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ABSTRACT: Pill image recognition is an important field in computer vision. It has become a vital technology
in healthcare and pharmaceuticals due to the necessity for precise medication identification to prevent errors and
ensure patient safety. This survey examines the current state of pill image recognition, focusing on advancements,
methodologies, and the challenges that remain unresolved. It provides a comprehensive overview of traditional image
processing-based, machine learning-based, deep learning-based, and hybrid-based methods, and aims to explore the
ongoing difficulties in the field. We summarize and classify the methods used in each article, compare the strengths
and weaknesses of traditional image processing-based, machine learning-based, deep learning-based, and hybrid-based
methods, and review benchmark datasets for pill image recognition. Additionally, we compare the performance of
proposed methods on popular benchmark datasets. This survey applies recent advancements, such as Transformer
models and cutting-edge technologies like Augmented Reality (AR), to discuss potential research directions and
conclude the review. By offering a holistic perspective, this paper aims to serve as a valuable resource for researchers
and practitioners striving to advance the field of pill image recognition.

KEYWORDS: Pill image recognition; pill image identification; pill recognition; pill identification; pill image retrieval;
pill retrieval; computer vision

1 Introduction
Pill image recognition has practical applications and benefits across various fields. In healthcare and

patient care, it assists patients through mobile applications that identify pills via images, helping the elderly
and those managing multiple medications by ensuring correct medication intake and reducing errors.
It also supports pharmacists and doctors by verifying medications to prevent mix-ups and providing
quick identification for accurate advice. In hospital medication management, it enhances inventory control
by tracking and managing medication stock, and increases efficiency and accuracy through automation,
minimizing the need for manual checks. For safety and legal compliance, it helps identify counterfeit or
substandard medications and supports regulatory inspections and adherence to standards. Additionally, it
aids the visually impaired through assistive applications that help them recognize medications and receive
information via audio.
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Recently, artificial intelligence (AI) has made significant strides and emerged as a powerful tool for
addressing various challenges. In its early stages, pill identification was managed through various online
systems that required users to manually enter multiple attributes, such as shape, color, and imprint, as shown
in Fig. 1.

Figure 1: Shape, color, imprint of the Paracetamol pill

Websites like https://www.drugs.com/imprints.php (accessed on 15 January 2025) have made it easier
for users to identify pills based on characteristics such as color, shape, and imprint. Despite this convenience,
several challenges arise when relying on these platforms. For one, users must manually input various
attributes, which can be difficult if the pill’s features are worn or unclear, making the process time-consuming.
Additionally, the accuracy of the identification depends largely on the user’s ability to correctly describe the
pill, increasing the probability of mistakes. Moreover, the website’s database may not always include the latest
or less common medications, potentially leading to incomplete identification. These limitations emphasize
the need for more efficient, automated solutions using pill image recognition technology.

This review highlights key ethical considerations in the development and application of pill image
recognition technologies. Misidentification remains a critical risk, as inaccurate pill identification can
lead to incorrect medication or dosage, potentially causing severe health consequences. To mitigate this,
rigorous validation and verification processes must be implemented, alongside the use of diverse and
representative datasets. Accessibility is another important factor, especially for visually impaired individuals
and older adults. Developers should integrate assistive features, such as auditory feedback or simplified
interfaces, to ensure inclusivity. Additionally, issues related to data privacy, security, and accountability
necessitate compliance with ethical standards and regulatory frameworks. These considerations underscore
the importance of ethical oversight in this field, encouraging the research community to prioritize safety,
inclusivity, and trust in the development of pill image recognition systems.

In this literature review, we explore a range of methodologies employed for pill image recognition,
categorizing them into four primary approaches: traditional image processing-based, traditional machine
learning-based, deep learning-based, and hybrid-based methods. Traditional image processing-based meth-
ods use basic image processing techniques to extract features like shape, color, and imprint, facilitating the
matching of pill images. Traditional machine learning-based methods build on these features, employing
algorithms like K-Nearest Neighbors (k-NN), Support Vector Machines (SVM), and Decision Trees to
classify pill images. Deep learning-based methods, powered by Convolutional Neural Networks (CNNs)
and other neural network architectures, have shown remarkable performance by automatically learning
intricate features from large datasets of pill images. Lastly, hybrid-based methods combine elements of the
aforementioned approaches to capitalize on their respective strengths and reduce their limitations. The
remainder of the article is organized as follows. Section 2 provides a comprehensive background on the foun-
dational concepts relevant to this study. Section 3 presents a detailed literature survey. Section 4 discusses
the benchmark datasets commonly used in the research community. In Section 5, a thorough comparison
of various methods is conducted to highlight their respective strengths and weaknesses. Section 6 identifies
open research problems. Finally, Section 7 concludes the article.

https://www.drugs.com/imprints.php
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2 Background

2.1 Definition of Pill Image Recognition
Pill image recognition is the process of using computer algorithms to recognize and identify pills based

on visual features from photographic images of the pill. Figs. 2 and 3 illustrate the identification of one pill
or multiple pills.

Figure 2: Defines the recognition of a pill

Figure 3: Defines the recognition of multiple pills

In the Fig. 2, the input is an image of a pill, including the background of the pill, the output is to identify
the identity of that pill. In the Fig. 3, the input is an image of many pills, including the background of pills,
the output is to identify each pill.

2.2 Definition of Pill Features
2.2.1 Pill Shape

The shape of a pill refers to the geometric form or outline of the pill when viewed from above. It is one
of the key physical characteristics used to identify and differentiate medications. Pill shapes can vary widely
and are often designed for specific purposes related to the medication’s use, the ease of swallowing, or to
avoid confusion with other pills.
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2.2.2 Pill Color
The color of a pill refers to the hue or shade visible on the surface of the medication. Pill color is a

significant identifying feature that helps distinguish one medication from another. It can be a single color or
a combination of colors and may be used in conjunction with other physical characteristics such as shape,
size, and imprint for accurate identification.

2.2.3 Pill Imprint
An imprint on a pill refers to any characters, symbols, logos, or patterns that are stamped, engraved, or

printed on the surface of the pill. These imprints serve as unique identifiers to help distinguish one pill from
another, providing essential information for identification and verification purposes. Example about shape,
color, imprint of pill is shown in Fig. 1.

3 Literature Survey
In this section, we review papers that utilize algorithms for pill image recognition. We categorize

pill image recognition methods into four main approaches: traditional image processing-based, traditional
machine learning-based, deep learning-based, and hybrid-based methods. During the data preprocessing
stage, image filtering is commonly employed, with popular techniques such as averaging filters, median
filters, and Gaussian filters frequently used by authors. In our summary of the methods used, we focus on
the primary techniques and do not include these widely-used image filtering methods.

3.1 Traditional Image Processing-Based Methods for Pill Image Recognition
The traditional image processing-based method for pill image recognition refers to an approach that

uses classic techniques in image analysis and manipulation, such as preprocessing for noise reduction and
enhancement, segmentation to isolate pill features, and extraction of shape, color, and imprint attributes.
This method relies on established algorithms and mathematical operations to interpret and classify pill
images based on predefined visual characteristics. The main methods used by the authors in this category
are summarized in Table 1.

Table 1: Traditional image processing-based methods in pill image recognition

No. Ref. Year Method Dataset Evaluation metrics
1 Lee et al. [1] 2010 Pill image segmentation: tightly crop

Extract shape of imprint: use Canny
edge detector [2], Hu moment [3]

Extract imprint: use multi-hysteresis
thresholding method

Pill image classification: use min-max
normalization and weighted sum

method [4]

Private [5] Acc: 76.74% (rank-1)
93.02% (rank-20)

2 Morimoto
et al. [6]

2011 Extract Imprint: by Difference of
Gaussian

Pill Image Classification: by rotate pill
sample, image registration two images

by log-polar [7]

Private Acc: 96.6% (for
printed table)

87.3% (engraved
tables)

(Continued)



Comput Mater Contin. 2025;82(3) 3697

Table 1 (continued)

No. Ref. Year Method Dataset Evaluation metrics
3 Kim et al. [8] 2011 Pill image segmentation: k-mean

cluster, Canny edge detector [2]
Pill image classification: shape

classification: distance between the
center and each point are estimated for
plotting the signature, color matching:

convert to HSV and use color
histogram

NLM –

4 Hartl et al. [9] 2011 Pill image segmentation: software
library: Studierstube ES, undistort the
view of the marker [10], local adaptive

thresholding [11], linear [12]
Size Estimation: use pixel-to-real-size

ratio, Color Extraction: local white
balance algorithm [13], use sRGB

lookup table, distance metric in CIE
LAB space [14], Color Histogram,

Shape Estimation (circular, oblong,
oval, special): Pairwise Geometric

Histogram by Evans et al. [15],
non-convex objects: critical point

detector in [16]
Pill image classification: combines 3

features, based on Euclidean distance,
to match to 4 shapes in the database

Private:
Identa

Acc: (Top-3)> 90%

5 Caban et al. [17] 2012 Extract shape, color, imprint by shape
distribution [18]

Pill image classification: combine into
a single feature vector

NLM Acc: 91.13%

6 Lee et al. [19] 2012 Pill image segmentation: gaussian filter
and sobel operator [20]

Extract shape: use Hu moment [3]
Extract color: color histogram

Extract imprint by SIFT [21] and
multi-scale LBP [22,23]

Pill image classification: use Min-max
normalization and weighted sum

method [4]

Web [24] Acc: 73.04% (rank-1)
84.47% (rank-20)

(Continued)
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Table 1 (continued)

No. Ref. Year Method Dataset Evaluation metrics
7 Chen et al. [25] 2012 Pill image segmentation: select ROI,

rotate, median filter [26], shape
enhancement

Extract color: convert to HSV [27–29]
Extract shape: canny edge detector,

MPEG-7 Edge Histogram Descriptor
(EDH)

Extract ratio, extract magnitude,
extract imprint: MPEG-7 [30], arif

index, its application [31], optimizing
gabor filter [32], Gabor wavelet

selection [33], Breast cancer detection
with Gabor features [34], Common

vector analysis of Gabor features [35]
Pill image classification: similarity

measurement

Taichung
hospital in

Taiwan

Acc: 92.6% (Top-10)

8 Yu et al. [36] 2014 Extract shape: shape distribution [18]
Extract color: convert to HSV and use

Color histogram
Extract imprint: MSWT [37,38]

Imprint descriptor: two-step sampling
distance sets (TSDS) [36,39]

Pill image classification: match shape,
color, imprint features in the database

Private Acc: 86.01% (rank-1)
93.64% (rank-5)

9 Hema et al. [40] 2015 Pill image segmentation, extract shape:
geometrical gradient feature

transformation, extract color: color
histogram [41], extract imprint:

SUFT [42]
Pill image classification: use

cross-correlation in [40]

Private Acc: 86.9%
Total elapsed time:

4.48 s

10 Suntronsuk
et al. [43]

2016 Extract Imprint: modified Kasar’s
method + OCR (Tesseract)

448 pill
in [44]+NLM

Precision: 0.084%
Recall: 0.087%

F1-score: 0.086%
Acc for detecting

edge mask: 56.67%
(twice the accuracy
of Kasar method)

11 Suntronsuk
et al. [45]

2017 Create edge E = ERUERUER , find
bounding box contain imprint

Binarization imprint by Otsu global
thresholding [46], K-mean clustering

in [47]
Input binarized imprint to

Tesseract [48]

NLM F1-score: 0.77:
imprints

0.57 overall

(Continued)
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Table 1 (continued)

No. Ref. Year Method Dataset Evaluation metrics
12 Ranjitha

et al. [49]
2019 Detect color and shape: use Raspberry

pi (name of mini computer), camera,
use image processing

Detect color: Convert RGB to HSV,
find lower and upper boundaries of the

color, mask for the color, erosion:
removes white noise, dilation:

increases the object area
Detect shape: Ramer-Douglas Peucker

algorithm

– –

13 Chokchaitam
[50]

2021 Use the YIQ color system to improve
color compensation and pill

identification by:
Convert images from RGB to YIQ

color space
Adjust the Y value to compensate for

the effects of shadows and lighting
changes

Use components I and Q to maintain
the original color information of the

tablet

Dextrome-
thorphan

If the selected pill is
not taken with white
background, “YIQ”

values are changed in
this condition
background

Lee et al. [1,19] both emphasize the importance of imprint matching, using techniques like edge
detection and contour analysis to extract pill imprints. These methods perform well when the pill imprints
are clear and distinguishable, but their accuracy decreases when the imprint is faint or damaged. These
approaches rely on predefined feature extraction algorithms, which are less flexible compared to modern
learning-based approaches.

