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ABSTRACT: The application of deep learning for target detection in aerial images captured by Unmanned Aerial
Vehicles (UAV) has emerged as a prominent research focus. Due to the considerable distance between UAVs and the
photographed objects, coupled with complex shooting environments, existing models often struggle to achieve accurate
real-time target detection. In this paper, a You Only Look Once v8 (YOLOv8) model is modified from four aspects: the
detection head, the up-sampling module, the feature extraction module, and the parameter optimization of positive
sample screening, and the YOLO-S3DT model is proposed to improve the performance of the model for detecting small
targets in aerial images. Experimental results show that all detection indexes of the proposed model are significantly
improved without increasing the number of model parameters and with the limited growth of computation. Moreover,
this model also has the best performance compared to other detecting models, demonstrating its advancement within
this category of tasks.
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1 Introduction
The primary objective of target detection is to identify both the class and location of a specific target

with a video or image. With the development of deep convolutional neural network technology, the method
of target detection is gradually getting rid of the traditional way of artificially designing feature classifiers,
and evolving into the way of learning target features from image samples to realize the detection task more
efficiently and in real-time [1]. Deep learning-based methods for target detection have garnered significant
interest among researchers. As an intersection of computer vision, image processing, and machine vision,
target detection has been widely used in various scenarios, including industrial automation, autonomous
driving, remote sensing image detection, Unmanned Aerial Vehicle (UAV) image detection, and other
various domains [2].

In the MS COCO [3] dataset, targets with dimensions smaller than 32 × 32 pixels are defined as small
targets. Small target detection is a subcategory of target detection and is used in various detection tasks,
especially in the field of UAV image detection. Due to the rapid development of the UAV field in recent years,
the cost and performance of the equipment have been greatly improved, which has led to the application of
UAVs in various types of work, including safety inspection, disaster detection, rescue search, etc. [4]. Since
UAV photography flights are far away from the object to be photographed and mostly use wide-angle lenses,
there are a large number of small-sized targets in UAV images, which are characterized by weak features and
little information, making it usually difficult for the model to accurately detect them. When the UAV is in
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complex environments such as low light, more occlusion, and dense targets, it will be more challenging to
detect the targets in the images in real-time and accurately [5].

To address the challenges associated with UAV image detection, numerous researchers have made
many contributions to improve the capability of small target detection. Zhang et al. [6] combined the
advantages of one-stage and two-stage target detection algorithms and fused the bottom-layer features
with the top-layer features while generating the target candidate region, which improves the accuracy of
small target detection, but this method increases the processing time. Ying et al. [7] integrated multi-scale
features by fusing global attention and pixel feature attention, solved the problem of feature information
loss of small-size targets at low resolution and improved the model performance and robustness, but the
slow processing speed cannot achieve real-time detection. Bai et al. [8] proposed an end-to-end multi-
task generative adversarial network, which generates super-resolution images from fuzzy images into the
generator through up-sampling operation so that more details can be captured for detection. However, this
method suffers from training difficulties. Based on the Single Shot multi-box Detector (SSD) as the basic
network, Maktab et al. [9] used modules such as super resolution, deconvolution, and feature fusion to
improve the model’s ability to detect small targets, but it has limitations in detecting when facing complex
environments. Liu et al. [10] proposed a feature enhancement module combined with Spatial Pyramid
Pooling (SPP) to assign larger weights to low-latitude feature maps to improve feature extraction for small
targets, but this may also lead to loss of information in other feature maps. Kim et al. [11] reduced the
information loss by modifying the backbone of You Only Look Once (YOLO) with an efficient channel
attention module and using transposed convolution instead of up-sampling, but the method is difficult to
extract features under complex backgrounds, and there is a significant decrease in recall in the experiments.
Wang et al. [12] proposed an improved model YOLOX_w based on YOLOX-X, utilizing a Slicing Aided
Hyper Inference (SAHI) algorithm for data augmentation, and adding additional detection heads as well
as an attention module to make the model focus on the key features, the model improves the detection
accuracy but the parameters of the model and the number of operations are greatly increased. Wang et al. [13]
optimized YOLOv8s by integrating Weighted Intersection over Union (WIoU), BiFormer, and proposing a
Focal FasterNet Block module to extract multi-level features for enhanced detection of small-scale objects.
However, it resulted in a significant reduction in detection speed compared to the baseline model. Lee
et al. [14] proposed an improved RetinaNet that incorporated deformable convolutions into the backbone and
optimized the detection head part and pyramid layers to enhance performance. However, the experiments
only included comparisons with Faster R-CNN and YOLOv5, which makes it difficult to determine with
certainty whether the improvements are effective.

