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ABSTRACT: The increasing adoption of Industrial Internet of Things (IIoT) systems in smart manufacturing is
leading to raise cyberattack numbers and pressing the requirement for intrusion detection systems (IDS) to be
effective. However, existing datasets for IDS training often lack relevance to modern IIoT environments, limiting their
applicability for research and development. To address the latter gap, this paper introduces the HiTar-2024 dataset
specifically designed for IIoT systems. As a consequence, that can be used by an IDS to detect imminent threats.
Likewise, HiTar-2024 was generated using the AREZZO simulator, which replicates realistic smart manufacturing
scenarios. The generated dataset includes five distinct classes: Normal, Probing, Remote to Local (R2L), User to
Root (U2R), and Denial of Service (DoS). Furthermore, comprehensive experiments with popular Machine Learning
(ML) models using various classifiers, including BayesNet, Logistic, IBK, Multiclass, PART, and J48 demonstrate high
accuracy, precision, recall, and F1-scores, exceeding 0.99 across all ML metrics. The latter result is reached thanks to
the rigorous applied process to achieve this quite good result, including data pre-processing, features extraction, fixing
the class imbalance problem, and using a test option for model robustness. This comprehensive approach emphasizes
meticulous dataset construction through a complete dataset generation process, a careful labelling algorithm, and a
sophisticated evaluation method, providing valuable insights to reinforce IIoT system security. Finally, the HiTar-2024
dataset is compared with other similar datasets in the literature, considering several factors such as data format, feature
extraction tools, number of features, attack categories, number of instances, and ML metrics.
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1 Introduction
The emergence of the Industrial Internet-of-Things (IIoT) has accompanied in a new generation of

connectivity, seamlessly linking machines, sensors, and control systems [1]. Despite the unprecedented
opportunities for application real-time boosting and decision-making based on data, this integration brings
forth profound cybersecurity challenges. Security stands as a paramount concern in the IIoT landscape, with
interconnected systems facing escalating risks of cyber-attacks that span from operational disruptions to
compromising sensitive data and worker safety [2]. Furthermore, cyber-attacks on manufactories can be very
harmful, like German Steel Mill Thyssenkrupp in 2014 and Norsk Hydro Aluminum incidents in 2019 [3].
Recently, in 2023, a proposed architecture can prevent session hijacking and address resolution protocol
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(ARP) spoofing attacks. The latter attack is prevented by mapping all MAC addresses automatically to their
respective IP addresses in a flexible manufacturing simulator network [4].

In the state-of-the-art, various solutions are proposed to fix cyber-attack issues in the smart manufac-
turing environment, such as blockchain (BC) and machine learning (ML) approaches. On the one hand, BC
components based on smart contracts is proposed to guarantee data integrity related to the sensors access
control system in the IIoT context [5–8]. On the other hand, ML is very useful in cyber-attack detection
based on supervised classifiers [9–12].

To address these challenges, we introduce the HiTar-2024 dataset, a meticulously crafted LOG-based
dataset designed to fortify IIoT security. HiTar-2024 captures detailed IIoT device activities, events, and
anomalies, facilitating rapid attack detection, performance monitoring, and understanding of abnormal
behaviors. This research propels us to the forefront of IIoT cybersecurity, with a primary focus on the
state-of-the-art construction of the HiTar-2024 dataset. Our exploration involves meticulous scrutiny of
methodologies for generating robust datasets, underscoring best practices [13]. Additionally, we delve into
various attack scenarios encountered by Industrial IoT systems, shedding light on attack mechanisms and
potential impacts on operations [14]. To evaluate HiTar-2024’s effectiveness in classifying cyberattacks, we
employ supervised ML techniques by using the WEKA tool [15]. Our research unfolds in two pivotal phases:
the first involves the meticulous generation of LOG files from the AREZZO industrial simulator, creating a
realistic environment [16]; the second entails leveraging HiTar-2024 for attack classification. The approach
involves sophisticated supervised ML algorithms within the WEKA tool, assessing detection capabilities
within a simulated industrial context [17]. The experimental phase unfolds as a meticulous analysis of
algorithmic performance, representing a crucial juncture in our pursuit of bolstering security for IIoT
systems. This phase is designed to provide nuanced insights into the capabilities of our approach, focusing
on the precise identification and classification of simulated cyber-attacks within the generated HiTar-2024
dataset. Employing sophisticated supervised ML algorithms within the WEKA tool, we subject the HiTar-
2024 dataset to rigorous evaluation in a simulated industrial context. The chosen algorithms undergo training
with the dataset to develop robust intrusion detection models. Subsequently, the models are rigorously tested
against various attack scenarios, assessing their ability to accurately identify and classify anomalies.

It is crucial to clarify that while the environment is simulated, the interactions within it are real. This
distinction is essential for several reasons. Firstly, it ensures that the HiTar-2024 dataset accurately reflects
real-world scenarios, thereby enhancing its applicability and reliability in practical settings. By simulating the
environment, we can control and replicate various conditions to test the robustness of the intrusion detection
system (IDS). However, the interactions being real means that the data generated from these interactions is
authentic and representative of actual network behavior and potential threats. This approach combines the
benefits of a controlled experimental setup with the authenticity of real-world data, thereby ensuring the
scientific rigor and validity of the HiTar-2024 and its applications.

The assessment encompasses diverse attack mechanisms and potential impacts on industrial operations,
mirroring real-world challenges faced by IIoT systems. Through this process, we aim to not only quantify the
accuracy of detection but also understand the models’ resilience in distinguishing between routine activities
and security threats. The results obtained from this in-depth exploration serve as a beacon guiding the
viability and effectiveness of our approach in realistic scenarios. The findings shed light on the strengths and
limitations of the HiTar-2024 dataset and its integration with supervised ML techniques. As a testament to its
innovative contributions, HiTar-2024 emerges as a pivotal tool in the arsenal of IIoT cybersecurity, ensuring
a robust defense against evolving cyber threats in industrial settings.