Morimoto et al. [6], Kim et al. [8] focus on matching pills based on their shape and color, utilizing
features like contour descriptors and color histograms. These methods are effective for distinguishing
pills with distinct shapes and colors but struggle with pills that are similar in these aspects. Shape-based
recognition often suffers when pills are rotated or partially occluded, limiting the robustness of these methods
in real-world conditions.

The work in Hartl et al. [9] explores the challenges of recognizing pills in unconstrained environments,
such as on mobile devices, where lighting conditions and camera angles can vary significantly. The use
of traditional image processing techniques here, including color and imprint analysis, shows promise, but
the performance is highly dependent on controlled conditions. Variations in lighting and background can
significantly affect the accuracy of recognition.

In Caban et al. [17], the shape distribution model is applied to pills by capturing the distribution of
distances from a set of boundary points. This method improves the robustness to shape variations but can
still be limited by the need for clear boundaries in the pill image, which might not always be available due to
noise or occlusion.

Chen et al. [25] proposes a method that combines various features-shape, color, and texture-weighted
dynamically depending on the context of the pill image. This method enhances the system’s flexibility to
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adapt to different pill appearances, though it still struggles with ambiguous or noisy images where feature
distinction is difficult.

Yu et al. [36] introduces a method for recognizing pill imprints by analyzing distances between imprint
features. This two-step approach improves the robustness of imprint recognition, but it is still reliant on the
quality of the imprint and can struggle in cases of faint imprints.

Hema et al. [40] and Ranjitha et al. [49] emphasize feature extraction techniques, such as shape, color,
and imprint, to differentiate pills. These methods are highly interpretable but lack the ability to generalize
well across diverse pill types, particularly when there are subtle differences between them.

Suntronsuk et al. [43,45] tackle the challenging problem of imprint recognition, applying binarization
and segmentation techniques to separate text from the pill’s surface. While effective for high-contrast
imprints, these techniques face challenges when the pill’s imprint contrast is poor or the surface is reflective.

Lastly, Chokchaitam [50] addresses the issue of background interference by compensating for shadows
and lighting variations. This improves the reliability of color-based features but is still sensitive to extreme
lighting changes.

In summary, traditional image processing methods offer interpretability and efficiency in pill recogni-
tion but face challenges with variations in pill appearance, lighting conditions, and imprint quality. These
methods are generally effective in controlled environments but struggle in real-world applications where pills
may have similar colors or shapes, or where imprints are not clearly visible. As a result, while these methods
laid the groundwork for pill recognition, they have been increasingly supplemented or replaced by machine
learning and deep learning techniques in recent years due to the limitations in handling more complex or
ambiguous pill images.

3.2 Traditional Machine Learning-Based Methods for Pill Image Recognition
The traditional machine learning-based method for pill image recognition involves using algorithms

and statistical models to train on extracted features from pill images. This approach typically includes
preprocessing steps to enhance image quality and feature extraction to identify key characteristics such
as shape, color, and imprint. Machine learning models like Support Vector Machines (SVM), K-Nearest
Neighbors (k-NN), and Random Forests are trained on these features to classify pill images based on learned
patterns and similarities within a labeled dataset. The main methods used by the authors in this category are
summarized in Table 2.

Table 2: Traditional machine learning-based methods for pill image recognition

No. Ref. Year Method Dataset Evaluation metrics
1 Cunha et al. [51] 2014 Marker detection: use Canny edge

detector [2], combination of contour
finding and polygon

approximation [52], find four
circles [53] forming a rectangle
Extract Shape: Hu moment [3]

Extract size: minimum rectangle that
bounds the pill [52]

Extract Color: convert to HSV, colors
are retrieved by ColorLUT

Pill Image Classification: Decision Tree

Local
database

–

(Continued)
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Table 2 (continued)

No. Ref. Year Method Dataset Evaluation metrics
2 Yu et al. [37] 2015 Pill image segmentation: loopy belief

propagation [54]
Extract shape: shape distribution [18]
Extract color: convert to HSV and use

color histogram
Pill image classification: k-NN

classifier

Private Acc: 90.46% (rank-1)
97.16% (rank-5)

3 Ushizima
et al. [55]

2015 Pill image segmentation: edge map and
texture in Fiji package [56]

Extract Shape and size in software
tool [57]

Match: k-mean [58], SOM
Network [59], U-matrix

Quantitative evaluation: use
silhouette [60,61]

NLM Acc: 45.4% as round
tablets

16.6% as capsules
36.6% as oval tablets

4.4% as oddly
shaped pills

4 Chupawa
et al. [62]

2015 Pill image segmentation: croped using
bounding box

Extract Imprint: divided by different
radius ratios after converting to
grayscale and removing noise
Pill Image Classification: input

extracted features into Neural Network

Database of
hospital in
Thailand

Acc: 94.4%

5 Vieira Neto
et al. [63]

2018 Pill Image Segmentation: convert to
HSV, Compare points based on

threshold to determine background
separation of pill image

Extract Shape and color by Hu
moment [3] Pill Image Classification:

k-NN, SVM, Bayes

PILL BR
(private),

NLM

Acc: 99.82% (PILL
BR)

99.91% (NLM);
Extraction Speed:
0.0081 s per image

6 Chughtai
et al. [64]

2019 Pill Image Segmentation: based on
threshold (0.67) (uniform

background)
Crop the pill image based on moving
the horizontal and vertical lines in the

search area according to the given
criteria

Extract Size: based on moving the
horizontal and vertical lines to

compute width or height
Extract Color: binary mask * colored

front, back side
Extract Imprint: use MSWT

algorithm [38], MSER algorithm [65]
Pill Image Classification: input

extracted features into Neural Network

Web [66] Acc: 98%

(Continued)
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Table 2 (continued)

No. Ref. Year Method Dataset Evaluation metrics
7 Dhivya et al. [67] 2020 Pill image segmentation: canny edge

detection [2], Otsu thresholding
Feature Vector Generation: feature
fusion and selection method [68],
generate suspect list: SVM, Error

correction (EC): use confusion model,
n-grams [69], enhanced

n-grams [70,71]
Pill Image Classification: using Dice’s

coefficient (DC) [72]

Web [66] EC + enhanced
n-grams (EnG): high
accuracy of 94.55%

Cunha et al. [51] employ traditional machine learning to create a mobile-based tool for pill recognition.
The system uses characteristics such as pill shape and color, employing a machine learning classifier to
help elderly users identify pills. This study highlights the effectiveness of traditional methods in resource-
constrained environments, particularly mobile platforms, where computational efficiency is crucial.

Yu et al. [37] focus on imprint-based features combined with traditional machine learning classifiers.
Imprint information, including text or symbols on the pill surface, is extracted and processed to train models
k-NN. This approach is particularly effective for pills that have similar shapes or colors but distinct imprints.

Ushizima et al. [55] explore various traditional machine learning approaches on a large-scale pill dataset.
The study compares different feature extraction techniques and classifiers, including SVM and k-NN, finding
that SVM performed better when combined with text and imprint features, underlining the importance of
accurate feature selection.

Chupawa et al. [62] investigate the use of neural networks in pill recognition, but in the context
of traditional machine learning rather than deep learning. The study employs shallow neural networks
trained on features like imprints, shape, and imprint, achieving good results in recognizing pills with
distinct imprints. This marks an early exploration of neural networks prior to the dominance of deep
learning methods.

Vieira Neto et al. [63] introduce a novel feature extractor, CoforDes, to enhance the robustness of pill
recognition systems against variations in lighting and pose. Combined with SVMs, this method provides
invariance to scale and rotation, making it particularly useful in cases where pills are photographed under
varying conditions.

Chughtai et al. [64] continue the exploration of shallow neural networks in pill identification. It empha-
sizes the effectiveness of combining hand-crafted features with a neural network classifier, demonstrating
that neural networks can still produce strong results when paired with carefully designed feature sets, even
without relying on deep learning.

Finally, Dhivya et al. [67] present a method that combines SVM for text recognition with an n-gram-
based error correction algorithm. This method addresses challenges related to recognizing imprints on pill
surfaces, particularly in low-quality images, making it a robust solution for text-based pill identification.

In summary, traditional machine learning methods for pill image recognition rely heavily on feature
extraction, with classifiers such as SVM, k-NN, and shallow neural networks being commonly used. While
earlier studies focused on shape and color features, more recent work has explored the use of text and imprint
information as key distinguishing factors. Feature engineering remains crucial in these methods, with
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techniques like CoforDes and error correction algorithms enhancing robustness and accuracy. Although
deep learning has overshadowed these approaches in recent years, traditional machine learning methods still
provide efficient and effective solutions in scenarios with limited computational resources.

3.3 Deep Learning-Based Methods for Pill Image Recognition
The deep learning-based method for pill image recognition refers to an approach that employs deep

neural networks, particularly Convolutional Neural Networks (CNNs), to automatically learn and extract
features from pill images. This method eliminates the need for handcrafted features by using multiple layers of
neurons to progressively learn hierarchical representations of visual data. Deep learning models are trained
on large datasets of labeled pill images, enabling them to accurately classify and identify pills based on
complex visual patterns and features. The main methods used by the authors in this category are summarized
in Table 3.

