy gain
of roughly 0.2 has been achieved for the CICIDS2017-Friday dataset with an ODR rate of 0.0142. All of
the measured parameters for the CICDDoS2019 dataset surpassed 0.99, which was the expected value.
Remarkably, for certain datasets of CICDDoS2019, such as LDAP, Portmap, SNMP, and Syn, the Outlier
Detection Rate (ODR) is not very high, remaining below 26% (Table 5). However, the results are still
outstanding, similar to those of other datasets. This illustrates how well the suggested model separates known
from unknown traffic. The majority of samples that are marked as unknown are not acquainted with the
system and improve performance. The incremental learning process does not only enhance the autoencoder
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and classifier modules. It also helps improve the SINF system, which is the core of the unknown detection
module. Through this process, density estimation for new samples is performed. Since new samples used for
incremental learning have scores lower than the threshold, the threshold will be adjusted to a value smaller
than the previous one. This ensures the system’s sensitivity to new patterns. As a result, the system’s maximum
degree of assurance on its capacity to identify unknown assaults is provided.

This result also demonstrates the effective generalization capability of the model, as it was trained
on the CICIDS2017 dataset and can detect and update unknown samples on the unknown CICDDoS2019
dataset. Both datasets were collected by the Canadian Institute for Cybersecurity and utilized a similar
feature extraction method (NetFlow), exhibiting a certain compatibility level. However, for other datasets,
we will need to conduct separate studies while exploring feature mapping or transformation methods due
to differences in data collection and feature extraction methods. This ensures an objective and accurate
evaluation of the model’s performance on these datasets.

4.5.5 Comparison
For the comparison, we drew extensively on current research on DDoS attack detection. Cho-

sen algorithms include Stacked Auto-Encoders (SAE) [37], Random Forest and Decision Tree (RF &
DTC) [38], CNN-LSTM Hybrid [39], Multilayer Perceptron [46], Deep Neural Network with Genetic
Algorithms [47], and AlexNet with Fuzzy C-Means clustering [14]. Each algorithm underwent evaluation
using the CICIDS2017 dataset to detect previously known DDoS attacks. Table 10 compares our approach
and other modern machine learning algorithms following incremental learning.

Table 10: A comparison of our approach against recent machine learning studies on the CICIDS2017

Methodology Acc Prec Recall
SAE (2022) 0.982 0.971 0.975

RF&DTC (2022) 0.9813 0.9521 0.9851
CNN-LSTM hybrid (2024) 0.9948 0.9925 0.9969

MLP (2023) 0.992 0.971 0.966
DNN-GA (2023) 0.9906 0.9896 0.9915
CNN-Geo (2023) 0.9985 0.9962 0.9944

AlexNet-FCM (2024) 0.9976 0.9944 0.9991
Proposed method 0.9985 0.9962 0.9995

Our method’s performance metrics surpass those obtained by SAE, RF&DTC, CNN-LSTM Hybrid,
DNN-GA, MLP, CNN-Geo, and AlexNet-FCM. The performance indicators, such as accuracy, precision,
and recall, are on par with or exceed the results of competing algorithms. Compared to SAE, our approach
provides better adaptability to dynamic datasets through incremental learning, while SAE requires retraining
from scratch when encountering new attack patterns. Similarly, RF & DTC exhibit strong anomaly detection
capabilities but struggle with scalability in real-time environments, an area where our approach excels due
to its computational efficiency during incremental updates.

We then compared our approach to other algorithms to identify previously unknown attacks. The
selection of algorithms for comparison included GMM [11], DBSCAN combined with SVM (DBSCAN-
SVM) [12], DBSCAN paired with Random Forest (DBSCAN-RF) [12], a Convolutional Neural Network
utilizing geometrical Metrics [13], 1D-DHRNet-OCSVM [48], and AlexNet integrated with Fuzzy C-Means
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clustering [14]. Each algorithm was trained using the CICIDS2017 dataset and tested across other datasets
CICDDoS2019. The overall system’s performance metrics can be found in Table 11.