Our approach is based on two major axes: the first step involves the careful generation of LOG files from
the AREZZO industrial simulator while simulating an industrial fabrication process. This simulator offers a
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realistic simulation environment, faithfully reproducing authentic industrial scenarios. The goal is to capture
a variety of activities and events reflecting the complexity of a real-world industrial context. The LOG files
thus obtained constitute the cornerstone of our dataset, and we take particular care to guarantee the diversity
of the data generated to ensure the representativeness of the whole. In the second phase of our study, we
focus on using this newly created dataset for attack classification. By exploiting sophisticated supervised ML
algorithms integrated through the WEKA tool, we aim to evaluate the attack detection capacity in a simulated
industrial context. The obtained results can be used by an IDS based on ML algorithms to detect threats in the
context of the IIoT environment. Then, an evaluation of the performance of the IDS is performed through
several metrics such as accuracy, precision, sensitivity and F-measure.

Existing datasets used for cyber-attack detection like CAIDA [12], UNSW-NB15 [13], KDD99 [17],
NSLKDD [18], CICIDS17 [19], IoTHIDS [20] and IoT-SH [21] offer valuable insights into network security,
but they primarily focus on general IoT or legacy systems and fail to capture the complexities of modern
IIoT environments. While datasets such as TON-IoT and Edge-IIoTset are more relevant to IIoT, they still
lack specific industrial attack scenarios. HiTar-2024, generated using the AREZZO simulator, fills this gap
by focusing on smart manufacturing environments. With five attack classes, including Normal, Probing,
Remote to Local (R2L), User to Root (U2R), and Denial of Service (DoS) as intrusion types, it provides a
more realistic and diverse dataset for training IDS in IIoT systems, addressing the unique challenges faced
in industrial cybersecurity.

The main contributions of the paper are given as follows:

• Traffic classification is based on five classes: Normal, Probing, R2L, U2R and DoS.
• Traffic labelling description by checking conditions for each traffic class.
• HiTar-2024 dataset generation process from an industrial environment simulator.
• Performance analysis of the HiTar-2024 dataset with various ML classifiers.
• Comparison between the HiTar-2024 dataset and similar one in the literature.

The paper is organized into the following sections: The second section presents the state of the art of the
existing dataset in the IoT environment. Section 3 exhibits the AREZZO industrial simulator. Section 4 intro-
duces the IDS algorithm description, followed by the HiTar-2024 dataset process generation in Section 5.
Then, a performance evaluation of the generated HiTar-2024 dataset was performed using a supervised ML
technique, as shown in Section 6. Finally, a conclusion is drawn at the end of this contribution.

2 State of the Art for Existent IoT Dataset
Table 1 exhibits the existent Datasets for IoT applications from 1999 until 2023 as function of the year

of generation, name, features number, attack classes and description.
The first dataset is KDD’99, which was created by DARPA 98 IDS evaluation program in 1999 [17]. The

latter was generated from tcpdump data based on seven weeks of network traffic and contains 41 features and
four attack classes. The four attack classes include Probing, R2L, U2R, and DoS attacks. Then, the NSLKDD
is known as an enhanced version of KDD’99 dataset by removing duplication and reducing the size [18]. It
contains 42 features and the same four attack classes, such as Probing, R2L, U2R and DoS attack.

Fig. 1 represents the attack classification through four classes: Probing, R2L, U2R and DoS attacks.
Probing: Attackers use a variety of tools to discover open entry points, identify active services,

determine system types, and pinpoint software specifics. They may take advantage of common oversights
such as unchanged default security settings, known weaknesses in software, and setup mistakes to infiltrate
protected networks. Additionally, they might use deceptive tactics to extract information from individuals
or system overseers.
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Attack 
Classification

Probing

NMAP commands

Remote to Local

( R2L)

Rlogin, SSH, 
Telnet

User to Root

(U2R)

Sudo, Su, FTP

Denial of Service

(DoS)

Hping3

Figure 1: Attack classification used during attack scenario in AREZZO environment

R2L: Attackers explore networks using MiM attacks to intercept and manipulate network traffic. They
often exploit weaknesses in network protocols, insecure connections, and misconfigurations to gain access
to internal networks. They can also use malware to establish persistent connections, thereby compromising
network security. Common techniques include identity theft, interception of sensitive data, and compromise
of data integrity.

U2R: Attackers explore target systems to identify software vulnerabilities, configuration errors, and
design weaknesses that could allow them to take control of the system as a privileged user. They often
use techniques such as privilege escalation, executing malicious code, manipulating file permissions, and
creating backdoors to ensure continued access. Common techniques include using malware, exploiting
known vulnerabilities, and using brute force attacks to compromise credentials.

DoS: Attackers use botnets and distributed DoS (DDoS) attacks to overwhelm the resources of target
systems, causing downtime and disruption. They often exploit vulnerabilities in network protocols, web
services and applications to generate massive traffic. They can also use flood attacks to overload servers
with malicious requests. Common techniques include sending malformed data packets, misusing legitimate
protocol requests, and consuming excessive system resources.

CICIDS dataset is characterized by wide attack diversity and complete network configuration [19]. In
addition, CICIDS contains BENIGN, Bot, DDoS, DoS GoldenEye, DoS Hulk, DoS Slowhttptest, PortScan,
SQL Injection, Brute Force attack classes. The IoTHIDS dataset was introduced in 2018 and proposed a
dataset based on domestic IoT network traffic infected by IoT botnet malwares [20]. The covered botnet
related to DDoS attacks on IoT devices are Mirai, Hajime, Aidra, Bashlite, Dofloo, Tsunami, and Wroba. The
authors propose a three-layer based-IDS using a supervised approach to detect cyber-attacks on IoT smart
home networks [21]. Nonetheless, the range of popular network-based cyber-attacks detected covered DoS,
MiM/spoofing, reconnaissance, and replay attacks. Also, the generated dataset extracts 121 features from
TCPDUMP captured packet. In 2020, Alsaedi et al. [22] proposed a new dataset for both IoT and IIoT IDS
composed of 127 features and 8 attack classes. The latter attack classes include Normal, DDoS, DoS, injection,
Man in the middle (MiM), Password, XSS, and Scanning attacks. The IoT-23 dataset consists of 23 attack
scenarios for various IoT network traffic created by Avast AIC laboratory [23]. The IoT-23 dataset contains
8 classes attack such as C&C, DDoS, FileDownload, HeartBeat, Mirai, Okiru, PartOfAHorizontalPortScan
and Torii.