Table 3: Deep learning-based methods for pill image recognition

No. Ref. Year Method Dataset Evaluation metrics
1 Simonyan

et al. [73]
2015 Use very deep convolutional networks

(up to 19 weight layers) for largescale
image classification

ILSVRC-2012 23.7% (Top-1 val.
error)

6.8% (Top-5 val.
error)

6.8% (Top-5 test
error)

2 Wong et al. [74] 2017 Geometric transformation
Pill image segmentation: manifold
ranking-based saliency detection

approach [75,76]
Deep model training: structure similar to

AlexNet [77], pre-trained with the
large-scale ImageNet dataset [78]

Dispensing
laboratory at

the
Department of

Health
Sciences,
Caritas
Bianchi

College of
Career

Acc: 95.35% (Top-1)
98.75% (Top-5)
99.55% (Top-10)

3 Ou et al. [79] 2018 Pills localization: feature pyramid
networks [80], Resnet50 [81], ImageNet

Database [78], Adam optimizer
Classification: Xception [82], Adam

optimizer

Department of
Pharmacy

Ta-Jen
University and

Kaohsiung
Veterans
General
Hospital

(VGHKS)

Acc: 79.4% (Top-1)
88.3% (Top-3)
91.8% (Top-5)

4 Chang et al. [83] 2019 Faster R-CNN [84], Google
Inception-v3 [85]

– Acc: 90%

5 Larios Delgado
et al. [86]

2019 Labels based on national drug codes, pill
image segmentation: blob-detection

CNN: similar technique used in
U-Net [87]

CNN models for identification

NLM Acc (Top-5): 94%;
Surpassed

competition winner’s
83.3%

(Continued)
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Table 3 (continued)

No. Ref. Year Method Dataset Evaluation metrics
6 Cordeiro

et al. [88]
2019 Pill image segmentation: convert to

gray-scale image, binarization to retrieve
the pill region

Extract Shape: use equation in [88]
Extract Color: K-means cluster

algorithm [58]
Pill Image Classification: Multilayer
Perceptron, Support Vector Machine

NLM Avg. Acc: >99.3%;
Precision and Recall:
>98%; MCC: >0.98

7 Swastika et al. [89] 2019 Image Segmentation: No mentioned
(black background)

Extract Shape, Color, Imprint: CNN
Clasify: input three CNN shape, color,

imprint into 1 CNN (LeNet [90])

Private Acc: 99.16%

8 Usuyama
et al. [91]

2020 Introduce ePillID: public benchmark on
pill image recognition, 13 k images: 8184

classes (two sides for 4092 pill types):
NLM [66]

Use Resnet [81], DenseNet [92],
pretrained on ImageNet [93]

ePillID –

9 Chang et al. [94] 2020 Image segmentation: SSD [95]
Pill Image Classification: Resnet [81]

Private Acc: 95.1%

10 Ou et al. [96] 2020 Pill Image Segmentation: enhanced
feature pyramid network (EFPN)

Pill Image Classification:
Inception-ResNet-v2 [97]

Kaohsiung
Veterans
General
Hospital
(KVGH)

Acc: 82.1%, 92.4%,
and 94.7%

11 Marami et al. [98] 2020 Pill Image Segmentation:
DeepLab-v3+Xception backbone [99]

Pill Image Classification: use
Inception-v4 [97], Pytorch, Adam

optimizer [100]

NLM Acc: 0.912 (Top-1)
0.984 (Top-5)

Hazardous
Medication

Identification: 98.4%
12 Ling et al. [101] 2020 Pill Image Segmentation: W2

− net:
U-Net [87]+ [102] + [103]

Extract Shape, Color: CNN, Extract
Imprint: DTS model [104]

Pill Image Classification: Multi-Stream
CNN, Few-shot Learning [105] using

Triplet Loss [106]

NLM
CURE

Batch All, NLM:
mAP: 0.664, Top-1:

60.2%
Batch All, CURE:

mAP: 0.682, Top-1:
65.1%

Batch Hard, NLM:
mAP: 0.651, Top-1:

58.7%
Batch Hard, CURE:
mAP: 0.677, Top-1:

64.5%
13 Tsai et al. [107] 2020 Pill image recognition and training

model: siamese network
Private –

14 Kwon et al. [108] 2021 Pill Image Segmentation and
Classification: Mask R-CNN [109],

backbone Resnet50 [97]

Private Precision: 0.916

(Continued)
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Table 3 (continued)

No. Ref. Year Method Dataset Evaluation metrics
15 Lester et al. [110] 2021 ResNet-18 deep neural network

model [81], PyTorch framework [111],
fine-tuned the ResNet-18 on

ImageNet [78], Softmax layer as output

NLM Pillbox
API [112]

Macro-average
precision: 98.5%

16 Ozmermer
et al. [113]

2021 Pill Image Segmentation: Mask R-CNN
model [114]

Pill Image Classification: Deep Metric
Learning: ResNet-34 architecture [81],

Proxy Anchor Loss (PAL) [115]

Private:
ShakeNet,

SyntheticNet

Acc: ShakeNet: 100%
SyntheticNet: 89%

17 Tan et al. [116] 2021 Pill image segmentation and
classification: RetinaNet, SSD, YOLO-v3

Private dataset Identify hard samples
RetinaNet: MAP:
79.61%, FPS: 22,
Model size: 157

SSD: MAP: 79.03%,
FPS: 41, Model size:

149 M
YOLO-v3: MAP:
79.02%, FPS: 69,
Model size: 89 M

18 Tan et al. [117] 2021 Pill image segmentation and
classification: YOLO-v3, Faster R-CNN,

SSD

Private dataset Faster R-CNN: MAP:
87.69%, FPS: 7

SSD: MAP: 82.41%,
FPS: 32, Model size:

149 M
YOLO-v3: MAP:
80.17%, FPS: 51

19 Tan et al. [118] 2022 Class incremental learning (CIL)
“Color Guidance with Multi-stream

intermediate fusion” (CG-IMIF): solve
CIL pill image classification task

Multi-stream class incremental learning
model M: 1) a single stream base

method X
2) an additional stream of information Y
3) a method of fusing stream Z M = Base
method X + Feature stream Y + Fusion

mechanism Z

VAIPE-PCIL Acc:
LUCIR-CG-IMIF

N = 5: 76.85%
N = 10: 69.94%
N = 15: 64.97%

20 Suksawatchon
et al. [119]

2022 Locate, extract: pill shape from the image
Use YOLO-v3 [120], Mask R-CNN [109]

Private Mask R-CNN:
F1-score: 99.58%,

YOLO-v3: F1-score:
97.50%

Both models correctly
located an individual
pill in an image: 98%

accuracy

(Continued)
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Table 3 (continued)

No. Ref. Year Method Dataset Evaluation metrics
21 Wu et al. [121] 2022 Recognize: round pill shape: round-flat,

round-convex, ellipsoid, sphere
Use Attention-YOLO (AY) deep learning

model: YOLO-v3 [120], fast detection
speed [116], attention mechanism [122],

maintain high accuracy [123]
AY model architecture: convolution

layers, Darknet-53, attention module,
hypercolumn

Private dataset
in Taiwan

Acc: 92.28%

22 Pornbunruang
et al. [124]

2022 Pill image segmentation and
classification: CenterNet
Learning method: SGD

Loss function: Focal loss [125,126]

Private Acc: 97.83%

23 Duy et al. [127] 2022 Pill Image Segmentation: use object
localization model, cut out

bounding-box images of every pill
Construct a graph from a given set of

prescriptions (Prescription-based
Medical Knowledge Graph or PMKG)
The PMKG is then passed through a

Graph Neural Network (GNN) to yield
embedding vectors

Extract features of pills: VGG [73] or
ResNet [81]

The Graph embedding vector, features of
pills will be passed through an attention

layer to generate a context vector
Pill Image Classification: based on
context vector + extracted features
Classification loss: Cross-entropy,

linkage loss: linkage loss

VAIPE Precision: 0.86640
Recall: 0.79090
F1-score: 81.01%

24 Thanh et al. [128] 2022 Pill Detector: Convolutional Neural
Network (CNN) to create

representations of pills
Prescription Recognizer: extract the

textual information, use a Graph Neural
Network (GNN)

Pill-Prescription Alignment: matches pill
names (Prescription Recognizer) and pill

images (Pill Detector) using contrast
learning, classification loss: Binary

Cross-entropy, matching loss: contrastive
loss

VAIPE F1-score: 98.88%

25 Bodakhe Sakshi
et al. [129]

2023 Utilize TensorFlow, Keras for image
analysis

MFDS
(private)

NLM

–

26 Zhang et al. [130] 2023 Few-shot Class-incremental Learning
(FSCIL) [131] framework, novel Center

loss function

FCPILL
(private)
mCURE

Acc: FCPILL: 87.29%
mCURE: 71.54%

(Continued)
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Table 3 (continued)

No. Ref. Year Method Dataset Evaluation metrics
27 Duy et al. [132] 2023 Real-world multi-pill image dataset

Novel pill detection framework named
PGPNet (Priori Graph-assisted Pill

detection Network)
4 components: A priori graph modeling,

visual feature extractor, inter-pill
relational feature extractor, and

multi-modal data fusion

VAIPE mAP: 69.7%

28 Ashraf et al. [133] 2024 Code-free deep learning (CFDL)
Use the microsoft azure custom vision

platform, online API, Android
application

Utilize the TensorFlow lite model
analyzer [134]

Three
participating

hospitals

Microsoft Azure
Custom Vision

platform with 98.7%
precision, 95.1%
recall, and 98.2%

mean average
precision (mAP),
thresholds = 50%

Online API: 93.7%
precision, 88.96%

recall, 90.81% F1-score
and 87.35% mAP

Android application:
86.50% precision,

75.00% recall, 77.83%
F1-score and 69.24%

mAP
External clinical

testing (online API):
overall precision of

83.10%, recall of
71.39%, and F1-score

of 75.76%
29 Dang et al. [135] 2024 Pill Image segmentation and

classification: YOLO-v8
framework [136,137]

NLM Pillbox
+ Sci-

GraphQA [138]

mAP: 99.5%
Precision: 98.1%

Recall: 98.8%
30 Zhang et al. [139] 2024 Few-shot class-incremental pill

recognition framework [140]
Discriminative and Bidirectional

Compatible Few-Shot Class-Incremental
Learning (DBC-FSCIL) [131]

FCPILL
(private)
mCURE

Acc: FCPILL: 92.01%
mCURE: 85.18%

Performance Drop
rate:

FCPILL: 6.79%
mCURE: 15.69%

Simonyan et al. [73] introduce the use of deep convolutional neural networks (CNNs) for image
classification, laying the foundation for later work in pill image recognition. The depth of these networks
allows for capturing intricate features from complex image data, which has proven beneficial for fine-grained
pill identification.

Wong et al. [74] leverage a deep CNN for distinguishing between pills that have subtle visual differences.
This approach demonstrates high accuracy by extracting detailed features, showing superior performance in
handling pills with similar shapes or colors.
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Ou et al. [79] apply a CNN to detect pills in real-world scenarios, where pills may be partially occluded
or in cluttered environments. While it achieves high detection accuracy, the model’s performance degrades
in scenarios with significant lighting variations.

Chang et al. [83,94] employ CNNs for real-time pill identification through wearable devices. These
systems ensure rapid and accurate recognition while maintaining computational efficiency, making them
suitable for resource-constrained environments like wearable smart glasses.

Larios Delgado et al. [86] emphasize computational efficiency while maintaining high accuracy. This
method focuses on optimizing CNN architectures to deliver real-time pill recognition, crucial for clinical
settings that require immediate results.

Cordeiro et al. [88] and Swastika et al. [89] explore multi-stream CNN architectures, where multiple
networks are used to focus on different features of the pills (shape, color, imprint). The combination of these
streams yields improved accuracy, especially for visually similar pills.

Usuyama et al. [91] present a benchmark for evaluating pill recognition models in low-shot settings.
It highlights that models pretrained on large datasets can be adapted for pill identification with minimal
additional data, making them more efficient in scenarios where labeled data is scarce.