To summarize, there are still two primary challenges with algorithms for the detection of small targets
that require resolution in this field. First, crucial information is easily lost or missed during the process
of feature extraction. Second, previously proposed algorithms exhibit excessive complexity, which makes it
difficult to be deployed in terminals. These two challenges have severely limited the application of target
detection models on embedded devices such as UAVs to achieve real-time and high-precision detection
tasks. To address them, this paper develops a novel model with high accuracy and lightweight based on
the original YOLOv8n model. The main work of this paper has the following four aspects: Firstly, the Neck
and Head parts of the model are redesigned. A 160 × 160 detection head is added for better performance of
small-sized targets, and comparative experiments are conducted on combinations of different-scale heads
to obtain the best result. Secondly, a module called 3DSPPF is proposed to extend the receptive field and
achieve better detection of small targets by adding an extra feature extraction branch to the Spatial Pyramid
Pooling Fast (SPPF) module. Thirdly, replace the original dynamic sampler with DySample module. A new
dynamic sampling scheme based on point sampling is proposed, which effectively improves the properties
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of the model. Finally, due to the dense number of targets and the small size of targets in images, some factors
of the Task-Aligned Assigner (TAA) are optimized to adjust the predicted score and the number of positive
samples in the sample selection process to obtain a dynamic assignment strategy of positive and negative
samples suitable for the detection of such targets.

Through the improvement of the above four aspects, we propose a target detection model called YOLO-
S3DT. This model has excellent performance in various detection indicators. In this work, 30% of the training
set from the public dataset of VisDrone2019 [15] is used for training. The results indicate that compared with
YOLOv8n in the same experimental environment, the value of mAP50 and mAP50-95 have respectively
increased by 5.7% and 2.8%, and the model parameters decreased by about 0.08 M, while the computation
increases by less than 3GFlops, thus achieving the lightweight and high performance of the model.

This paper is organized into four sections. Section 2 mainly introduces the structure of the original
baseline model and introduces four improvement strategies based on the model. Section 3 presents the
dataset selected for the experiment, details regarding the experimental environment configuration, and
specifies the evaluation indices employed. Section 4 encompasses four sets of experiments, including ablation
experiments and comparison experiments, etc., and analyzes the experimental results in detail. Addition-
ally, we offer an intuitive comparison and analysis of sample detection before and after implementing
improvements. The final section summarizes the work completed in this paper.

2 Models and Methods

2.1 Baseline Model
Ultralytics improved on the previous YOLOv5 in many aspects and finally released a new version,

known as YOLOv8, in early 2023 [16]. This version of the YOLO model is extensively utilized across various
computer vision tasks, including but not limited to object detection, instance segmentation, pose detection,
rotating object detection.

The general structure of YOLOv8 is illustrated in Fig. 1. It replaces the C3 module with the C2f module.
In the Neck part, the convolution operation after up-sampling in the Pyramid Attention Network (PAN)
structure is removed. In the Head part, two independent branches are used to achieve target classification
and the regression of the prediction bounding box respectively, and different loss functions are used for these
two tasks to get better results. Meanwhile, YOLOv8 uses TAA to dynamically allocate samples instead of
the previous IoU matching strategy or single-sided proportional allocation, which gives the model better
detection accuracy and robustness.

2.2 Improved Model
In the task of detecting aerial images, the original YOLOv8 network structure struggles to achieve high

detection accuracy due to the significant number and density of small-sized targets. Additionally, due to the
deployment in the terminal equipment, the size of the model should be appropriate, and a model that is
overly complex cannot satisfy the requirement of real-time detection. To address these challenges, this paper
selects YOLOv8n, the lightest model in the YOLOv8 series, as the basic model, improves the model from
four aspects: small target detection layers, a redesigned SPPF module called 3DSPPF, DySample up-sampling
module and TAA parameters optimization. A novel model called YOLO-S3DT, which is derived from the
initials of these four improvements, is proposed.

The framework of YOLO-S3DT is shown in Fig. 2. Firstly, the network structure has been enhanced
to better accommodate small-sized targets by incorporating a 160 × 160 detection head. According to the
experimental results, the 80 × 80 detection head in the original model is eliminated, retaining only 160
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× 160, 40 × 40 and 20 × 20 detection heads. Under the premise of improving the detection ability, the
number of parameters is reduced. Secondly, a novel 3DSPPF module is proposed to obtain more rich target
feature information by adding a feature extraction branch to the original SPPF module. Thirdly, a lightweight
dynamic upsampler, called DySample, is utilized in the Neck part to improve the performance without adding
additional parameters and operations of the model. Finally, according to the characteristics of UAV images,
relevant factors of TAA are optimized, which effectively improves the detection accuracy and the rate of recall
for small targets. The following four subsections detail the principles and specifies of each improvement.