Table 11: A comparison of our approach against recent machine learning studies on detecting unknown DDoS attacks

Methodology Acc Prec Recall
GMM (2021) – 0.9700 0.95

DBSCAN-SVM (2022) 0.314 0.998 0.312
DBSCAN-RF (2022) 0.148 0.998 0.145

CNN-Geo (2023) 0.996 0.997 0.996
1D-DHRNet-OCSVM (2023) 0.992 0.999 0.991

Alexnet-FCM (2024) 0.996 0.999 0.997
Proposed method 0.993 0.999 0.993

Our approach shows marginally higher performance metrics than GMM (2021) and 1D-DHRNet-
OCSVM (2022). Our performance metrics have slight and negligible differences compared with CNN-Geo
(2023) and ALexnet-FCM (2024). When considering known and unknown attack detection scenarios,
our results are on par with or exceed the effectiveness of alternative methods. The CNN-LSTM Hybrid
method demonstrates excellent accuracy; however, its high training complexity limits scalability on large
datasets. In contrast, our method maintains comparable accuracy while optimizing computational efficiency
through incremental updates. Similarly, DNN-GA performs effectively in structured datasets but struggles
with irregular patterns often seen in unknown DDoS attacks. Our Autoencoder-SINF integration addresses
this limitation by providing stable and adaptive density estimation mechanisms. CNN-Geo, 1D-DHRNet-
OCSVM, and AlexNet-FCM all demonstrate high detection accuracy and precision, particularly in struc-
tured datasets. However, they share a significant limitation: computational intensity, especially when applied
to large-scale datasets, poses challenges for real-time scalability and deployment in resource-constrained
environments. In contrast, our approach balances precision and scalability by leveraging efficient density
estimation via SINF and incremental learning mechanisms, enabling our system to adapt dynamically to
evolving threats without excessive computational overhead.

4.6 Discussion
4.6.1 Incremental Learning Performance Across Datasets

The analysis of the experimental results is visualized in Fig. 11, comparing the performance metrics
before and after the incremental learning process on multiple datasets. These radar charts provide a
comprehensive view of key evaluation metrics, including precision, recall, accuracy, and F1 score. Fig. 11a,b
represents the outcomes for the CICIDS2017-Wednesday and -Friday datasets, respectively, while Fig. 11c,d
highlights the results for the CICDDoS2019 LDAP and the CICDDoS2019 SYN datasets.

The results on the CICIDS2017-Wednesday dataset (Fig. 11a) show that incremental learning did not
significantly change the detection performance on the training dataset. Key metrics like accuracy, precision,
recall, and F1 score remain stable before and after the learning update. This indicates that adding new
data does not cause the system to “forget” what it learned from older datasets. The system performs well
on the previous dataset, showing that it can adapt to new information without losing its effectiveness on
known attacks.
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Figure 11: Compared outcomes before and after incremental learning on multiple datasets

The evaluation results on the CICIDS2017-Friday dataset (Fig. 11b) show a different pattern than
Wednesday’s. Before incremental learning, the detection metrics were already fairly decent, largely because
this dataset was collected in the same environment as the Wednesday training set. The similarity between
these datasets means the system could detect known patterns effectively, even before updating the model.
However, after applying incremental learning, there is a noticeable improvement across all key metrics,
confirming that the updated model better captures common and subtle variations in attack behavior without
compromising its original detection capabilities. This emphasizes that although the initial performance was
good, incremental learning further enhances the system’s adaptability and precision.

The results on the CICDDoS2019 LDAP dataset (Fig. 11c) show a noticeable difference compared to
CICIDS2017. The initial detection performance was poor since CICDDoS2019 was collected in a different
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environment with different attack scenarios. The model struggled to identify these new attacks because it
was initially trained on CICIDS2017 data, which has various features and behaviors. However, after applying
incremental learning, the performance metrics improved significantly. This shows that incremental learning
allows the model to adapt to new attack patterns from different environments, making it more effective at
detecting a wider range of threats.

Following the improvements seen with the CICDDoS2019 LDAP dataset, the results for the CICD-
DoS2019 SYN dataset present an interesting anomaly in Fig. 12. Before incremental learning, precision was
unusually high despite other metrics like recall and F1 scores being much lower.

Figure 12: Unknown detection mechanism

4.6.2 Impact of Threshold Adjustment on Outlier Detection and Model Performance
One key aspect influencing anomaly detection systems’ performance is the threshold selection for

identifying outliers. In our approach, the initial threshold was set at the 1st percentile of the anomaly
scores, resulting in a value of −23.30. However, during incremental learning with newly detected unknown
samples, it became evident that this threshold might not fully optimize the balance between sensitivity
and specificity when dealing with evolving datasets. To address this, we recalculated the threshold using a
subset of data, specifically the CICIDS2017-Wednesday dataset combined with unknown samples from the
CICIDS2017-Friday dataset, resulting in a refined threshold value of −24.07.

The new threshold was then applied across three representative datasets, LDAP, MSSQL, and NTP, to
evaluate its impact on outlier detection and overall system performance. The results revealed a reduction in
detected outliers across all three datasets compared to the initial threshold, as shown in Table 12.
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Table 12: Performance metrics after incremental learning

Dataset Acc Prec Recall F1 FM
LDAP 0.9998 0.9999 0.9998 0.9999 0.9998

MSSQL 0.9999 0.9999 0.9999 0.9999 0.9999
NTP 0.9994 0.9998 0.9996 0.9997 0.9997

The results indicate that the overall performance metrics remain consistently high despite the reduc-
tion in detected outliers. This suggests that the outliers identified using the refined threshold are highly
representative and contribute meaningfully to the incremental learning process.