Ou et al. [96] integrate feature pyramid networks (FPN) with CNNs to improve multiscale fea-
ture extraction. This approach achieves superior performance in detecting pills of varying sizes and in
challenging backgrounds.

Marami et al. [98] address the unique challenge of recognizing discarded medications. The CNN-based
system is able to identify damaged or altered pills, demonstrating the robustness of deep learning in handling
real-world pill recognition scenarios.

Ling et al. [101] and Zhang et al. [130,139] focus on recognizing new pill classes with minimal data.
These few-shot learning techniques enable the models to adapt to new pill types without requiring extensive
retraining, making them highly adaptable in dynamic pharmaceutical environments.

Tsai et al. [107] present an innovative application where CNNs are used to automatically identify pills
within a smart pillbox, ensuring that patients take the correct medications. The model’s accuracy, combined
with a physical pill-dispensing system, improves patient compliance and safety.

Kwon et al. [108] apply deep learning for quality control in pharmaceutical manufacturing, where CNNs
are used to inspect pills for defects. This model ensures the integrity of pills before they are distributed,
highlighting the role of deep learning in ensuring quality assurance.

Lester et al. [110] evaluate CNN-based models across real-world clinical environments, showing that
deep learning models generalize well when trained on diverse datasets. The study indicates that CNNs can
handle varying lighting conditions and pill orientations effectively.

Ozmermer et al. [113] incorporate deep metric learning with CNNs to improve pill identification. The
method outperforms traditional approaches by learning discriminative feature embeddings, enabling the
model to distinguish visually similar pills more accurately.

Tan et al. [116,117] compare object detection models for pill recognition, revealing that YOLO-v3 offers
the best balance between accuracy and inference speed for real-time applications. However, Faster R-CNN
provides higher accuracy but at the cost of slower performance.

Tan et al. [118] propose a novel multi-stream CNN architecture that integrates different streams of
information (shape, color, imprint) for pill classification. This method handles class-incremental learning
more effectively, showing that it adapts to new pill classes without degrading the performance on previously
learned classes.
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Suksawatchon et al. [119] and Wu et al. [121] focus on shape-based recognition using deep CNNs. These
models demonstrate superior performance in recognizing pills even under unconstrained conditions, such
as varying orientations and partial occlusions.

Pornbunruang et al. [124] and Duy et al. [127] introduce hybrid approaches by combining CNNs with
external knowledge sources, such as medical knowledge graphs. These models improve pill recognition by
incorporating contextual information about the pill’s medical properties, dosage, and use cases.

Thanh et al. [128] and Duy et al. [132] integrate graph neural networks (GNNs) with CNNs to enhance
pill recognition. These methods demonstrate improved accuracy by considering relationships between pills,
prescriptions, and medical knowledge, providing more reliable and explainable results.

Bodakhe Sakshi et al. [129] focus on accurate and efficient pill detection using CNNs in dynamic
environments, demonstrating strong performance in recognizing multiple pills in a single image.

Ashraf et al. [133] highlight the use of deep learning models that do not require extensive customization,
making them more accessible for diverse clinical applications. This model performs well across different
healthcare settings, demonstrating the adaptability of CNNs.

Dang et al. [135] emphasize the need for accurate real-time recognition on mobile devices. The CNN-
based system ensures that visually impaired individuals can quickly and reliably identify their medications.

In conclusion, deep learning methods for pill image recognition, particularly CNN-based models,
have shown significant success in both real-time and high-accuracy tasks. The creation of more efficient,
flexible, and interpretable models, especially those incorporating external knowledge or few-shot learning
methods, suggests a bright future for pill recognition technologies in a range of real-world applications. The
diversity in architectural choices-ranging from feature pyramid networks to hybrid GNN-CNN approaches-
demonstrates the growing sophistication and effectiveness of deep learning in pharmaceutical image analysis.

3.4 Hybrid-Based Methods for Pill Image Recognition
Hybrid-based methods for pill image recognition combine traditional image processing techniques

with modern machine learning or deep learning approaches. This approach leverages the strengths of both
methodologies to enhance accuracy and robustness in identifying pills based on their visual characteristics.
The main methods used by the authors in this category are summarized in Table 4.

Table 4: Hybrid-based methods for pill image recognition

No. Ref. Year Method Dataset Evaluation metrics
1 Yaniv et al. [141] 2016 Team nhatuntsev: Extract Shape

and color feature, match: a
weighted sum of distances in color,

shape space
Team castelo: Convolutional

Neural Network (CNN) (Google’s
TensorFlow)

Team msumpf: features obtained
using deep learning (CNN

(California Berkeley’s Caffe)), SIFT
descriptor

NLM mAP: msumpf:
0.27

castelo: 0.09
nhatuntsev: 0.08

(Continued)
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Table 4 (continued)

No. Ref. Year Method Dataset Evaluation metrics
2 Zeng et al. [142] 2017 Pill Image Segmentation: gradient

detect+Support Vector Machine
(SVM)

Extract Shape, Color, Imprint by
CNN+a Knowledge

Distillation-based deep model
compression framework: reduces
the size of the multi-CNNs model

Use a triplet loss function:
invariances to real-world noisiness

Pill Image Classification:
multi-CNN:

S f inal = Scol or + Ssha pe + Sim pr int

NLM One-side pill
recognition: Acc:

52.7% (Top-1),
81.7% (Top-5)

Two-side pill: Acc:
73.7% (Top-1),
95.6% (Top-5)

Processing time:
270 ms

3 Wang
et al. [143]

2017 Pill image segmentation:
GoogLeNet Inception

Network [144], Canny edge
detect [2]

Data augmentation: color casting,
Projective distortion, Gaussian

filter, median filter, Random scale
and position, fixed rotation,

Background learned from the
validation set

Pill Image Classification: fed into
three GoogLeNet models

S f inal =

S f eature +w1Scol or +w2Ssha pe

NLM mAP: 0.328

4 Mehmood
et al. [145]

2019 Pill Image Segmentation: use
Grabcut [146,147], increase image’s

contrast: use CLAHE [148]
Train shape model: 5 CNN models:

classify 5 different shapes, apply
augmentation on sample pill

images: rotate 10 degrees [149].
Train imprint model: OCR, RNN
Pill Image Classification: Random

Forest Model

– Acc: 73.39%
(one-sided)

5 Srikamdee
et al. [150]

2022 Pill Image Segmentation and shape
classification: Mask-RCNN [109]

Color clustering (K-mean
algorithm) and matching template

Faculty of
Pharmacy,
Burapha

University

Acc: 99.27%

(Continued)
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Table 4 (continued)

No. Ref. Year Method Dataset Evaluation metrics
6 Al-Hussaeni

et al. [151]
2023 Pill Image Segmentation and

Extract Shape: Sobel filter, Extract
Imprint: Canny edge detector, SIFT

or MLBP [2]
Extract Color: color histogram

Pill Image Classification:
CNN+k-NN [152,153]

NLM mAP: 90.8%

7 Rádli et al. [154] 2023 Pill Image Segmentation:
U-Net [87]

Extract feature: Multi-stream
metric learning [155], few-shot

recognition
Image Feature Sub-Streams: RGB:

EfficientNet-B0 [156], Contour:
Canny Edge Detector [2], Texture:

smoothed pill images-grayscale
versions, imprint: LBP [157]

Fusion of Sub-Streams: concatenate
sub-streams+self-attention [158],

apply neural layers, metrics
embedding [101]

CURE
OGYEI
(private)

Acc on OGYEI:
Top-1: 95.33%,
Top-5: 99.78%

On CURE:-

In Yaniv et al. [141], a hybrid method combining traditional machine learning features with convo-
lutional neural networks (CNNs) is explored to address the challenge of pill identification. This approach
aims to combine handcrafted features such as color and shape with deep learning-based features to improve
accuracy, particularly for difficult cases where imprints or shapes are ambiguous.

Zeng et al. [142] present a lightweight hybrid model designed for mobile environments. This method
leverages deep learning for feature extraction while incorporating post-processing techniques to handle
unconstrained environments, such as varying lighting conditions and pill orientations. The hybrid approach
enables efficient recognition on resource-constrained mobile devices while maintaining accuracy.

In Wang et al. [143], a hybrid approach is introduced to address the problem of limited labeled data.
By combining transfer learning and semi-supervised learning, the model achieves high accuracy with
minimal annotations. This method employs pre-trained deep learning models and incorporates clustering
techniques like k-means to refine the classification process, demonstrating the effectiveness of hybrid systems
in handling data scarcity.

Mehmood et al. [145] further explore hybrid techniques for mobile platforms, combining deep CNNs
with traditional feature extraction methods to balance the computational load and accuracy. This method
integrates deep learning for initial feature extraction while using clustering-based techniques to refine the
identification process, optimizing the system for mobile use.

Srikamdee et al. [150] take a unique hybrid approach by combining CNNs with k-means clustering
for pill identification. The CNNs extract deep features, which are then grouped using k-means clustering
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to handle variations in pill appearances, such as color or shape. This hybrid method allows for a more
efficient search and retrieval process in real-world applications, showing its strength in large-scale pill
identification systems.

Al-Hussaeni et al. [151] focus on combining CNNs with traditional image retrieval methods. The hybrid
approach integrates deep learning features with image matching techniques, such as SIFT or SURF, for more
accurate retrieval of similar pill images. This hybrid model aims to improve retrieval precision in scenarios
where pills share similar visual characteristics but have subtle differences, like imprints or logos.

Finally, Rádli et al. [154] extend the hybrid approach by incorporating multi-stream CNNs with an
attention mechanism to handle complex pill recognition tasks. The model combines multiple streams of deep
learning features, such as color, shape, and imprint information, and applies attention to focus on the most
discriminative features. This hybrid architecture outperforms single-stream CNNs by better capturing subtle
variations in pill images and emphasizing important visual cues during classification.

In conclusion, hybrid-based methods for pill image recognition effectively combine the strengths of
deep learning with traditional machine learning and clustering techniques to enhance accuracy, especially
in challenging scenarios such as mobile deployment, limited data, and visually similar pills. By leveraging
the complementary strengths of these methods, hybrid approaches provide a more robust solution for pill
identification in diverse real-world environments.

4 Benchmark Datasets
Benchmark datasets play a crucial role in evaluating the performance of proposed methods. For pill

image recognition, there is a wide range of commonly used benchmark datasets. In the methods discussed
in the previous section, the authors utilized both public and private datasets. We note that some datasets are
private, and we do not review these private datasets in this section. Here, we provide a brief review of the
public datasets and their relevant information for pill image recognition.

4.1 National Library of Medicine (NLM)
In January 2016, the US National Library of Medicine (NLM) [141] initiated a competition aimed at

developing advanced algorithms and software for accurately ranking prescription pill identifications based
on images submitted by users (consumer images). The data for identification is drawn from the RxIMAGE
collection (reference images).

The identification dataset was composed of three key parts: a training dataset accessible to all partici-
pants, a segregated testing dataset, and a non-segregated testing dataset reserved for evaluating the top three
submissions after the competition concluded.

The training dataset contained 7000 images representing 1000 different pills. For each pill, there was
one high-resolution macro photograph of each side and five consumer-quality images. For capsules, the
image dataset included clear views of the pill’s imprint area with text aligned perpendicularly to the plane
of the capsule. The pills included in this dataset were randomly selected from the RxIMAGE collection to
ensure a representative distribution by color and shape. An example of a similar consumer-quality image
and reference image in the NLM dataset for tablets and capsules is shown in Fig. 4.