Figure 1: The general framework of baseline mode

2.2.1 Improvement of Small Target Detection Layer
For large-size targets to be detected, their semantic information often appears in the deeper feature map,

while for small-size targets to be detected, their feature information is displayed in the shallower feature
map [17]. With the deepening of the network, the network cannot learn the corresponding features, leading
to missed detection. The detection head sizes of the original YOLOv8 model are 80 × 80, 40 × 40, and
20 × 20, respectively, corresponding to the detection of small, medium, and large targets. In aerial images,
many detectable targets are situated at considerable distances from the camera, consequently, they occupy
a minimal number of pixels within the image. This results in smaller targets being inadequately detected by
the existing 80 × 80 detection head.
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Figure 2: The framework of YOLO-S3DT

To solve the above problems, the original structure of the network is improved by adding a 160 × 160
scale head, as shown in Fig. 2. The specific improvement method is to add an up-sampling layer after the
15th layer, a C2f module, and carry the result and the output feature map of the 2nd layer into the concat
layer, and through the 18th layer, another C2f layer, to obtain a feature map with the larger size for detecting
smaller targets, and then through the convolution and concat operation, the feature map is reduced to the
size of 80 × 80, which is used to combine with the original structure of YOLOv8n. Subsequently, this paper
compares the combinations of different detection heads through a series of experiments under the same
experimental environment, and finally removes the 80 × 80 detection head and retains only three other
heads in the model after comprehensively considering the factors of detection accuracy, parameters, Flops,
etc. From the subsequent experimental results, the improved detection head is employed to detect smaller
targets. The experimental results indicate that the improved network can more effectively leverage shallow
information, resulting in a significant enhancement of its ability to learn small target features.

2.2.2 Improvement of SPPF Module
The original SPPF module primarily comprises three max pooling layers, each featuring a kernel size of

5, a stride of 1, and a padding of 2. The resulting feature maps from each layer are concatenated and then fed



4560 Comput Mater Contin. 2025;82(3)

into the Convolution Batch normalization SiLU (CBS) module, which includes a composite unit consisting
of a 1 × 1 convolutional layer, batch normalization, and the SiLU activation function.

The enhanced SPPF achieves comparable performance to the original SPP [18] by employing three
smaller pooling windows. While max pooling effectively captures salient features within local regions while
preserving feature map dimensions, it also suffers from information loss by retaining only one maximum
value per region. Furthermore, in cases where strong features appear multiple times within a region, their
strength information may be compromised due to the single maximum value retention characteristic of
max pooling.

To better extract features and avoid losing important information, we extend an additional branch to
reconstruct new feature maps. The main method is to pass the output of each max pooling layer through a 3
× 3 convolutional layer for secondary feature extraction, and then the three additional feature maps are fused
with the feature maps extracted by the original SPPF module to obtain richer feature information. In order to
increase the improvement effect and reduce the slow inference speed problem caused by the improvement,
we also make two fine optimizations in this module:

1. Depthwise Separable Convolution (DSC) [19] is chosen to replace traditional convolution blocks.
The two processes, Depthwise Convolution and Pointwise Convolution, separate the depth and spatial
dimensions of feature graphs, thus reducing the computational load and the need for computing resources.

2. By convolutional dilation operation [20], the receptive field is extended to capture multi-scale
contextual information without increasing parameters.

With the above improvements, the new SPPF module can capture important features more comprehen-
sively and also has the characteristics of lightweight. Since three DSC modules are used in the improvement
process, so it is designed as 3DSPPF. The structure of improved module is presented in Fig. 3.

Figure 3: The structure of 3DSPPF module

2.2.3 Improvement of Up-Sampling Module
DySample [21] is used to replace the original up-sampling module, and the improved up-sampling

module can effectively improve the detection accuracy compared with the former. DySample uses the feature
map X with the original size C ×H ×W to generate the offset O, which is added with the original sampling
grid g to obtain the sample set S. Then, the Grid Sample function in PyTorch is used to up-sample the
generated sample set S and the input feature map X to generate the up-sampled feature graph .

In the improvement of this module, the author solves the problem of initial disordered sampling
positions caused by ignoring the location relation in the nearest initialization by separating and evenly
distributing initial sampling positions through bilinear initialization. Two strategies, static scope factors,
and dynamic scope factors, are proposed to limit offset range to reduce overlap. The static offset coefficient
reduces the offset range by multiplying offset O by a factor of 0.25, which is simple to implement but has
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limited effect. Dynamic offset coefficients are obtained by formula (1), and the generated coefficients are
distributed in the range of 0 to 0.5 with 0.25 as the center point, which is a relatively complicated calculation
process but can achieve better enhancement results. At the same time, the authors use the group-wise up-
sampling strategy for reference and divide the feature map into 4 groups along the channel dimension to
generate 4 groups of offsets. The sampling process of the fully improved module is shown in Fig. 4.