The HIKARI-2021 dataset is generated from tcpdump traffic capture [24]. It contains benign and
encrypted network traffic. Also, the dataset contains 86 features, two benign traffic categories and four attack
categories. The four attack categories are Bruteforce, Bruteforce-XML, Probing and XMRIGCC CryptoMiner.
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In 2022, Ferrag et al. generated an Edge-IIoTset dataset that could be used by an IDS based on centralized and
federated learning for IoT and IIoT applications [25]. The generated dataset contains five classes’ attacks, such
as DoS/DDoS attacks, Information gathering, MiM, Injection and Malware attacks. Finally, a comparison of
centralized model performance and federated deep learning approach is performed in the paper in terms of
F1-score, Recall, and Precision under multi-class classification approach.

Likewise, the authors published a gathered dataset for Linux-based IoT devices [26] in 2022. The
IoT Linux dataset is generated based on the simulation of random attacks. Finally, for CICIoT dataset
generation [27], two steps were used, including benign data generation and attack framework execution. In
addition, the attack framework involves DDoS, DoS, Reconnaissance, Web-based, brute force, ARP spoofing,
and Mirai attacks to an IoT topology.

Table 1: Related works to existent dataset for IoT

Years Dataset name Features
number

Attack classes Description

1999 KDD [17] 41 Probing, R2L, U2R, DoS. The dataset is generated from
tcpdump data based on 7
weeks of network traffic.

2009 NSLKDD [18] 42 Probing, R2L, U2R, DoS. An enhanced version of
KDD’99 dataset.

2017 CICIDS [19] 83 BENIGN, Bot, DDoS, DoS
GoldenEye, DoS Hulk, DoS
Slowhttptest, PortScan, Sql

Injection, Brute Force.

CICIDS dataset is
characterized with wide

attack diversity and Complete
Network configuration.

2018 IoTHIDS [20] 6 Mirai, Hajime, Aidra,
Bashlite, Dofloo, Tsunami,

and Wroba.

IoTHIDS proposes a dataset
based on domestic IoT

network traffic infected by
IoT botnet malwares.

2019 IoT-
SH [21]

121 DoS, MiM/spoofing,
reconnaissance, and replay.

The authors propose a
three-layer IDS that uses a

supervised approach to
detect a cyber-attack on IoT

networks.
2020 TON-

IoT [22]
127 Normal, DDoS, DoS,

Injection, MiM, Password,
XSS, Scanning.

A telemetry dataset is
proposed for both IoT and

IIoT applications.
2020 IoT-

23 [23]
21 C&C, DDoS, FileDownload,

HeartBeat, Mirai, Okiru,
PartOfAHorizontalPortScan,

Torii.

The IoT-23 dataset consists of
twenty-three attacks

scenarios of different IoT
network traffic created by

Avast AIC laboratory.
2021 HIKARI [24] 86 Background, Benign,

Bruteforce, Bruteforce-XML,
Probing, XMRIGCC

CryptoMiner.

The dataset contains benign
and encrypted network

traffic.

(Continued)
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Table 1 (continued)

Years Dataset name Features
number

Attack classes Description

2022 Edge-
IIoTset [25]

61 DoS/DDoS attacks,
Information gathering, MiM

attacks, Injection attacks,
Malware attacks.

The generated Edge-IIoTset
datset could be used by an

IDS based on centralized and
federated learning.

2022 IoT
Linux [26]

– Simulation of random
attacks.

Authors publish a gathered
dataset for Linux-based IoT

devices.
2023 CICIoT2023 [27] 47 Benign, DDoS, DoS,

Reconnaissance, Web-based,
brute force, spoofing, and

Mirai.

Seven attack classes are
performed to generate the

CICIoT dataset.

The HiTar-2024 stands out from existing intrusion detection datasets by focusing specifically on IIoT
manufacturing scenarios using the AREZZO simulator to generate realistic and detailed traffic logs. Unlike
older datasets like KDD CUP 99 [17] and NSL-KDD [18], which are outdated and lack relevance to modern
IIoT environments, or more general-purpose datasets like CICIDS2017 [19] and BoT-IoT [28], HiTar-
2024 addresses unique industrial challenges by categorizing attacks into five IIoT-relevant classes: Normal,
Probing, R2L, U2R, and DoS. It bridged the gaps left by other datasets, such as limited focus on industrial
applications, outdated traffic patterns, or insufficient granularity, making it a critical resource for developing
robust and realistic intrusion detection systems tailored to smart manufacturing environments.

3 IIoT Environment Description
Alternative simulation tools such as NS-3 and OMNeT++ are commonly used for network simulation

but suffer from a lack of industrial-specific scenario simulation required for IIoT environments. For this
reason, AREZZO was chosen for its high flexibility, realism, and ability to accurately model industrial
network traffic, making it ideal for simulating smart manufacturing scenarios and generating realistic benign
and malicious traffic for HiTar-2024.

AREZZO is a project created by LAMIH Lab [29], and it is defined as an emulator of a flexible
manufacturing system (FMS) satisfying to the “Bench4star” benchmark. The latter is composed of two main
components, including “Emulator”, which emulates a cell and “Pilot”, which permits handling the emulator
through client-server communication, as shown in (Fig. 2a and b).

AREZZO is a simulator build to simulate industrial components and process representing a complete
manufacturing environment. It incorporates the monorail conveying system with eleven transfer blocks
allowing the flexible routing of up to fifteen identified shuttles via a radio frequency identification (RFID)
tagged across seven workstations in charge of achieving particular operations such as robotic assembly and
monitor on manufactured products. Each product is linked with a dedicated shuttle during its manufacturing
cycle and has to be conveyed on this shuttle from one station to another, respecting a specific plan.