The distribution of pills based on their key visual properties, shape, and color in the training data is
shown in Fig. 5.
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Figure 4: Similar sample images from the training dataset in the NLM dataset. The first two columns are the reference,
macro photographs. The remaining pictures are consumer quality images

Figure 5: Distribution of pills based on their key visual properties, shape and color of training data

The segregated testing dataset was assembled using a separate set of 1000 pills that were not available
to the participants during the competition. For each pill in this dataset, there were two reference images
and five consumer images. The pills were randomly selected based on their shape and color to ensure their
distribution was similar to that of the training set. A bar chart displaying the pill distributions by color and
shape is shown in Fig. 6.

This dataset enables the contest judges to evaluate an algorithm’s generalization ability and its alignment
with their long-term goals. As the contest judges continue to acquire additional images for the RxIMAGE
collection, they prefer to train an algorithm only once.

The non-segregated testing dataset included data from the same 1000 pills used in the training set. For
this dataset, the contest judges used 6486 consumer-quality images that were not part of the training set. This
data allows the contest judges to assess whether an algorithm is potentially overfitting to the training data,
as it should generalize well to variations in consumer images similar to those it has previously encountered.
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Figure 6: Distribution of pills based on their key visual properties, shape and color. The segregated testing dataset is
comprised of reference and consumer quality images from products that were not part of the training set

4.2 ePillID Dataset
Usuyama et al. [91] used the NLM challenge dataset and the NLM Pillbox dataset to create it. The ePillID

dataset includes a total of 13,532 images of 6766 pills, with each pill photographed from both sides (front
and back). For each pill captured and saved as either a consumer image or a reference image, both sides
are documented.

Of the 13,532 images, 3728 are consumer images and 9804 are reference images. Among these, the 3728
consumer images are sourced from the NLM dataset, while the 9804 reference images are divided into 2000
images from NLM and 7804 images from NLM Pillbox.

In the 3728 consumer images, there are 960 pill types, and in the 9804 reference images, there are 4902
pill types. Detailed descriptions of the number of images, consumer images, reference images, and pill types
are shown in Table 5. These specific data are taken from the author’s article combined with the ePillID dataset
that the author has published.

Table 5: Number of reference, consumer images and number of pill types on the ePillID dataset

Consumer images Reference images
Number of pill images in NLM 3728 2000

Number of pill images in NLM Pillbox 0 7804
Total of pills on ePillID 3728 9804

Number of pill types 960 4902

This dataset is particularly challenging due to its low-shot recognition setting, where most classes
have only a single reference image, making it difficult for models to generalize. Various baseline models
were evaluated, with a multi-head metric learning approach using bilinear features achieving the best
performance. However, error analysis revealed that these models struggled to reliably distinguish between
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similar pill types. The paper also discusses future directions, including integrating Optical Character
Recognition (OCR) to address challenges such as low-contrast imprinted text, irregular layouts, and varying
pill materials like capsules and gels. Furthermore, the ePillID benchmark is set to expand with additional pill
types and images, promoting further research in this critical area of healthcare.

4.3 CURE Dataset
The images in the NLM dataset have limitations related to lighting, background conditions, and

equipment, among other factors. The CURE dataset [101] addresses these limitations.
This dataset contains 8973 images across 196 categories, with approximately 45 samples for each pill

category, as shown in Figs. 7 and 8.

Figure 7: Similar images in the CURE dataset of one pill type: (a): reference image; (b–d): consumer images

Figure 8: Similar images in the CURE dataset of a different pill than the one in Fig. 7. (a): reference image; (b–d):
consumer images

As summarized in Table 6, this dataset accounts for more challenging real-world conditions (i.e., with
more diverse backgrounds, lighting, and zooming conditions), making it a better reflection of practical
scenarios compared to the NLM dataset [141]. Examples of images from the dataset are shown in Figs. 7
and 8. It can be observed that: 1) images were taken under different lighting conditions, leading to significant
changes in pill color (especially in Fig. 8d, where the color of the images taken under different lighting
conditions with the MPI equipment varies significantly); 2) Fig. 7c,d was taken under different zooming
conditions; and 3) the backgrounds in this dataset are diverse.

Table 6: Comparison of the CURE and the NLM dataset

NLM CURE
Number of pill images 7000 8973

Number of pill categories 1000 196

(Continued)
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Table 6 (continued)

NLM CURE
Instance per category 7 40–50

Illumination conditions 1 3
Backgrounds 1 6

Imprinted text labels No Yes
Segmentation labels No Partially labeled

mCURE Dataset
To adapt the CURE dataset for the Few-shot Class-incremental Learning (FSCIL) setting, Zhang

et al. [130] used a splitting strategy similar to that employed for miniImageNet in [131]. They sampled 171
classes to create the miniCURE dataset, abbreviated as mCURE. These 171 classes were divided into 91 base
classes and 80 new classes. The new classes were further divided into eight incremental sessions, with the
training data in each session formatted as 10-way 5-shot.

4.4 VAIPE Dataset
VAIPE [118] is the first real-world multi-pill image dataset, consisting of 9426 images representing 96 pill

classes. The images were captured with ordinary smartphones in various settings and include prescriptions.
This dataset is designed for identifying images of multiple pills within their context, based on prescrip-

tions. Each image containing multiple pills is annotated with a bounding box around each pill and labeled
with its respective name. Prescriptions are also assigned a bounding box and labeled with the pill name and
diagnosis in Vietnamese, making it suitable for the pill market in Vietnam.

The VAIPE dataset can serve as a valuable resource for training generic pill detectors. The characteristics
of the VAIPE dataset, as well as comparisons with the NLM and CURE datasets, are detailed in Table 7.

Table 7: Comparison of NLM, CURE, VAIPE dataset

NLM CURE VAIPE
Number of pill images 7000 8973 9426

Number of pill categories 1000 196 96
Number of capture device 1 1 >20

Instance per category 7 40–50 >30
Illumination conditions 1 3 >50

Backgrounds 1 6 >50
Number of prescriptions 0 0 1527

VAIPE-PCIL Dataset
To facilitate research on Class-Incremental Learning (CIL) in pill image classification tasks, the authors

derived a dataset version called VAIPE-PCIL (VAIPE Pill Class Incremental Learning) [118] from the original
VAIPE data. VAIPE-PCIL was created by cropping pill instances from the original dataset. The authors
selected only those categories that met the following criteria: 1) the number of samples should be greater than
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10, and 2) the image size of samples should be at least 64× 64 pixels. Samples of pill images from VAIPE-PCIL
can be found in Table 8.

Table 8: Statistics of VAIPE-PCIL dataset on different characteristics

Characteristic Training set Testing set Total
Number of images 6461 833 7294

Number of pill categories 262 262 262
Instances per category 179.75 23.56 203.2

Image size (pixel × pixel, mean) 3311 × 3276 3276 × 3469 3300 × 3400
Instances per image 7.28 7.4 7.3

Number of bounding box annotations 47,097 6174 53,271
Number of categories per image 5.18 5.76 5.32

We compare the following 6 popular datasets: NLM, ePillID, CURE, mCURE VAIPE, VAIPE-PCIL
in Table 9.

Table 9: Comparison of the NLM, ePillID, CURE, mCURE, VAIPE, VAIPE-PCIL dataset

NLM ePillID CURE mCURE VAIPE VAIPE-PCIL
Number of pill images 7000 13,532 8973 – 9426 7294

Number of pill categories 1000 4902 196 171 96 262
Number of capture devices 1 1 1 – >20 >20

Instance per category 7 2–7 40–50 – >30 203.2
Illumination conditions 1 3 3 3 >50 >50

Backgrounds 1 – 6 – >50 >50
Number of prescriptions 0 0 0 – 1527 –

In summary, the NLM dataset is a popular source for pill identification problems, captured under
ideal conditions. The ePillID dataset offers a large number of images for each pill and is more diverse,
with images sourced partly from the NLM dataset and partly from the NLM Pillbox, and taken in natural
conditions, is particularly challenging due to its low-shot recognition setting. The CURE dataset provides
high-quality images with a variety of angles, lighting, and backgrounds, helping deep learning models handle
real-life scenarios more effectively. The VAIPE dataset includes multi-pill images commonly found in the
Vietnamese market, making it suitable for multi-pill image recognition with context-specific prescriptions
and annotations in Vietnamese. This makes VAIPE a valuable resource for research and development in
pill image recognition in Vietnam. Each dataset has its unique advantages, suited to different goals and
applications in pill image recognition. Selecting the appropriate dataset depends on the user’s specific needs
and the application environment.

5 Performance Comparison of Methods
In the literature survey above, there is only one article using the CURE dataset, one article using

the ePillID dataset, and one article using the VAIPE-PCIL dataset. Consequently, we do not compare the
evaluation metrics of the algorithms applied to these datasets. Table 10 compares the evaluation metrics of
algorithms used in articles on the NLM, mCURE, and VAIPE datasets.
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Table 10: Evaluation metrics of different methods on NLM, mCURE, VAIPE datasets

No. Ref. Year NLM mCURE VAIPE
1 Caban et al. [17] 2012 Acc: 91.13% – –
2 Ushizima

et al. [55]
2015 Acc: 45.4% as round tablets, 16.6%

as capsules, 36.6% as oval tablets
and 4.4% as oddly shaped pills

– –

3 Yaniv et al. [141] 2016 mAP: msumpf: 0.27, castelo: 0.09,
nhatuntsev: 0.08

– –

4 Zeng et al. [142] 2017 One-side pill recognition: Acc:
52.7% (Top-1),81.7% (Top-5)

Two-side pill: Acc: 73.7% (Top-1),
95:6% (Top-5)

Processing time: 270 ms

– –

5 Suntronsuk
et al. [45]

2017 F-measure of 0.77: imprints, 0.57
overall

– –

6 Wang
et al. [143]

2017 mAP: 0.328 – –

7 Vieira Neto
et al. [63]

2018 Acc: 99.82% (PILL BR)
99.91% (NLM);

Extraction Speed: 0.0081 s per
image

– –

8 Cordeiro
et al. [88]

2019 Avg. Acc: >99.3%; Precision and
Recall: >98%; MCC: >0.98

– –

9 Larios Delgado
et al. [86]

2019 Acc (Top-5): 94%; Surpassed
competition winner’s 83.3%

– –

10 Marami
et al. [98]

2020 Acc: 0.912 (Top-1), 0.984 (Top-5),
Hazardous medication
identification: 98.4%

– –

11 Ling et al. [101] 2020 Batch All: mAP: 0.664, TOP-1:
60.2%

Batch Hard: mAP: 0.651, TOP-1:
58.7%

– –

12 Al-Hussaeni
et al. [151]

2023 Mean average precision: 90.8% – –

13 Zhang
et al. [130]

2023 – Acc: 71.54% –

14 Zhang
et al. [139]

2024 – Acc: 85.18% –

15 Duy et al. [127] 2022 – – Precision:
0.86640

Recall: 0.79090
F1-score: 81.01%

(Continued)
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Table 10 (continued)

No. Ref. Year NLM mCURE VAIPE
16 Thanh

et al. [128]
2022 – – F1-score: 98.88%

17 Duy et al. [132] 2023 – – mAP: 69.7%

5.1 Performance Comparison of Methods on Dataset NLM
Caban et al. [17] shows strong potential for automatic medication identification. By utilizing a modified

shape distribution approach that analyzes the shape, color, and imprint of pills, the system achieves 91.13%
accuracy on a dataset of 568 U.S. prescription pills. This high accuracy suggests the system’s robustness
against real-world variability such as lighting and camera angles. Additionally, it identifies the correct pill
within the top 5 matches, even when an exact match is not found at the top. The system assumes a top-view pill
image, which may limit its application in cases where different views are required. Further optimization could
involve adjusting feature weights based on their relevance to recognition. Overall, the system’s performance
suggests its potential for practical use in healthcare settings.