O = 0.5sigmoid (l inear1 (X) ⋅ l inear2 (X)) (1)

In Fig. 4a, it is demonstrated that the sampling set generated by the sampling generator and the original
feature map X are used for grid sample operation to generate the feature map X′. In Fig. 4b, the static offset
coefficients were multiplied by 0.25 after subjecting X to a bilinear initialization operation. The result is then
reshaped by a Pixel Shuffling [22] to obtain offset O. The dynamic offset coefficients are transformed by two
bilinear initialization branches, one of which is multiplied by 0.5 and a sigmoid function and multiplied by
the output of the other branch to obtain an intermediate variable with the dimensions 2gs2 ×H ×W . The
result is then reshaped by a Pixel Shuffling to obtain offset O.

Figure 4: The sampling process of Dysample
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2.2.4 Optimization of Task-Aligned Assigner Parameters
YOLOv8 matches positive samples through TAA allocation strategies and calculates class loss and

position loss based on positive samples. Consequently, the quality of positive samples directly affects the
model’s capacity to learn important features. The process of matching positive samples with TAA involves
the following four steps:

1. Calculate the alignment score. Get the score s corresponding to the actual target category label among
all predicted category scores, and calculate the CIoU value of the target location label and all location
prediction information to compute the alignment score:

t = sα + μβ (2)

where α and β are weight hyperparameters in Eq. (2).
2. Preview positive samples. Select the prediction point whose center is inside the ground truth box as

initial matching samples.
3. Further select positive samples. According to the alignment fraction t, the topK prediction points are

further selected as the matching positions of positive samples.
4. Filter positive samples. If a prediction point matches multiple ground truth boxes, the ground truth

box with the largest CIoU is selected as the positive sample to match this prediction point.
Since the targets to be detected in UAV images are usually characterized by small size, high density, and

high occlusion, the following two hypotheses are proposed in order to make the TAA assignment strategy
better adapted to this type of task:

1. Due to the fact that targets in images are often blocked by each other, the topK value should be reduced
to avoid introducing more low-quality bounding boxes, which would have a negative impact on training.

2. From the above, the value of t is a key coefficient in deciding whether the sample can be selected as
a positive sample or not, and it can be seen from the Eq. (2) that the value of t is determined by the sum of
the scores of classification and localization after weighting. Because the small targets have fewer pixel points,
the accuracy of localization in this task cannot be well reflected, while the correctness of classification affects
the target detection effect to a greater extent, and it can be observed from the experimental results that small
target detection often occurs in the case of misdetection. Therefore, α and β in the formula should be adjusted
to increase the weight of the classification score and decrease the weight of the localization score.

In the subsequent experiments, we optimize the three parameters involved: topK, α and β. We conduct
several sets of comparative experiments, and the results demonstrate that this methodology obviously
improves the detection effect without increasing parameters and computational complexity, which confirms
the correctness of hypotheses above. A detailed analysis of this process is presented in the following paper.

3 Environment and Evaluation Indicator

3.1 Experimental Environment
To exclude the influence of different experimental environments on the results, all experiments in this

paper are established in the same environment, and the main configurations are as follows: the processor is
12-core Intel(R) Xeon(R) Platinum 8352 V. The graphics card is RTX 4090 with 24 GB of video memory. The
memory size is 90 GB. The Python version is 3.10.8, the PyTorch version is 2.1.2, and the CUDA version is
12.1. The pre-training weights of the YOLOv8n model provided by ultralytics are utilized in the experimental
configuration. The values of the main parameters used in the experiment are shown in Table 1.
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Table 1: Values of main parameters

Param. Val.
Epochs 200
Batch 16

Image size 640 × 640
Workers 12

Pretrained True
Optimizer SGD

lr0 0.01
lrf 0.01

Momentum 0.937

3.2 Evaluation Index
To show the improvement effect of the YOLOv8 model in this paper more effectively, Precision,

Recall, mAP50, mAP50-95, Parameters, and GFLops are adopted as the evaluation indexes of the model
performance. The first four indexes are mainly utilized to reflect the detection ability of the model, and the
last two indexes are mainly utilized to reflect the complexity of the model.

The related formulas for Precision, Recall, and mAP (mean Average Precision) are shown below:

P = TP
TP + FP

(3)

R = TP
TP + FN

(4)

AP = ∫
1

0
P (R) dR (5)

mAP = 1
n

n
∑
i=1
(AP)i (6)

Among them, Eqs. (3) and (4) are used to calculate Precision and Recall, the two most fundamental
indexes that can reflect the performance of the model, respectively. Eq. (5) is utilized to assess the average
detection ability of the model for a single category of targets, while Eq. (6) reflects the average detection
ability of the model for all categories of targets. In this paper, mAP50 and mAP50-95 are selected as two
evaluation indicators, where the former represents the average detection ability of prediction results with
IoU > 0.5. and the latter represents the mAP value of the IoU in the range of 0.5 to 0.95.

Parameters and GFLops indicate the number of parameters used in the model as well as the complexity
of its operations. Consequently, they serve as indexes for assessing both the portability and real-time
performance of the model.