Fig. 3a depicts a view of the real set up composed of workstations and their relative locations, Fig. 3b
presents the automation network architecture.



Comput Mater Contin. 2025;82(3) 4541

Figure 2: The AREZZO Tool: (a) Arezzo emulator, (b) Arezzo pilot

Figure 3: (a) General view of workstations and their locations, (b) Aip-Primeca cell physical architecture

According to Fig. 3b, levels L0 and L1 called also shop floor are composed of controllers, workstations,
shuttle stop and go, RFID Reader/Write device, and an Ethernet-switched automation network [30]. The
physical topology used to connect all equipment is called Modbus through the automation network
(Ethernet-FMS cell). The Ethernet-FMS cell involves up to 26 Modbus/Transport Control Protocol (Mod-
bus/TCP) servers. On the other hand, level L2 is defined as the high-level control (HLC) layer. The latter level
is responsible for resolving conflict among workstations when accessing the common Modbus and defining
the routing of the work in progress over time through shuttles, leading to the good execution of the work
according to the process plan on the available resources.

HiTar-2024 includes five classes: Normal, Probing, R2L, U2R, and DoS. Among these, Probing, R2L,
U2R, and DoS are intrusion classes, representing malicious activities such as scanning, unauthorized access,
privilege escalation, and service disruption. The normal class represents benign traffic.

4 Dataset Generation Process
Fig. 4 represents the proposed HiTar-2024 dataset generation process. The first step in the process starts

with running an IIoT scenario in the AREZZO environment. The second step involves benign and attack
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scenario generation. Benign scenario leads to benign LOG. However, the attack scenario leads to probing
LOG, R2L LOG, U2R LOG and DoS LOG. The last step consists to group the various LOGs into one dataset,
as shown in Fig. 4.

Figure 4: The proposed HiTar-2024 dataset generation process

The HiTar-2024 dataset is created using the AREZZO simulator, which provides a controlled, simulated
environment for smart manufacturing scenarios. Despite the simulated setting, the interactions captured
within this environment are based on real-world network behaviors and threats. This approach ensures that
the dataset combines the benefits of a controlled experimental setup with the authenticity of real-world data.
By doing so, it enhances the dataset’s relevance and reliability for developing effective security measures in
IIoT systems, highlighting its scientific and practical value.

As shown in Table 2, the HiTar-2024 dataset is composed of 39 extracted features compared to 7
extracted features in Hitar-2023 [31]. The HiTar-2024 dataset employs a comprehensive feature selection
approach to accurately capture and label network traffic data. The dataset includes 39 attributes, each serving
a specific purpose in identifying and classifying network behaviors. The Timestamp attribute records the
connection time in seconds, while IP_SRC and IP_DST capture the source and destination IP addresses,
respectively. PORT_SRC and PORT_DST denote the port numbers of the source and destination machines.
The PROTOCOL attribute specifies the type of protocol used, such as TCP, UDP, or ICMP. The Flag attribute
indicates the corresponding flag used in the connection, with additional Boolean attributes (e.g., f-SYN,
f-SYNACK, f-ACK) representing specific flag conditions. The Service attribute identifies the service type,
with Boolean attributes (e.g., sr_FTP, sr_SSH, sr_HTTP) indicating specific services. Finally, the Attack_type
attribute labels the data as Normal, Probing, R2L, U2R, or DoS. This detailed feature selection ensures that
the dataset captures all relevant aspects of network traffic, facilitating accurate detection and classification of
various attack types.

Table 2 gives the attributes number, the attribute’s name, the attribute’s type and the attribute description
for the HiTar-2024 dataset.
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Table 2: HiTar-2024 dataset features description

Attribute’s
number

Attribute’s name Attribute’s type Description

1 Timestamp Time Connexion time in seconds
2 IP_SRC Nominal IP address version 4 of source workstation
3 IP_DST Nominal IP address version 4 of destination workstation
4 PORT_SRC Integer Port number of source workstation
5 PORT_DST Integer Port number of destination workstation
6 PROTOCOL Nominal Protocol’s type (TCP, UDP, ICMP)
7 Flag Nominal The correspondent used flag
8 f-SYN Boolean Equals to 1 when the flag is [S] else 0
9 f-SYNACK Boolean Equals to 1 when the flag is [S.] else 0
10 f-ACK Boolean Equals to 1 when the flag is [.] else 0
11 f-PUSHACK Boolean Equals to 1 when the flag is [P.] else 0
12 f-FIN Boolean Equals to 1 when the flag is [F] else 0
13 f-FINACK Boolean Equals to 1 when the flag is [F.] else 0
14 f-RST Boolean Equals to 1 when the flag is [R] else 0
15 f-RSTACK Boolean Equals to 1 when the flag is [R.] else 0
16 f-NONE Boolean Equals to 1 when the flag is [NONE] else 0
17 f-FSPU Boolean Equals to 1 when the flag is [FSPU] else 0
18 f-SEW Boolean Equals to 1 when the flag is [SEW] else 0
19 f-SACKE Boolean Equals to 1 when the flag is [S.E] else 0
20 f-FPU Boolean Equals to 1 when the flag is [FPU] else 0
21 f-PACKU Boolean Equals to 1 when the flag is [P.U] else 0
22 Service Nominal The correspondent used service
23 f-other Boolean 1 if other flag value
24 sr_RSH Boolean Equals to 1 when the Service is Remote shell else 0
25 sr_Rlogin Boolean Equals to 1 when the Service is Remote Login else 0
26 sr_Ruser Boolean Equals to 1 when the Service is Remote User else 0
27 sr_FTP Boolean Equals to 1 when the Service is FTP else 0
28 sr_SSH Boolean Equals to 1 when the Service is Secure shell else 0
29 sr_Telnet Boolean Equals to 1 when the Service is Telnet else 0
30 sr_SMTP Boolean Equals to 1 when the Service is SMTP shell else 0
31 sr_DNS Boolean Equals to 1 when the Service is DNS shell else 0
32 sr_DHCP Boolean Equals to 1 when the Service is DHCP else 0
33 sr_HTTP Boolean Equals to 1 when the Service is HTTP else 0
34 sr_HTTPS Boolean Equals to 1 when the Service is HTTPS else 0
35 sr_NTP Boolean Equals to 1 when the Service is NTP else 0
36 sr_Modbus Boolean Equals to 1 when the Service is Modbus else 0
37 sr_BGP Boolean Equals to 1 when the Service is BGP else 0
38 sr_Other Boolean Equals to 1 when the Service is unknown else 0
39 Attack_type Nominal The added label: Normal, Probing, R2L, U2R, DoS
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5 HiTar-2024 Labelling Process
This part encapsulates the overall procedure of the construction of our HiTar-2024 labelling process