Ushizima et al. [55] discuss a pill recognition system using the NLM dataset, which demonstrates
promising results but also highlights areas for improvement. The system segments pill images and extracts
features based on the FDA’s recommended physical pill attributes, organizing them into four main cate-
gories: round tablets (45.4%), capsules (16.6%), oval tablets (36.6%), and oddly shaped pills (4.4%). This
categorization serves as a foundational step for content-based image retrieval.

While the shape descriptors help differentiate between standard pill shapes, the system struggles to
distinguish oddly shaped pills, pointing to the need for more refined feature extraction. The paper suggests
incorporating additional descriptors, such as convexity points, to enhance performance in identifying
irregular shapes. Future improvements include capturing more minor variations in pill contours, like
contour bending energy, and incorporating lower-resolution images to ensure functionality with standard
mobile cameras.

Overall, while the system provides a useful framework for classifying pills, it requires further advance-
ments to be reliably used in real-world applications, particularly for patient safety. The ongoing research
promises significant contributions to the development of practical pill recognition automation.

Yaniv et al. [141] discuss how the NLM Pill Image Recognition challenge highlights both the potential
and limitations of current algorithms for pill identification using consumer-quality images. The top three
submissions achieved mean average precision scores of 0.27, 0.09, and 0.08, with correct reference images
retrieved in the top five results for 43%, 12%, and 11% of queries. While capsules, with distinct textual
and color features, were more easily identified (74% accuracy in the top five), tablets, especially those with
embossed markings, posed a challenge, with only 34% accuracy in the top five results.

The challenge revealed that improvements are needed in dataset size, feature descriptors, and image
acquisition methods. The best submissions utilized deep learning, but their performance was limited by
a small training dataset. To improve results, the use of data augmentation, pre-training on unrelated
datasets, and more controlled image acquisition (e.g., including reference objects for pose estimation) is
recommended. Overall, continued research is needed to enhance pill identification algorithms for both
healthcare professionals and the public.
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Zeng et al. [142] present the MobileDeepPill system, showcased in the NLM Pill Image Recognition
Challenge, which demonstrates significant progress in pill recognition using mobile devices. Its architecture
incorporates a triplet loss function, multi-CNNs, and a Knowledge Distillation-based model compres-
sion framework, leading to impressive recognition accuracy. In one-side pill recognition, MobileDeepPill
achieved a Top-1 accuracy of 52.7% and a Top-5 accuracy of 81.7%. In two-side recognition, the system’s
performance improved, reaching a Top-1 accuracy of 73.7% and a Top-5 accuracy of 95.6%. These results
highlight its robustness in real-world conditions, where image quality may vary due to factors like lighting
and camera angles.

MobileDeepPill is notable for its small footprint, requiring only 34 MB of runtime memory, making it
suitable for mobile devices without cloud offloading. With high-end mobile GPUs, the system’s processing
time has been reduced to 270 milliseconds, enabling near real-time pill identification. Although there is
potential for improvement in the accuracy of one-side recognition, the strong performance in two-side
recognition and overall efficiency demonstrate that MobileDeepPill is a promising tool for mobile pill
identification, both in healthcare environments and for everyday use.

Suntronsuk et al. [45] present a pill imprint extraction method that offers a novel approach to pill
identification by extracting text from pill imprints, which is essential for linking pill images to databases
used by healthcare providers. The method involves a multi-step process, beginning with image normalization
and enhancement to improve imprint contrast. Two binarization techniques, Otsu’s thresholding and K-
means clustering, were evaluated, with Otsu’s method outperforming K-means in handling engraved and
printed imprints.

The system achieved an F-measure of 0.77 for printed imprints, demonstrating effectiveness in this
category. However, the overall F-measure of 0.57 reflects challenges in handling complex or noisy areas,
particularly for engraved imprints. Despite this, the use of Tesseract for text recognition was successful with
binarized images. Future work is needed to refine the binarization step, especially for engraved imprints,
potentially through advanced or hybrid techniques. Overall, the method shows promise but requires further
improvement for more reliable pill identification.

Wang et al. [143] propose a pill recognition system on the NLM dataset that addresses the challenges of
pill identification under real-world conditions, including limited labeled data and the domain shift from con-
trolled environments to consumer images. To overcome these issues, the authors employ data augmentation
techniques to generate synthetic images, enriching the training dataset and enhancing model robustness.

The system uses a Convolutional Neural Network (CNN), specifically the GoogLeNet Inception
Network, with three models trained to specialize in color, shape, and feature extraction. This ensemble
approach aims to improve recognition performance. The system achieved a Mean Average Precision (MAP)
score of 0.328 on the NLM dataset, which reflects its ability to recognize pills but also highlights difficulties
in dealing with noise, background interference, poor lighting, and varying image quality.

Key contributions include data augmentation and model ensembling, but the relatively modest MAP
score indicates the need for further improvements. The authors suggest future extensions such as dynamic
model weights, expanded data augmentation (e.g., JPEG distortions), and pill segmentation to improve
performance. Overall, while the system shows promise, further optimization is needed for practical use in
real-world pill recognition scenarios.

Vieira Neto et al. [63] present the CoforDes feature extraction method, which demonstrates exceptional
performance on the NIH NLM PIR dataset, achieving 99.82% accuracy and 99.91% specificity. This highlights
its effectiveness in classifying pill images based on shape and color, outperforming traditional descriptors
such as GLCM, SCM, LBP, and moments (e.g., Zernike and Hu). The method’s rapid extraction speed of
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0.00810 s per image further underscores its suitability for real-time applications, making it a robust tool for
pill identification in critical healthcare settings.

Additionally, the study introduces a national dataset of Brazilian pills with 100 classes, marking a
valuable contribution to the field. Despite its limited size, this dataset provides a basis for future expansion,
particularly given the large number of drug classes in Brazil.

Future improvements focus on two key areas: expanding the dataset to include more pill classes and
incorporating texture features into CoforDes. The latter is expected to enhance its ability to handle variations
not fully captured by shape and color alone, increasing robustness and accuracy in more complex scenarios.

Overall, CoforDes shows great promise as a reliable and efficient solution for pill recognition, with clear
potential for real-world deployment. Its combination of high accuracy, speed, and scalability positions it as
a leading approach in the field, with further advancements likely to solidify its impact.

Cordeiro et al. [88] propose a pill classification system that demonstrates outstanding performance
on the NLM PIR dataset, achieving over 99.3% average accuracy, with precision and recall exceeding 98%.
These metrics highlight the system’s robustness and reliability, especially in handling unbalanced classes, as
evidenced by its high Matthews Correlation Coefficient (MCC) score above 0.98.

The method leverages computationally efficient machine learning algorithms, including Support Vector
Machines (SVM) and Multilayer Perceptron (MLP), which classify pills based on shape and color features
extracted through image processing techniques. This method demonstrates high accuracy and remains
robust to translation and rotation, making it suitable for images taken under different conditions, including
those captured with consumer-grade cameras.

Compared to related studies, this system offers similar or superior accuracy at a significantly lower
computational cost, enhancing its suitability for real-time applications. Future directions include testing the
method on images captured in less controlled settings, incorporating additional attributes such as texture
and imprints, and exploring content-based image retrieval (CBIR) and legal vs. illegal pill differentiation.

Overall, the system is highly promising for practical pill classification tasks, especially in controlled envi-
ronments. Further work in real-world scenarios will determine its broader applicability and potential impact.

Larios Delgado et al. [86] present a deep learning-based prescription pill identification system that
demonstrated significant efficacy on the NIH NLM Pill Image Recognition Challenge dataset, achieving a
top-5 accuracy of 94%, surpassing the original competition winner’s accuracy of 83.3%. This remarkable
performance underscores the system’s ability to address a critical need in healthcare by reducing preventable
medical errors, a leading cause of patient harm.

The study highlights the potential of artificial intelligence (AI) to transform medication reconciliation
and enhance clinical workflows by leveraging deep learning for precise pill identification. The system’s
capability to work with mobile images further emphasizes its practicality and accessibility for healthcare
providers, promoting integration into real-world applications.

This work aligns with healthcare goals of improving patient outcomes, reducing costs, enhancing
population health, and supporting providers’ work-life balance. Although the results are promising, future
research should assess the system’s robustness by using diverse real-world datasets to ensure its performance
across different conditions.

The 94% top-5 accuracy achieved in this study underscores the promising role of AI in reducing
medication errors and improving patient safety in clinical environments.

Marami et al. [98] propose a deep learning-based method for the automatic detection and classification
of prescription medications, which achieved outstanding performance, with an overall accuracy of 91.2%
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and a top-5 accuracy of 98.4% on the NIH NLM PIR dataset. These results underscore its robustness in
identifying diverse medications, making it highly suitable for applications like drug take-back programs.

A key strength of the system is its ability to distinguish hazardous medications from non-hazardous ones
with 98.4% accuracy, ensuring compliance with DEA regulations and enhancing the safety of medication
disposal practices. This capability minimizes the risk of environmental and public health hazards arising
from improper disposal or mixing of medications.

Beyond classification, the system offers broader utility by enabling data collection on medication
wastage patterns, which can inform pharmaceutical supply chain improvements, drug monitoring, and
diversion prevention. Its compatibility with mobile devices enhances accessibility, fostering greater involve-
ment in pill take-back programs and supporting sustainable disposal practices.

In summary, the system’s high accuracy and practical applications position it as a promising tool for
improving the efficiency of drug take-back programs, reducing hazardous waste, and supporting public
health and environmental safety initiatives.

Ling et al. [101] propose a pill recognition system that demonstrates strong performance on the NLM
dataset, effectively addressing challenges related to few-shot learning and real-world imaging conditions.
A notable contribution of this study is the introduction of the CURE dataset, which provides a more
extensive and diverse set of instances per class under varied conditions, enhancing the model’s generalization
capabilities for complex recognition tasks.

A key innovation is the W2
− net segmentation model, which surpasses established methods like U-Net

and ESPNet-v2 by segmenting pill features more accurately, thereby improving the subsequent recognition
process. The system’s multi-stream deep network architecture and two-stage training methodology, leverag-
ing Batch All (BA) and Batch Hard (BH) strategies, further enhance its ability to handle challenging samples.
The BA strategy mines features across all samples, while the BH strategy focuses on the most difficult cases,
enabling better classification of hard-to-recognize pills.

Additionally, the model excels in processing hard samples, particularly those with imprinted text, by
emphasizing high-frequency components and incorporating texture information. The use of text imprint
as an auxiliary stream in the multi-stream architecture significantly improves recognition accuracy in
challenging scenarios.