3.3 Dataset
The quality of the dataset significantly influences the training process of the model, and a high-

quality dataset can enhance the model to effectively extract important features from images. In this paper,
approximately 30% of the data volume of the training set in the VisDrone2019 dataset is randomly selected
for training purposes during the experimental phase.
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As shown in Table 2, there are 2192 images in the processed training set after processing the original
dataset. The validation set is unprocessed, with a total of 548 images. The training set covers 10 different
categories. The images in this dataset, taken by a variety of drones, cover a wide range of areas, including:

1. Different cities, including 14 Chinese cities thousands of kilometers apart.
2. Different environments, including different weathers and light conditions.
3. Different densities, including scenes with sparse targets and crowded targets.
Overall, the dataset covers a wealth of targets to be detected and diverse scenarios, which enhances the

generalizability of the trained model and underscores its practical application value.

Table 2: Details of the processed VisDrone2019 dataset

Scenario Images of the training set Images of the validation set Categories
Drone 2192 548 Motor, Bus, Awning-tricycle,

Tricycle, Truck, Van, Car,
Bicycle, Person, Pedestrian

4 Experimental Results and Analysis
The experimental content covered in this section mainly includes four parts. First, the influence of the

detection head under different combinations on the detection results is tested, and finally, the structure of
the improved model is determined according to the experimental results. Then, based on the hypothesis
in Section 2.2.4, the influence of different values of topK, α and β in the TAA on the detection results is tested,
and a series of suggestions for small target detection are given according to the results. Moreover, based on
the baseline model, the small target detection head, 3DSPPF module, DySample module and optimized TAA
parameters are added respectively, and ablation experiments are conducted and analyzed. Finally, this paper
selects 6 common models for comparative experiments with the YOLO-S3DT model and analyses the results.

4.1 Comparative Experiments of Detection Heads
As discussed in Section 2.2.1, the detection heads of the YOLOv8 model are configured at sizes of 80 ×

80, 40 × 40, and 20 × 20 pixels, respectively. When addressing aerial image detection tasks, these existing
detection heads struggle to effectively detect small targets. Therefore, this paper adds a 160 × 160 detection
head to make better use of the information in shallow features to improve the learning ability of these targets.
Meanwhile, to facilitate a more intuitive comparison of the impacts arising from various combinations of
160 × 160 heads and other heads on the detection outcomes, this paper conducts several sets of comparative
experiments. The results are presented in Table 3 below.

From the experimental results, the original model has the worst detection effect compared with other
combinations of 160 × 160 detection heads, with only 32.2% for mAP50 and 18.3% for mAP50-95 under the
same experimental environment. In the four comparative experiments with a 160 × 160 head, the Precision,
Recall, mAP50, and mAP50-95 all present different degrees of improvement, which directly proves that the
addition of the small-size target detection head has a positive effect on the experimental results. Among
them, by removing the 20 × 20 detection scale to reduce the depth of the network, the number of parameters
in the model can be effectively reduced, and the results show that the number of parameters in the improved
model is less than one million, which is only one third parameter in the original network, and all the detection
indexes are higher than those in the original network. However, compared to the other three models with
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a 160 × 160 layer, this combination has a limited improvement in detection. The other three combinations
are closer in terms of experimental results, probably because they have the same network depth and an
effective detection head for small targets. The model with four detection scales has the highest Precision,
Recall, and mAP50 values, but this model also has the highest number of parameters and Flops of all the
models. The last two combinations in the table are also very close in results and overall better than the other
three. Considering the parameters and Flops, although the number of parameters of the former is reduced
by about 60,000 compared to the latter, the floating-point arithmetic of the former is one GFlops higher
than that of the latter. Given that aerial image detection is primarily used in terminal devices with limited
processor performance, it is preferable to select detection scales with fewer floating-point computations and
minimal increase in the number of parameters. Therefore, we decided to eliminate the 80 × 80 detection
head in the final improvement while retaining the other three as the Head part of the improved model.

Table 3: Experimental results of detection head improvement

The scale of detection layer Params/M Flops/G P/% R/% mAP50/% mAP50-95/%
80 × 80, 40 × 40, 20 × 20 3.01 8.1 42.8 32.6 32.2 18.3

160 × 160, 80 × 80, 40 × 40, 20 × 20 2.93 12.4 46.1 34.8 35.1 19.7
160 × 160, 80 × 80, 40 × 40 0.99 10.6 45.6 32.8 34.0 19.0
160 × 160, 80 × 80, 20 × 20 2.76 11.7 45.9 34.7 35.1 19.9
160 × 160, 40 × 40, 20 × 20 2.82 10.8 45.3 34.8 35.0 19.8

4.2 Comparative Experiments of TAA Parameter Optimization
The screening of positive samples in YOLOv8 is implemented using TAA. The quality of positive samples

directly affects the model’s ability to learn features, as both category loss and position loss calculations are
based on these samples. Section 2.2.4 proposes two hypotheses that inform the setting of relevant parameters
within TAA. A series of comparative experiments are performed under the consistent condition. The results
are presented in Table 4.