threw the presentation of the meticulous programming of the “Attack_labelling.sh” algorithm, which is
a practical approach to network traffic analysis and intrusion detection, providing a robust method for
identifying and classifying malicious network attacks.

The HiTar-2024 labelling process, as discussed above, is presented in Fig. 5.
The “Attack_labelling.sh” algorithm is a practical and technical approach to label the HiTar-2024

Dataset. It operates on AREZZO’s LOG file, which comprises network traffic data from benign packets and
malicious one as well. The output is a CSV file that encapsulates the HiTar-2024 dataset.

The algorithm initiates by defining the path to AREZZO’s LOG file and the output file. Subsequently,
a function named “identify_attack” is defined. This function ingests a line from the LOG file as input and
yields a labelled line indicating the attack type or class. The generated IDS outputs include five classes such
as Normal_behaviour, Probing, R2L, U2R and DoS attacks.

The “identify_attack” function operates by extracting pertinent fields from the LOG line, such as TIME,
IP_SRC, IP_DST, PORT_SRC, PORT_DST, PROTOCOL, and flag. It then defines the flag types and service
types and assigns values to them. The function then scrutinizes conditions to identify the type of attack or
classify it as normal behaviour. These conditions are defined for normal behaviour, probing, R2L, U2R, and
DoS attacks.

The algorithm then processes each line of the LOG file. It reads each line, invokes the “identify_attack”
function to label the line, and writes the labelled line to the output file. Upon completion of attack labelling,
the algorithm displays a message “Attack labelling completed”.

It’s important to note that the “Attack_labelling.sh” algorithm is developed using Bash shell scripting.
As shown in Fig. 5, the HiTar-2024 labelling process involves five steps as follows:

• The first step specifies the path to Arezzo’s LOG file containing both normal and attack network traffic.
• The second step specifies the path to the output file where the attack labelling will be saved.
• The third step extracts relevant features from LOG file and writes on the Dataset generated.
• The fourth step calls identify_attack() function to check conditions for identifying the attack class.
• The fifth step adds the labelled line containing the attack type according to features gathered.
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Figure 5: The HiTar-2024 labelling process description
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Building HiTar-2024 involved significant challenges, such as accurately simulating IIoT scenarios in
the AREZZO simulator to reflect real-world manufacturing environments, ensuring sufficient data diversity
to cover a wide range of attack types, and generating realistic attack traffic while minimizing noise in the
logs. These challenges were addressed by leveraging AREZZO’s advanced simulation capabilities, employing
meticulous data labelling processes, and designing scenarios that capture complex IIoT interactions. Detailed
validation steps ensured the dataset’s reliability and applicability, making it a robust resource for IDS training.

6 Results and Discussion
The process used to perform the various ML metrics is shown in Fig. 6. Therefore, the life cycle of ML

evaluation metrics involves 6 steps. The first step is the selection of the generated dataset. The second step
is the pre-processing. Then, the selection of the classifier model is followed by the model training and test
phase. The last step is the generation of ML performance evaluation metrics. In the pre-processing step, the
analyst removes the duplication and adds the missing information. Also, in test phase subsets are evaluated
with 10 folds cross-validation on the training model.

Figure 6: ML metrics evaluation life cycle

In fact, the different steps requested for simulation experiments in the Weka tool to carry out
performance metrics based on various classifiers are defined as follows:

1. The first step is started with uploading the HiTar-2024 dataset.
2. The second step is called data pre-processing.
3. The third step is to select the classifier family and sub-classifier type. Then, configure the classi-

fier parameters.
4. Model construction via training.
5. Test phase by selecting test options. The cross-validation option is selected with 10 folds as parameter.
6. Start the simulation to generate predictive accuracy and other performance evaluation metrics.

However, Class imbalance is a common issue in ML, where certain classes are underrepresented com-
pared to others, leading to biased models that perform poorly on minority classes. This is particularly relevant
for the HiTar-2024 dataset, which includes various attack types with potentially imbalanced distributions. To
address this, techniques like SMOTE (Synthetic Minority Over-sampling Technique) can be used to balance
the dataset by generating synthetic instances for the minority classes. Additionally, employing 10-fold cross-
validation helps ensure robust model evaluation. In this method, the dataset is divided into 10 subsets, and
the model is trained and validated 10 times, each time using a different subset as the validation set and the
remaining subsets for training. This approach provides a more reliable estimate of the model’s performance
by reducing the variance associated with a single train-test split, ensuring that the model generalizes well to
unseen data.

In this consolidated evaluation phase, the Weka tool serves as the linchpin for a comprehensive
comparative analysis of ML classifiers across diverse families, including Bayesian, Functions, Tree, Lazy,
Meta, and Rules. The evaluation focuses on specific classifiers within these families: BayesNet, Logistic, J48,
IBK, Multiclass Classifier, and PART.
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The performance of a classification model in ML is commonly evaluated using specific measures and
metrics: our assessment for the HiTar-2024 dataset effectiveness incorporated key metrics like accuracy,
precision, recall, F1-score, the Receiver Operating Characteristic Area, the Precision Recall Curve, Kappa
Statistic, Time Taken to Build Model and Mean Absolute Error outlined as follows:

True Positive (TP): corresponds to cases where the model correctly predicted positive examples.
False Positive (FP): matches to cases where the model incorrectly predicted examples as positive when

they are negative in the label.
False Negative (FN): matches to cases where the model incorrectly predicted examples as negative

when, they are positive.
True Negative (TN): corresponds to cases where the model correctly predicted negative points.
Accuracy: measures the total number of instances correctly classified by the model relative to the total

number of instances as in (1).