Overall, the proposed system outperforms state-of-the-art models on both the NLM and CURE
datasets, demonstrating its robustness and effectiveness in real-world pill recognition tasks, particularly in
settings with limited data and unconstrained imaging conditions. This combination of enhanced segmenta-
tion, innovative architecture, and efficient training strategies positions it as a leading solution for practical
applications in pill identification.

Al-Hussaeni et al. [151] evaluate three deep learning-based pill recognition methods in this study,
including two hybrid models (CNN+SVM and CNN+kNN) and the ResNet-50 architecture, to improve pill
image segmentation and classification. Among these, the CNN+kNN model achieved the highest accuracy
of 90.8% on the NLM dataset, outperforming existing methods by approximately 10% while maintaining a
fast runtime of about 1 ms per execution.

The hybrid approach, particularly CNN+kNN, demonstrated superior accuracy over traditional meth-
ods without a significant increase in computational cost, making it suitable for practical applications. This
highlights the potential of combining convolutional neural networks with powerful classifiers like k-NN for
recognizing complex or incomplete pill images.
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Despite its strengths, the model’s accuracy can be impacted by poor lighting conditions, which affect
pill shape detection. To mitigate this, the authors proposed capturing multiple images from various angles
to construct a 3D model, enhancing robustness under diverse lighting scenarios.

Overall, the study underscores the feasibility of using deep learning for pill image recognition, achieving
high accuracy and rapid processing speeds. This approach shows promise for improving medication safety
and accuracy, supporting error prevention in clinical and pharmaceutical settings.

In summary, deep learning-based methods have shown superior performance compared to traditional
image processing and machine learning approaches in pill recognition tasks. Traditional image processing
methods such as those by Caban et al. [17], Suntronsuk et al. [45] have shown significant promise in automatic
pill identification, achieving high accuracy in shape, color, and imprint recognition. However, these methods
often struggle with image variability such as different views, lighting conditions, and noise. In contrast,
traditional machine learning approaches, such as those developed by Ushizima et al. [55] and Vieira Neto
et al. [63], have achieved promising results, especially with shape and color-based classification, but still
face challenges in handling irregular shapes and achieving high accuracy across diverse datasets. Hybrid
approaches, such as those proposed by Yaniv et al. [141] and Zeng et al. [142], have made considerable progress
by combining traditional methods with machine learning techniques, resulting in improved outcomes in
real-world situations by tackling dataset limitations and image quality challenges.

However, the real advancement in performance is seen in deep learning methods. Studies by Cordeiro
et al. [88], Larios Delgado et al. [86], and Ling et al. [101] have demonstrated that deep learning models,
particularly those leveraging convolutional neural networks (CNNs), achieve remarkable accuracy and
robustness across various pill recognition tasks. These methods not only outperform traditional and hybrid
models in terms of accuracy but also show greater adaptability to real-world conditions such as varying
lighting, image resolution, and complex pill features. The ability of deep learning models to process large,
diverse datasets and learn distinct features like those in the CURE dataset used by Ling et al. [101] has
led to improved performance in challenging scenarios, such as few-shot learning and identifying pills with
imprinted text. Moreover, deep learning methods, exemplified by the work of Marami et al. [98], have
achieved exceptional results, including a top-5 accuracy of 98.4%, highlighting their effectiveness in not only
recognizing pills but also distinguishing hazardous medications.

In conclusion, deep learning techniques surpass traditional image processing and machine learning
approaches in both accuracy and robustness, making them the most promising solution for practical pill
recognition applications in healthcare and everyday use.

5.2 Performance Comparison of Methods on Dataset mCURE
The comparison of the few-shot class-incremental learning (FSCIL) frameworks introduced in Zhang

et al. [130,139] reveals notable advancements in automatic pill recognition systems, particularly for dynamic
and resource-constrained environments. Both studies address the challenges posed by the continuously
increasing categories of pills and the limited availability of annotated data, yet their distinct architectural
designs and methodological approaches lead to different levels of performance on the mCure dataset. The
framework proposed in Zhang et al. [130] adopt a decoupled learning strategy that separates representation
learning and classifier adaptation. The representation learning leverages a Center-Triplet (CT) loss to enhance
intra-class compactness and inter-class separability, while the classifier adaptation employs a Graph Atten-
tion Network (GAT) trained on pseudo pill images to accommodate new classes incrementally. In contrast,
the method presented in Zhang et al. [139] build on this foundation by integrating Discriminative and
Bidirectional Compatible Few-Shot Class-Incremental Learning (DBC-FSCIL). This framework introduces
forward-compatible learning, which synthesizes virtual classes as placeholders in the feature space to enrich



3724 Comput Mater Contin. 2025;82(3)

semantic diversity and support future class updates. It also incorporates backward-compatible learning,
employing uncertainty quantification to generate reliable pseudo-features of old classes, which facilitates
effective Data Replay (DR) and Knowledge Distillation (KD) for balancing memory efficiency and knowledge
retention. The superior performance of Zhang et al. [139] on the mCure dataset can be attributed to its more
comprehensive management of the feature space and its robust approach to preserving old-class knowledge
during incremental updates. By synthesizing virtual classes, the framework anticipates and incorporates
future class distributions, ensuring a richer training dataset compared to the reliance on pseudo image
generation in Zhang et al. [130]. Furthermore, the uncertainty-based synthesis of pseudo-features allows
Zhang et al. [139] to mitigate catastrophic forgetting more effectively, addressing a critical limitation in Zhang
et al. [130], which lacks explicit mechanisms for backward compatibility. Additionally, the use of DR and
KD strategies in Zhang et al. [139] optimize the trade-off between performance and storage requirements,
further highlighting its adaptability to real-world applications.

Overall, while both frameworks demonstrate significant advancements in FSCIL for pill recognition,
the holistic design of Zhang et al. [139], balancing forward and backward compatibility, enables it to
achieve superior results on mCure. This underscores the importance of simultaneously addressing feature
discrimination, knowledge retention, and adaptability in designing FSCIL systems for practical scenarios.

5.3 Performance Comparison of Methods on Dataset VAIPE
The VAIPE dataset presents unique challenges for pill identification and recognition due to the high

visual similarity among pills, multi-pill scenarios, and unconstrained conditions of real-world images.
Several deep learning-based approaches have been proposed to address these issues, leveraging external
knowledge, novel architectures, and multi-modal learning techniques. Among these, the PIKA framework,
introduced by Duy et al. [127], integrates external prescription-based knowledge graphs with image features
via a lightweight attention mechanism, achieving an F1-score improvement of 4.8%–34.1% over baseline
methods. This approach underscores the critical role of external knowledge graphs in enhancing recognition
accuracy, though its scalability is constrained by the availability of accurate prescription data. Meanwhile,
the PIMA framework, proposed by Thanh et al. [128], addresses the pill-prescription matching task by
leveraging Graph Neural Networks (GNNs) and contrastive learning to effectively align textual and visual
representations. PIMA demonstrates notable performance gains, improving the F1-score from 19.05% to
46.95%, while maintaining efficiency with limited training costs. For multi-pill detection in real-world
settings, the PGPNet framework, developed by Duy et al. [132], integrates heterogeneous a priori graphs to
model co-occurrence likelihood, size relationships, and visual semantics of pills. PGPNet achieves significant
improvements, with COCO mAP metrics increasing by 9.4% compared to Faster R-CNN and 12.0% over
YOLO-v5, while also emphasizing robustness and explainability. However, its dependency on extensive
external knowledge poses scalability challenges. Collectively, these methods address different facets of the
pill recognition problem, with PIKA excelling in single-pill identification, PIMA optimizing pill-prescription
matching, and PGPNet advancing multi-pill detection in complex scenarios. This comparative analysis
highlights the critical importance of external knowledge, multi-modal learning, and tailored frameworks
in addressing the challenges posed by the VAIPE dataset, while also identifying areas for future research,
including scalability, expanded knowledge bases, and computational optimization.

5.4 Performance Comparison of Methods on Dataset VAIPE-PCIL
Nguyen et al. [118] addressed the challenge of catastrophic forgetting in pill image classification by intro-

ducing the Incremental Multi-stream Intermediate Fusion (IMIF) framework. This approach integrates an
additional guidance stream, leveraging color histogram information, to enhance traditional class incremental
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learning (CIL) systems. The authors proposed Color Guidance with Multi-stream Intermediate Fusion (CG-
IMIF), which can be seamlessly incorporated into existing exemplar-based CIL methods. Experimental
evaluation on the VAIPE-PCIL dataset revealed that CG-IMIF significantly outperforms state-of-the-art
methods, achieving accuracies of 76.85% (N = 5), 69.94% (N = 10), and 64.97% (N = 15) under varying task
settings. These results highlight CG-IMIF’s robustness in handling incremental learning tasks in real-world
pill classification scenarios, offering a promising solution for smart healthcare applications.

5.5 Performance Comparison of Methods on Dataset ePillID
Usuyama et al. [91] introduced ePillID, the largest public benchmark for pill image recognition,

consisting of 13 k images representing 8184 appearance classes, corresponding to 4092 pill types with two
sides. This dataset is particularly challenging due to its low-shot recognition setting, where most classes
have only a single reference image. The authors evaluated various baseline models, with a multi-head
metric learning approach with bilinear features yielding the best performance. Despite this, error analysis
revealed that these models struggled to reliably distinguish particularly confusing pill types. The paper also
highlights future directions, including the integration of Optical Character Recognition (OCR) to address
challenges such as low-contrast imprinted text, irregular layouts, and pill materials like capsules and gels.
This benchmark, aimed at advancing pill identification systems, also plans to expand with additional pill
types and images, fostering further research in this critical healthcare task.

6 Open Research Problems
Based on the insights gathered from the Literature Survey, Benchmark Datasets, and the Comparison

of Performance of Methods, several open research problems in the field of pill image recognition remain. In
this section, we will explore these unresolved issues and discuss potential research directions that could drive
future progress in the field. By identifying these open problems, we aim to provide a roadmap for researchers
to focus on the most critical areas for further development and innovation in pill image recognition.

6.1 Integrating Pill Recognition Systems into Resource-Constrained Environments
In recent years, wearable devices designed to assist visually impaired individuals with pill recognition

have gained significant attention. Notably, the works by Chang et al. [83,94] contribute valuable insights
into this area, proposing systems that leverage deep learning models for pill identification. Despite the
promising potential of these devices, several challenges hinder their real-world applicability. One major
issue is the difficulty of accurately recognizing pills under adverse conditions, such as low lighting, complex
backgrounds, or partial occlusion. These factors significantly reduce the effectiveness of the systems,
particularly in emergency situations. Furthermore, the large diversity of medications, varying in shape, color,
and imprint, presents scalability challenges, as deep learning models require extensive training datasets to
ensure reliable identification across a wide range of pill types.

The computational demands of deep learning models, such as Convolutional Neural Networks (CNNs),
further complicate the deployment of these systems on resource-constrained devices like smart glasses,
highlighting the need for hardware optimization. Additionally, enhancing user experience is crucial, as
wearable devices must provide seamless interfaces with fast response times to be practical in everyday use.