Table 4: Comparison results of TAA parameter optimization

Parameter setting P/% R/% mAP50/% mAP50-95/%
topK = 10, α = 0.5, β = 6.0 42.8 32.6 32.2 18.3
topK = 13, α = 0.5, β = 6.0 42.5 32.7 31.9 18.1
topK = 15, α = 0.5, β = 6.0 43.1 32.4 31.9 18.0
topK = 7, α = 0.5, β = 6.0 44.4 33.0 33.2 18.9
topK = 5, α = 0.5, β = 6.0 44.8 34.3 33.8 19.0
topK = 3, α = 0.5, β = 6.0 45.7 34.4 34.7 19.7
topK = 1, α = 0.5, β = 6.0 46.5 34.6 35.0 19.3
topK = 1, α = 1, β = 6.0 45.2 35.4 35.2 19.2
topK = 3, α = 1, β = 6.0 47.2 35.3 35.6 19.8
topK = 5, α = 1, β = 6.0 45.3 35.2 35.2 19.5

topK = 3, α = 1.5, β = 6.0 46.2 35.6 35.3 19.2
topK = 3, α = 1, β = 5.0 44.4 34.8 35.0 19.2

Note: The parameters of TAA in the baseline model are set to topK = 10, α = 0.5, β = 6.0.
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The value of topK under the original parameter is set to 10. The values of mAP50 and mAP50-95 of the
model decrease to a certain extent when the value of topK is increased. However, when it is reduced, i.e.,
topK is set as 7, 5, 3, and 1, all indicators of the model increase clearly. This result confirms the first hypothesis
proposed before, i.e., that in detection scenarios with dense targets and strong occlusion, too large of topK
would introduce more low-quality samples, which would negatively affect the learning of features by the
model. When topK is set to 1, Precision, Recall, and mAP50 of the model are the highest among the first
seven comparative experiments in Table 4, and mAP50-95 is slightly lower than the result when the topK is
set as 3. To further increase α, which is set as 1, for the models with topK values of 1, 3 and 5, it can be seen that
the detection performance of each model is still significantly improved. This result also confirms the second
hypothesis, which states that the size of the object to be detected in aerial images is tiny, and only accounts for
a small number of pixels. As a result, the localization will not have a large deviation. In this type of application
scenario, the model’s misdetection is more serious, so the proportion of the classification scores should be
increased to select samples that are more accurately classified. In the comparison of these three experiments,
the model with a topK value of 3 and an α value of 1 (bolded row in the table) achieves the best result, with
mAP50 and mAP50-95 values of 35.6% and 19.8%, respectively. It is worth noting that the detection ability
does not change obviously when topK = 1, α = 1. A possible explanation is that reducing the value of topK,
while effective in reducing the number of poor-quality samples, also significantly reduces the number of
positive samples selected. By raising the value of α, the weight of classification score in sample selection can
be increased to filter out more high-quality samples. However, if the value of topK is too small, some samples
that are beneficial to model training may be filtered out. When the value of α is further increased, i.e., α =
1.5, and all else being equal, the performance of the model appears worse. A similar situation occurs when α
is no longer increased and the value of β is decreased, i.e., β = 5.

It can be seen that these parameters need to be fine-tuned according to the detection task. The model
will be adversely affected by them being set to inappropriate values. Through the above series of comparative
experiments, the best experimental results appear when the values of topK, α and β are set to 3, 1.0 and 6.0,
respectively. By reducing the topK value, the detection effect can be significantly improved in the detection
of small targets in aerial images, but setting it too small will excessively limit the number of positive samples.
The values of α and β correspond to the scores of classification and positioning, respectively. In this type of
detection, both values can be adjusted to increase the proportion of accurate classification, thereby further
enhancing the detection effectiveness.

4.3 Ablation Experiments
To validate that each improvement strategy proposed in this paper has an enhancement effect on the

performance of the target detection model for aerial images, this paper takes the YOLOv8n model as the
benchmark, adds corresponding improvement measures to it in turn, and conducts a series of ablation
experiments under the same experimental environment. The results are presented in Table 5.