Accurac y = TP + TN
TP + FP + TN + FN

× 100 (1)

Precision: measures the accuracy of positive predictions made by the model as in (2).

Precision = TP
TP + FP

× 100 (2)

Sensitivity (also known as Recall): measures the model’s capacity to capture all TP instances as in (3).

Sensitiv ity = TP
TP + FN

× 100 (3)

F-measure (also known as F1-score): defined as the relationship between the inverse of precision and
recall, providing a balance between the two metrics as in (4).

F −measure = 2xTP
2xTP + FP + FN

× 100 (4)

Matthews Correlation Coefficient (MCC): defined as the interdependence between predicted and
actual values in the dataset. It considers all elements of the confusion matrix to assess the overall quality of
a classification model as in (5).

MCC = TP × TN − FP × FN
2
√
(TP + TN) × (TP + FN) × (TN + FP) × (FP + FN)

× 100 (5)

Receiver Operating Characteristic (ROC): represents a model’s performance at various probability
thresholds by plotting the TP rate vs. the FP rate.

Precision Recall Curve (PRC): illustrates the relationship between precision and recall for different
probability thresholds.

Kappa Statistic (KS): measures the agreement between observed and expected classifications, consid-
ering the possibility of agreement occurring by chance.

Time Taken to Build Model (TTBM): measures the duration, in seconds, required for a ML model to
be constructed during the training phase.
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Mean Absolute Error (MAE): calculates the average absolute error among actual and predicted values
as in (6).

MAE = 1
n

n
∑
i=1
∣ yi − ŷi ∣ (6)

where:
n is the number of points.
yi is the actual value for the i-th point.
ŷi is the predicted value for the i-th point.
Table 3 provides a comprehensive overview of the performance metrics for various classifiers within

distinct families, as analysed through the powerful WEKA tool. These classifiers are evaluated based on key
metrics, which collectively offer valuable insights into the effectiveness and efficiency of each classifier, aiding
in the informed selection of models tailored to specific data characteristics and classification goals.

Table 3: Performance Analysis with various classifiers

Family Bayesian Functions Lazy Meta Rules Tree
Classifier Bayesnet Logistic IBK Multiclass PART J48
Accuracy 99.00 99.96 99.99 99.95 99.90 99.96
Precision 0.991 1.000 1.000 1.000 0.999 1.000

Recall 0.990 1.000 1.000 1.000 0.999 1.000
F1-score 0.990 1.000 1.000 1.000 0.999 1.000

MCC 0.990 0.999 1.000 0.999 0.998 0.999
ROC Area 1.000 1.000 1.000 1.000 1.000 1.000
PRC Area 0.999 1.000 1.000 0.999 1.000 1.000

KS 0.9803 0.9992 0.9999 0.9991 0.9981 0.9992
TTBM (seconds) 0.46 8.33 – 13.51 1.44 0.5

MAE 0.0004 0.0002 0.0001 0.0004 0.0006 0.0003

This evaluation is conducted within the specific context of validating the generated HiTar-2024 dataset.
Interpretation of the classifiers’ performances: in the rigorous evaluation of classifiers across distinct

families using the given dataset, several noteworthy observations emerge:
The default parameters for the used classifiers in performing the performance analysis are like so:
BayseNet Classifier: -D -Q weka.classifiers.bayes.net.search.local.K2-P1 -S BAYES -E

weka.classifiers.bayes.net.estimate.SimpleEstimator – -A 0.5
In the BayesNet classifier, debugging information is enabled with the -D parameter, while the

search algorithm is specified as weka.classifiers.bayes.net.search.local.K2, a local search algorithm using
the K2 heuristic, through the -Q parameter. The number of parents each node can have is set to one
with -P1, and the scoring function is set to Bayes with -S BAYES. The estimator algorithm used is
weka.classifiers.bayes.net.estimate.SimpleEstimator, as specified by -E, and the alpha value for estimating
probabilities is set to 0.5 with – -A 0.5.
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Logistic Classifier: -R 1.0E- 8 -M-1 -num-decimal-places 4.
For the Logistic classifier, the ridge in the log-likelihood is set at 1.0E-8 with -R, and the maximum

number of iterations is unlimited, as indicated by -M -1. Numeric output is formatted to four decimal places
with -num-decimal-places 4.

IBK Classifier: -K 1 -W 0 -A “weka.core.neighbourseach.LinearNNSearch -A\”
The IBK classifier, which uses k-nearest neighbors, sets the number of nearest neighbors to one

with -K 1 and uses equal weighting as denoted by -W 0. The nearest neighbor search algorithm
and distance measure are specified as LinearNNSearch and EuclideanDistance respectively, with -A
“weka.core.neighbourseach.LinearNNSearch -A\” weka.core.EuclideanDistance -R first-last\”“.

MultiClass Classifier: -M 0 -R 2.0 -S 1 -W weka.classifiers.functions.Logistic – -R 1.0E-8 -M -1 -num-
decimal-places4

The MultiClassClassifier sets no method with -M 0, uses a random number seed of two with -R 2.0, and
handles multi-class problems with scheme one as indicated by -S 1. It specifies Logistic as the base classifier
along with its options using -W weka.classifiers.functions.Logistic – -R 1.0E-8 -M -1 -num-decimal-places4.

weka.core.EuclideanDistance -R first-last\””
PART Classifier: -C 0.25 -M 2/J48 Classifier: -C 0.25 -M 2
Both PART and J48 classifiers use a confidence threshold for pruning set at 0.25 with -C and require a

minimum of two instances per rule or leaf, as specified by -M 2.
These parameters are adjusted to ensure that each classifier operates efficiently within the analytical

framework, optimizing performance on the dataset.
Bayesian (BayesNet Classifier): exhibits strong performance with an accuracy of 99.00% and consistent

precision, recall, F1-score, MCC, and ROC Area values. While it demonstrates reliability across metrics, it
exhibits a slightly lower Ks statistic compared to other classifiers.