Adjusting the threshold based on dataset characteristics has significant implications for system opti-
mization. While a strict percentile-based threshold (1st percentile) ensures sensitivity, it may introduce
unnecessary computational overhead and include borderline anomalies with limited representational value.
In contrast, fine-tuning the threshold based on dataset-specific characteristics enables better trade-offs
between detection sensitivity and computational efficiency. The refined threshold effectively reduced com-
putational overhead by filtering less representative anomalies while maintaining high performance across
key metrics. This adjustment highlights the importance of dynamic threshold tuning in balancing detection
sensitivity and efficiency, especially in evolving datasets. This presents a promising direction for our future
research, where we aim to develop adaptive thresholding mechanisms to enable real-time self-optimization,
enhancing the system’s scalability and reliability in dynamic cybersecurity environments.

4.6.3 Research Challenges and Future Improvements
The proposed SINF-based framework addresses key challenges in IDS, particularly false positive reduc-

tion, deployment complexities, and broader applicability to diverse cybersecurity problems. Reducing false
positives is critical, as misclassifying benign traffic as malicious can result in unnecessary alerts and resource
overhead. Using a density-based threshold optimized with the 1st percentile of log density values effectively
distinguishes benign traffic from anomalies, as demonstrated in Figs. 9 and 10. Incremental learning further
enhances the model by incorporating newly labeled data, improving precision from 0.9964 to 0.9988 on the
CICIDS2017-Friday dataset (Table 9), while maintaining high recall. This refinement significantly reduces
false positives, as highlighted by confusion matrices in Fig. 12. Future work will further explore adaptive
thresholding and adversarial training to minimize false alarms in dynamic environments.

Deploying the system in real-world scenarios introduces challenges, including system integration and
resource requirements. Integration with existing infrastructures may face compatibility issues, particularly
in legacy systems. A modular design with standardized APIs can streamline deployment without disrupt-
ing operations. The computational demands of SINF, especially in real-time scenarios, can be mitigated
through GPU acceleration, parallel computing, and adaptive slicing strategies. For resource-constrained
environments such as IoT networks, lightweight models optimized via feature prioritization, quantization,
and pruning ensure efficiency while preserving accuracy. These strategies collectively enhance the system’s
scalability and adaptability across diverse operational contexts.

In addition to its high detection accuracy, the proposed system provides interpretability through the
SINF density estimation mechanism. By analyzing the probability distributions learned through SINF,
the model can highlight specific feature distributions associated with suspicious flows. For flagged alerts,
SINF identifies deviations in density values, which can serve as interpretable insights for security analysts.
These insights help understand which aspects of the network traffic caused the system to classify a flow
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as anomalous or unknown. This interpretability is particularly valuable in practical settings, as it enables
analysts to investigate alerts efficiently and validate the model’s decisions, thereby improving trust and utility
in real-world deployment.

Furthermore, the iterative slicing approach used in SINF retains the underlying structure of high-
dimensional traffic data, which aids in identifying key features that contribute most to the detection of novel
attacks. This interpretable information bridges the gap between automated decision-making and human
analysis, allowing for actionable insights that enhance incident response and mitigation. These efforts aim to
refine the system into a more scalable, adaptable, and resilient solution for modern cybersecurity challenges.

5 Conclusion
By adding Sliced Iterative Normalizing Flows to intrusion detection systems (IDS), this paper describes a

new way to improve the detection of unknown DDoS attacks. Traditional IDS models struggle with detecting
novel attacks due to their reliance on predefined signatures and extensive labeled datasets. Our suggested
method uses SINF’s ability to change probability distributions repeatedly using the sliced Wasserstein
distance. This gives us a reliable way to estimate Density and make good samples even when we only have a
small amount of data. Using OSR techniques, the system can find and classify attack patterns that have not
been seen before. This solves important problems related to uncertainty and changing cyber threats.

Evaluations of the CICIDS2017 and CICDDoS2019 datasets show that the combined method keeps
detection rates high and lowers the number of false positives. This makes it a scalable and valuable way to
protect real-time networks. The research highlights the potential of combining deep learning algorithms
like SINF with OSR frameworks to enhance the resilience of IDS against both known and unknown threats.
Applying such techniques could be extended to other domains of cybersecurity, paving the way for more
adaptive and intelligent defense mechanisms in the ever-evolving landscape of cyber threats.
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