Methods A to D correspond to adding the improved detection heads, the improved SPPF module,
the improved up-sampling module, and the optimized parameters of TAA based on the baseline model,
respectively. From the results, all these four improvement strategies play a positive role in improving the
performance of the model, and the indexes, such as Precision and Recall have been improved to varying
degrees. Among them, method D has the greatest improvement in mAP50 and mAP50-95, with increases of
3.4% and 1.6% respectively over the original model. The second is method A, which has a 2.8% improvement
in mAP50 and a 1.6% improvement in mAP50-95. Methods B and C similarly improve the model with
only a small increase in parameters and Flops. Methods E to G add the other three strategies in turn,
based on the addition of small-sized combination of detection head. Although Flops increases to a certain
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extent compared with YOLOv8n (about 2.8 G), other evaluation indexes show improvement compared
with method A, which indicates that combining different improvement strategies is more effective than
using method A alone. A similar situation occurs in Methods H and I, where different three methods are
combined and produce a positive effect in both experiments. The Ours in the table represents the final
YOLO-S3DT model obtained by incorporating all the improvements outlined in this paper. In a series of
ablation experiments, this method achieves the best result. Precision and Recall are increased by 4.6% and
5.3%, mAP50 and mAP50-95 are increased by 5.7% and 2.8%, respectively. Parameters are decreased by
approximately 0.08 M, and the computation amount is increased by less than 3 GFlops.

Table 5: Results of ablation experiments

Method Detection
heads

3DSPPF DySample TAA Params/M Flops/G P/% R/% mAP50/% mAP
50-95/%

YOLOv8n – – – – 3.01 8.1 42.8 32.6 32.2 18.3
A

√
– – – 2.82 10.8 45.3 34.8 35.0 19.8

B –
√

– – 3.11 8.2 44.3 32.8 32.8 18.5
C – –

√
– 3.02 8.1 44.2 32.6 32.7 18.6

D – – –
√

3.01 8.1 47.2 35.3 35.6 19.8
E

√ √
– – 2.92 10.9 46.1 35.1 35.3 19.9

F
√

–
√

– 2.83 10.9 46.2 35.3 35.4 20.3
G

√
– –

√
2.82 10.8 47.1 37.0 36.9 20.3

H
√ √ √ √

2.93 11.0 46.1 35.9 35.6 20.3
I –

√ √ √
3.12 8.2 45.3 36.1 35.8 20.1

Ours
√ √ √ √

2.93 11.0 47.4 37.9 37.9 21.1

Note: The combination of detection head is 160 × 160, 40 × 40 and 20 × 20.

4.4 Comparative Experiments
To further validate the advancement and effectiveness of the YOLO-S3DT model proposed in this paper,

6 target detection models from different YOLO series [23] and 5 additional target detectors are separately
selected for comparative experiments. The results are presented in Tables 6 and 7.

Table 6: Results of comparative experiments with YOLO series

Model Params/M Flops/G P/% R/% mAP50/% mAP50-95/%
YOLOv3t [15] 12.13 18.9 35.3 22.6 21.4 11.4

YOLOv4-csp [24] 9.14 20.9 41.3 37.9 33.1 16.7
YOLOv5n 2.50 7.1 44.4 32.1 31.9 18.2

YOLOv6n [25] 4.23 11.8 38.9 28.8 28.1 15.9
YOLOv7t [26] 6.04 13.3 40.3 34.7 30.5 14.9

YOLOv8s 11.13 28.5 46.3 35.3 35.2 20.4
YOLO-S3DT 2.93 11.0 47.4 37.9 37.9 21.1

Note: The depth and width of the YOLOv4-csp model are set to 0.33 and 0.5.
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Table 7: Results of comparative experiments with other detectors

Model Params/M Flops/G mAP50/% mAP50-95/%
SSD [27] 26.29 62.7 9.6 5.0

RetinaNet [28] 37.70 170.1 13.3 7.9
EfficientDet [29] 3.87 5.23 14.9 7.7

Faster R-CNN [30] 137.10 370.2 16.9 7.4
CenterNet [31] 32.67 70.22 31.2 14.9
YOLO-S3DT 2.93 11.0 37.9 21.1

In relation to the parameters, YOLO-S3DT has only 2.93 million, which is just 430,000 more than
the smallest YOLOv5n, while the parameters of YOLOv3t and YOLOv8s both exceed 10 million, and
YOLOv4-csp exceeds 9 million, which are 4.1, 3.8 and 3.1 times of the improved model respectively. In
regards to computation, the improved model has a low complexity compared to other models, with a
value of 11.0 Flops, the second lowest among all models. This is about 4 GFlops higher than YOLOv5n,
and only 38.6%, 52.6%, and 58.2% of YOLOv8s, YOLOv4-csp, and YOLOv3t, respectively. In terms of the
comprehensive performance of the model, the improved model observably outperforms other models in all
the results. Among them, YOLOv5n outperforms YOLO-S3DT in Parameters and Flops. However, the values
of Precision, Recall and mAP are significantly lower than those of YOLO-S3DT, especially the mAP50, which
is 6% lower than that of YOLO-S3DT.

As shown in Table 7, the number of parameters of YOLO-S3DT is significantly lower than other
models, with only EfficientDet being comparable. EfficientDet exhibits the lowest value of Flops which
is approximately half of YOLO-S3DT. While it demonstrates commendable lightweight performance, its
detection efficacy is subpar, ranking only slightly above RetinaNet. Among the other models, the highest
mAP value is CenterNet, whose mAP50 and mAP50-95 reach 31.2% and 14.9%, respectively, but still has a
significant gap with YOLO-S3DT.