Functions (Logistic Classifier): stands out with an exceptional accuracy of 99.96% and perfect precision
100%, recall, F1-score, MCC, ROC Area, and PRC area values. Its performance underscores its effectiveness
across various evaluation criteria.

Lazy (IBK Classifier): Demonstrates outstanding performance with the highest accuracy of 99.99%
among all classifiers. It achieves perfect precision, recall, F1-score, MCC, ROC Area, and PRC area values of
100%, highlighting its robust classification capabilities.

Meta (Multiclass Classifier): shows strong performance with an accuracy of 99.95% and excellent
precision, recall, F1-score, MCC, and ROC Area values. Its performance is consistently high across most
evaluation metrics, emphasizing its reliability.

Rules (PART Classifier): while slightly trailing in overall accuracy at 99.90%, the Rules classifier
contributes valuable insights, particularly in terms of TTBM and MAE. It demonstrates strong precision,
recall, F1-score, and ROC Area values, showcasing its efficacy in classification tasks.

Tree (J48 Classifier): similarly to Logistic, the Tree classifier achieves an accuracy of 99.96% and perfect
precision 100%, recall, F1-score, MCC, ROC Area, and PRC area values. It stands out as a robust performer
across various evaluation criteria.

In summary, all classifiers exhibit exceptional performance, each with its own strengths and contri-
butions to the classification task. While Lazy (IBK) appears as the top performer in terms of accuracy,
other classifiers such as Functions (Logistic), Meta (Multiclass), and Tree (J48) also demonstrate remarkable
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capabilities across multiple metrics. These insights can guide practitioners in selecting the most appropriate
classifiers based on specific requirements and priorities in their applications.

This comprehensive and nuanced analysis provides a clear understanding of the diverse strengths and
limitations of each classifier within the specific context of the HiTar-2024 dataset, offering valuable guidance
for informed model selection.

The HiTar-2024 dataset, enriched with realistic IIoT scenarios, plays a crucial role in enhancing the
effectiveness of classifiers in modelling intricate relationships within the dataset. Its inclusion of a diverse set
of attack scenario presents a formidable challenge to classifiers, pushing them to excel in detecting various
cyber threats with remarkable precision, recall, and F1-score values. The dataset’s deliberate incorporation of
complex attack instances further empowers classifiers to discern intricate patterns, culminating in superior
anomaly detection performance. In summary, the classifiers’ outstanding success on the HiTar-2024 dataset
underscores its significance in furnishing a challenging yet representative environment for training and
evaluating ML models. The realism and diversity of attack instances encapsulated in HiTar-2024 substantially
contribute to the classifiers’ ability to achieve exceptional results in the realm of industrial network security.

The detailed performance results subsequently highlight the robustness of the used classifiers: Lazy
(IBK) appears as the top-performing classifier with an exceptional accuracy of 99.99%, making it the standout
choice for classification tasks. Functions (Logistic) follows closely with an accuracy of 99.96% and perfect
precision; logistic exhibits remarkable classification prowess, particularly in terms of precision and recall.
Tree (J48) demonstrates robust performance with an accuracy of 99.96%; its classification capabilities make it
a prime choice for accurate attack detection. Meta (Multiclass) exhibits strong performance with an accuracy
of 99.95%; Meta consistently impresses with its classification metrics. On the other hand, Rules (PART)
is slightly lower in overall accuracy at 99.90%, also, it provides valuable insights and contributes valuable
information for model selection and analysis. Bayesian (Bayesnet) demonstrates a slightly lower accuracy at
99.00% and shows reliability across metrics but shows room for improvement compared to other classifiers.

This comprehensive evaluation reveals the diverse strengths of each classifier within the HiTar-2024
dataset context, aiding practitioners in making informed choices for effective attack detection. The analysis,
conducted with the Weka tool, provides valuable insights for selecting the most suitable algorithm for
applications leveraging the HiTar-2024 dataset in industrial settings. This holistic evaluation, facilitated by
the Weka tool, not only validates the robustness of classifiers in the face of the complex challenges posed by
HiTar-2024 but also serves as a guiding compass for practitioners. The realism and diversity encapsulated in
HiTar-2024 prove pivotal in advancing the capabilities of classifiers, heralding a new era of intelligent and
adaptive industrial network security solutions tailored to real-world industrial complexities.

In our rigorous exploration of the HiTar-2024 dataset, which presents complex IIoT scenarios, we
meticulously calibrated our classifiers to ensure robust performance without succumbing to overfitting. We
employed 10-fold cross-validation for test options that partitions the data into 10 subsets or folders, training
the model on 9 subsets while testing on the remaining subset allowing the model to demonstrate its predictive
prowess on previously unseen data.

Furthermore, we embraced model simplicity as a virtue, selecting algorithms that are inherently less
prone to overfitting due to their straightforward nature. The construction of these models was executed
with remarkable efficiency, with none exceeding a 14-s build time threshold, thus exemplifying the synergy
between expeditious model development and their inherent simplicity.

In our analytical endeavor, we took the helm in executing a comprehensive data analysis, spearheading
the attribute selection process with precision and expertise. We meticulously sifted through the dataset to
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identify and retain the most predictive features. This hands-on approach not only bolstered model inter-
pretability but also fortified its generalization capabilities. Through this discerning process, we systematically
eradicated redundant or irrelevant attributes, thereby purifying the feature space. This purification was
instrumental in mitigating the risk of model overfitting and ensuring that our classifiers remained attuned to
the underlying patterns within the HiTar-2024 dataset without being misled by noise or spurious correlations.

In conclusion, our methodical approach to analyzing the HiTar-2024 dataset for IIoT scenarios involved
strategic measures to prevent overfitting. By implementing the 10-fold cross-validation to ensure robust
validation across unseen data, prioritizing model simplicity to reduce complexity, and conducting a thorough
attribute selection to focus on the most predictive features. These steps collectively enhanced model accuracy
and generalizability, ensuring our classifiers are both efficient and effective in discerning true patterns from
noise, which led us to successfully overcome the overfitting problem.

The KDD99, UNSW-NB15, CICIDS-2017, and our proposal through the HiTar-2024 dataset are often
to be used for network intrusion detection research, but they differ in key aspects, as shown in Table 4. In
terms of the number of unique IP addresses, KDD99 has the fewest (i.e., 11), while CICIDS-2017 leads with
16,960, followed by UNSW-NB15 (i.e., 45) and HiTar-2024 (i.e., 20). All datasets, except CICIDS-2017, are
fully simulated; CICIDS-2017 is only partially simulated. The data collection format also varies, with KDD99
and HiTar-2024 using TCPDUMP, while UNSW-NB15 and CICIDS-2017 rely on PCAP files. For feature
extraction, KDD99 uses the Bro-IDS tool, UNSW-NB15 employs Argus and Bro-IDS, CICIDS-2017 uses
CICFlowmeter, while HiTar-2024 has a custom script called attack_labelling.sh.

Table 4: Comparison of HiTar-2024 dataset with other similar datasets in the literature
Parameters KDD [17] UNSW-NB15 [13] CICIDS [19] HiTar-2024

Number of unique IP address 11 45 16,960 20
Simulation Yes Yes Partial Yes

Format of the data collected Tcpdump, BSM, dumpfile pcap files pcap files Tcpdump
Feature extraction tools Bro-IDS tool Argus, Bro-IDS CICFlowmeter attack_labelling.sh

Number of features 42 42 80 39
Attack categories 4 9 7 5

Numbers of instances 825,050 175,341 225,745 15,842
Domain of application IoT IoT IoT IIoT

Accuracy % NA 84.11 99.00 99.9937
Precision % NA 78.34 99.00 100

MLP Recall % NA 98.31 99.00 100
F1-score % NA 87.20 99.00 100

FPR % NA 33.28 NA 0

Feature count differs among datasets, with CICIDS-2017 providing the most features equal to 80,
compared to 42 for KDD99 and UNSW-NB15, and 39 for HiTar-2024. Regarding attack categories, UNSW-
NB15 has the highest number of attacks with nine, while KDD99 has four, CICIDS-2017 has seven, and
HiTar-2024 has five. KDD99 has the greatest number of instances, equal to 825,050, with HiTar-2024
having the fewest, equal to 15,842. All datasets focus on IoT, except HiTar-2024, which is designed for
IIoT applications.

The ML performance metrics for the Multi-Layer Perceptron (MLP) model indicate that HiTar-2024
demonstrates excellent accuracy (99.9937%), precision (100%), recall (100%), and F1-score (100%), with a
0% FP rate. These figures surpass UNSW-NB15, which has an accuracy of 84.11%, a precision of 78.34%,
recall of 98.31%, an F1-score of 87.20%, and an FP rate of 33.28%. While CICIDS-2017 shows high accuracy,
precision, recall, and F1-score (all at 99%), it lacks data on FP rates. Overall, HiTar-2024 stands out for its
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near-perfect MLP metrics and low FP rate, although it has fewer instances and attack categories compared
to other datasets, suggesting that HiTar-2024 excels in specific performance aspects.

7 Conclusion
The HiTar-2024 dataset is a groundbreaking contribution to IIoT security, particularly notable for its

innovative approach to attack labelling. Developed using the AREZZO simulator, the dataset captures real-
world network behaviors within a controlled environment, ensuring both authenticity and replicability. One
of the key novelties of the HiTar-2024 dataset is its detailed attack labelling, which categorizes network traffic
into five distinct classes: Normal, Probing, R2L, U2R, and DoS. This comprehensive labelling is achieved
through the use of a sophisticated script, “attack_labelling.sh”, which meticulously analyses network traffic
based on specific conditions and flags. The use of various supervised ML classifiers further enhances the
dataset’s utility exploited by an IDS during the training process. Additionally, the HiTar-2024 dataset is
compared with other similar datasets in terms of data format, feature extraction tools, number of features,
attack categories, number of instances, and ML metrics. This comprehensive approach underscores the
scientific rigor and practical value of the HiTar-2024 dataset, providing critical insights for developing robust
security measures in IIoT systems.

The performance analysis carried out based on the generated HiTar-2024 reveals notable accuracy levels.
Within the Bayesian family, IBK classifier achieves the highest accuracy of 99.99%. For the J48-based tree
classifier, it stands out with an accuracy of 99.96%. The Logistic-based functions classifier follows closely
with an accuracy of 99.96%. Regarding Meta based Multiclass classifier: Demonstrates strong performance
with an accuracy of 99.95%. Finally, the Rules-based PART family classifier maintains a respectable accuracy
of 99.90%, and the Bayesian-based Bayesnet family classifier achieves an accuracy of 99.00%.

The high performance of ML models on HiTar-2024, as reflected in Tables 3 and 4 with metrics such
as accuracy, precision, and recall exceeding 0.99, indicates the dataset’s quality and the robustness of current
algorithms due to a rigorous process, including data pre-processing, features extraction, fixing the class
imbalance problem and using a careful cross-validation test option for model robustness. However, this
should not suggest that intrusion detection in IIoT systems is an inherently easy problem. The evolving
nature of cyber threats, the variability in industrial environments, and the sophistication of modern attacks
present significant challenges. To address these complexities, future research should explore solutions
for detecting unknown or zero-day attacks, which remain a critical vulnerability. Additionally, real-time
detection methods should be prioritized to ensure timely responses in dynamic IIoT ecosystems. Finally,
techniques such as federated learning can also be applied to enhance scalability and privacy in distributed
industrial systems, paving the way for more adaptive and resilient IDS in IIoT environments.
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