Overall, the model proposed in this paper has fewer parameters and lower computational complexity,
making it easy to deploy on various terminal devices for detection tasks. Additionally, the model outperforms
other models in terms of detection accuracy, further confirming the superiority of the developed model.

4.5 Comparisons of Detection Effect
To visually reflect the detection capabilities of various models, we select samples from 4 different

scenarios and use trained models to detect them. The comparisons are presented in Fig. 5. Each row
represents the detection results in the same scenario. The left, middle, and right images are the detection
outputs of YOLOv8n, YOLOv8s, and YOLO-S3DT models, respectively.

The first detection scenario is an intersection on a city road, with sufficient light and basically no
obstruction, the UAV is directly above the target for long-distance shooting, and the scene contains a large
number of small-sized targets, especially motorcycles and pedestrians with only a few pixel points. Based
on the results, YOLOv8n performs well in detecting cars in the image. However, it tends to miss smaller
motorcycles and sometimes misidentifies vans as cars. In contrast, YOLOv8s performs better in detecting
cars, and also shows improved detection of motorcycles and vans compared to the former. However, there are
still noticeable omissions. The model proposed in this paper has better detection ability for different types of
targets in this scene. Fig. 5c shows that YOLO-S3DT detects a higher number of motorcycles and pedestrians
compared to the other two models.
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Figure 5: Comparisons of detection effect in four scenarios

The second scenario for detection is an expressway. Although there are relatively few targets in this
scene, the UAV is far away from the small targets to be detected. Additionally, the high brightness of the image
causes overexposure, which increases the difficulty of detection. As shown in Fig. 5d and e, both models are
unable to detect cars located in the middle of the picture and further away. The improved model recognizes
these targets more accurately and reduces the rate of missed detections.

The third detection scenario is under outdoor stadiums, where the pictures are taken under complex
lighting conditions. Different areas within the image may have varying degrees of over or underexposure due
to differences in light intensity. Due to the difficulty of detecting this type of scene, none of the three models
completely detect all the targets in the image, and all of them have a high leakage rate. However, Fig. 5g
and h demonstrates that the unimproved YOLOv8 models exhibit more obvious misdetections. For instance,
YOLOv8n detects the facility next to the basketball court and the people around it as motorcycles,
while YOLOv8s mistakenly detects a basketball hoop as a truck. In contrast, the YOLO-S3DT shows no
misdetections and correctly identifies more targets.

The fourth detection scenario is a city road at night. Due to the small aperture of the UAV’s lens and the
weak light at night, the targets to be detected in the image have different degrees of blurriness and darkness,
and the trees on both sides of the road also obscure the targets parked under them, which makes this type
of scene more challenging to detect as well. In Fig. 5j and k, YOLOv8n and YOLOv8s are able to detect the
cars on the road better, but struggle with detecting parked cars on the far side of the road due to occlusion.
The results in Fig. 5l demonstrate that the improved model is obviously more sensitive to this class of targets
and has better detection capability.
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5 Conclusions
Due to the considerable distance between Unmanned Aerial Vehicles (UAVs) and their targets during

operation, coupled with complex application scenarios, challenges such as false detections and missed
detections frequently arise when identifying small targets within aerial imagery. In this paper, the YOLOv8n
model is improved from four aspects: the detection head, the up-sampling module, the SPPF module, and
the parameter optimization of positive sample screening. The YOLO-S3DT model is proposed.

Firstly, a 160 × 160 detection head is integrated into the Head component of the original network
to enhance the sensitivity of the model to small-size targets. The 80 × 80 head is removed through the
experiments of different combinations of detection heads for comprehensive comparison, which reduces the
parameters of the model under the premise of guaranteeing the improvement of performance. Secondly, the
structure of the SPPF module is redesigned by incorporating a branch for feature map reconstruction. Three
DSC modules and the convolution dilation operation are used to obtain richer feature information without
a large increase in computation. Additionally, the DySample is employed in the Neck component to replace
the previous up-sampling block, so that the initial sampling positions are uniformly distributed to solve the
problem of initial disordered sampling points, and it effectively improves the detection accuracy. Finally, the
optimization of relevant parameters in TAA reduces the negative impact on the model caused by involving
too many low-quality samples in the training process. Furthermore, considering the characteristics inherent
in small-target detection tasks, the proportion of classification scores in the positive sample selection process
is increased. Experimental results validate the effectiveness of these proposed optimizations.

The ablation and comparative experiments demonstrate not only that these methods positively con-
tribute to improving detection capability but also that our approach exhibits significant advantages over
other models regarding lightweight and accuracy. Consequently, it proves more suitable for application tasks
within UAV photography scenarios characterized by limited computing resources.
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