To address these challenges, future research could focus on improving recognition models by exploring
advanced architectures such as Vision Transformers (ViT) or hybrid CNN-ViT models. Data augmentation
methods can be used to improve the model’s robustness across different conditions, while lightweight
models such as MobileNet or EfficientNet could enhance performance for wearable devices. Moreover, the
integration of Augmented Reality (AR) could significantly improve user interaction, making pill recognition
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more intuitive. AR overlays could display crucial information, such as the pill name, dosage, and usage
instructions, directly onto the user’s field of view, facilitating easy identification without the need to focus
on a separate screen. The combination of AR with haptic feedback or voice prompts could further enhance
usability by providing alternative modes of interaction, particularly for users with limited vision. In addition,
AR could help address the challenge of recognizing pills in complex environments by emphasizing key
features like shape and imprint, thereby improving identification accuracy in real-world scenarios.

Ultimately, extensive real-world testing and collaborations with healthcare organizations will be
essential to ensure the seamless integration of these systems into healthcare workflows, improving safety
and efficiency. The advancements in AR, along with lightweight model architectures and enhanced data
processing techniques, hold the potential to transform wearable pill recognition systems into reliable tools
for visually impaired individuals in their daily lives.

Several studies, including those by Hartl et al. [9], Cunha et al. [51], Dang et al. [135], Zeng et al. [142],
and Mehmood et al. [145], have contributed significantly to the advancement of mobile-based pill recognition
systems, providing portable, real-time solutions. However, challenges remain, particularly in adapting
these systems to dynamic real-world environments with variable lighting, pill orientations, occlusions, and
complex backgrounds, all of which can affect performance. Furthermore, these systems are often limited by
the need for specific datasets, which pose scalability challenges due to the wide variety of pill appearances
and regional differences in pill design. Mobile devices’ resource constraints also create barriers, as many
models must balance computational efficiency with recognition accuracy. Additionally, the user experience,
particularly for vulnerable populations like the elderly or visually impaired, requires further improvement
in terms of accessibility, ease of use, and response times.

To overcome these limitations, future research should focus on enhancing algorithmic robustness
through hybrid or domain adaptation techniques, as well as ensuring broader model generalization by
incorporating more diverse and expansive datasets for continuous learning. Lightweight architectures like
MobileNet or EfficientNet, combined with model optimization strategies, can address the computational
constraints of mobile hardware. Moreover, integrating Augmented Reality (AR) into mobile pill recognition
systems can significantly improve usability. AR can guide users in real-time by overlaying visual cues, such
as alignment instructions or pill information, directly onto the pill in their view. This integration can be
enhanced with tactile or voice feedback to further improve accessibility for users with impaired vision or
limited mobility.

For these advancements to be truly effective, rigorous real-world testing and collaboration with
healthcare providers will be necessary to ensure the safety, reliability, and compliance of these systems with
regulatory standards. By addressing these challenges, mobile-based pill recognition systems can evolve into
more robust, scalable, and user-friendly solutions, improving accessibility and patient outcomes, particularly
for those in need of immediate pill identification.

6.2 Developing Datasets for Multi-Region Markets
A major challenge in pill image recognition is the creation of diverse and representative datasets that

can accurately capture the wide variety of pill appearances found globally. This is particularly true for the
Vietnamese market, where the pharmaceutical landscape includes both locally manufactured and imported
medications. Existing international datasets often fall short in representing the full spectrum of pills available
in Vietnam, leading to potential gaps in the performance and generalizability of pill recognition systems.
For instance, while the VAIPE dataset [118] is useful for the Vietnamese context, it is primarily focused on
prescription medications and includes a limited variety of pills, most of which are generic, with prescription
information provided in Vietnamese.
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To address this issue, there is an urgent need to develop a more comprehensive dataset that encompasses
a wider range of pill types, reflecting the diversity of the Vietnamese pharmaceutical market.

Beyond the Vietnamese market, it is also essential to advocate for the development and use of
diverse datasets that represent pills from various regions, conditions, and manufacturing standards. Such
datasets should capture the global diversity of medications, enabling pill recognition systems to operate
effectively across different environments and cultural contexts. This broader approach would not only
improve recognition accuracy but also enhance the scalability and adaptability of systems deployed in
resource-constrained settings.

The integration of pill recognition systems into resource-constrained environments, such as wearable
devices for visually impaired individuals, is increasingly important. Wearable technologies, like smart glasses,
are being developed to assist users with real-time pill identification. However, to ensure these systems’
effectiveness in such settings, datasets must reflect real-world variations, such as low lighting, complex
backgrounds, and diverse pill types. Without a rich and diverse dataset, these systems may struggle to
accurately recognize pills under challenging conditions, thereby limiting their practical utility in daily life.

Creating a robust, region-specific dataset for Vietnam, alongside the integration of international
datasets, would require collaboration between local healthcare institutions, pharmaceutical companies,
research organizations, and regulatory bodies. This initiative would improve the accuracy of pill recognition
systems in Vietnam, facilitating their adoption in local healthcare practices and improving medication safety
and patient compliance. Moreover, such a dataset would contribute to advancing the field of machine learning
and computer vision within the pharmaceutical industry, providing a valuable resource for researchers and
developers. Ultimately, the development of diverse and expansive pill image datasets will foster innovation
and lead to better healthcare outcomes in Vietnam and beyond.

Additionally, integrating Augmented Reality (AR) into these systems could significantly enhance user
interaction, making pill recognition more intuitive. AR overlays could display crucial information, such
as the pill name, dosage, and usage instructions, directly onto the user’s field of view, facilitating easy
identification without the need to focus on a separate screen. The combination of AR with haptic feedback or
voice prompts could further improve usability, particularly for users with limited vision. Furthermore, AR
could help address the challenge of recognizing pills in complex environments by emphasizing key features
like shape and imprint, thereby improving identification accuracy in real-world scenarios.

Ultimately, extensive real-world testing and collaborations with healthcare organizations will be
essential to ensure the seamless integration of these systems into healthcare workflows, improving safety
and efficiency. The advancements in AR, along with lightweight model architectures and enhanced data
processing techniques, hold the potential to transform wearable pill recognition systems into reliable tools
for visually impaired individuals in their daily lives. By addressing these challenges through the development
of diverse datasets and innovative technologies, we can enhance pill recognition systems’ effectiveness and
expand their utility, particularly in underserved or resource-constrained settings.

6.3 Improving Performance in Pill Image Segmentation and Imprint Identification
In the methods presented in the literature review, the authors used the NLM [141], ePillID [91],

VAIPE [118] and CURE [101] datasets. The NLM dataset was collected under ideal conditions, while ePillID,
CURE and VAIPE were collected under natural conditions, so they are suitable for pill image recognition
under real-world conditions. However, the VAIPE dataset is suitable for multi-pill image recognition in
the context of prescriptions and is suitable for generic pill recognition. ePillID dataset is particularly
challenging due to its low-shot recognition setting, where most classes have only a single reference image,
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making it difficult for models to generalize. In this section, this article focuses on the recognition of pill
images of various types, in natural conditions, so this article focuses on improving the algorithms using the
CURE dataset.

The accuracy and other metrics presented by Ling et al. (2020) in [101] on the CURE dataset emphasize
the necessity for advancements in the pill image segmentation phase. In the above paper, the author
uses the W2

− net image segmentation method, and extracts imprints using the Deep TextSpotter (DTS)
algorithm [104]. To improve the accuracy of pill image recognition, this article proposes:

6.3.1 Building a New Model Based on Combining U 2
− Net with Faster R-CNN (Region-Based Convolutional

Neural Network) instead of W2
− net Image Segmentation Method

Image segmentation plays a crucial role in enhancing the performance of pill recognition systems, espe-
cially when dealing with datasets such as CURE, which contain natural conditions, complex backgrounds,
and limited data. Accurate segmentation isolates the pill from distracting backgrounds, emphasizing critical
features such as color, shape, and imprint. When segmentation is inaccurate, subsequent recognition stages
may suffer from noise introduced by irrelevant elements, leading to reduced performance. Therefore,
selecting an appropriate segmentation method is essential to improve recognition performance, particularly
for datasets like CURE that are characterized by challenging visual diversity and limited training samples.

The W2
− net architecture, introduced in the paper of Ling et al. [101], is inspired by the idea of

repeated bottom-up, top-down processing. W2
− net is constructed using four simplified U-Nets. Each

simplified U-Net is significantly smaller than the original U-Net, with W2
− net being 17.5 times smaller

than a full U-Net model, containing only 2 million parameters compared to the original U-Net’s 35 million
parameters. This reduction in size is achieved through two main strategies: 1) Each simplified U-Net uses
just 1.4% of the parameters of the original U-Net, and 2) The intermediate output from one simplified U-
Net is fed as input into the next, allowing the network to build progressively more refined representations.
This compact yet efficient architecture enables W2

− net to perform well on few-shot pill recognition tasks
while significantly reducing computational costs. However, the absence of transfer learning poses significant
challenges, as models trained from scratch require extensive data and computational resources to capture
fundamental features. Without leveraging pre-trained knowledge, models struggle to generalize effectively,
particularly when encountering unseen or complex patterns. Additionally, this approach increases the risk of
overfitting, especially with limited or imbalanced datasets, leading to suboptimal performance on new tasks
or dataset CURE.

To address this, leveraging transfer learning using a model pre-trained on datasets with similar
characteristics emerges as a viable alternative. Transfer learning not only reduces computational costs but
also enhances generalization on small and complex datasets such as CURE.

The U-Net architecture is one of the most prominent and effective models for image segmentation tasks,
particularly in the medical field. Its distinctive U-shaped design consists of two main parts: the encoder and
the decoder. The encoder employs convolutional and pooling layers to extract complex features and reduce
the spatial dimensions of the image, while the decoder restores spatial information using upsampling or
transposed convolution layers to reconstruct the image to its original size. A key feature of U-Net is the use of
skip connections, which directly transfer features from corresponding layers in the encoder to the decoder.
This mechanism preserves detailed information and enhances accuracy, especially along object boundaries.
Thanks to its powerful processing capabilities and relatively low data requirements, U-Net has become a
standard for applications such as medical image segmentation.
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In the context of recognizing images of pills with few data and complex backgrounds, we need U-Net-
based algorithms that have been pre-trained on datasets similar to the data of pill images with complex
backgrounds to optimize performance.

Popular algorithms based on U-Net that have been pre-trained on popular datasets include U-Net++,
Attention U-Net, Res-U-Net, U 2

− Net. U-Net++, Attention U-Net, Res-U-Net are often trained on medical
datasets. Popular medical datasets are BraTS (Brain Tumor Segmentation), ISIC (International Skin Imaging
Collaboration), KiTS (Kidney and Tumor Segmentation) and DRIVE (Digital Retinal Images for Vessel
Extraction). These datasets do not have any similarity to the data of pill images with complex backgrounds,
so we do not consider these algorithms for transfer learning for pill image segmentation.

U 2
− Net [159] is a deep learning model designed specifically for salient object detection (SOD).

Its architecture features a nested U-structure with ReSidual U-blocks (RSU), where each RSU integrates
a smaller U-Net within itself. This design allows U 2

− Net to efficiently capture multi-scale contextual
features while maintaining computational efficiency. The model has been extensively evaluated on prominent
SOD datasets, including DUT-OMRON, DUTS-TE, HKU-IS, ECSSD, PASCAL-S, SOD. These datasets
contain objects with diverse shapes, colors, and complex backgrounds, characteristics that align closely with
real-world pill images.

Pill images often exhibit significant variability in shape, color, and imprint (e.g., logos, numbers, or
letters), while being situated on backgrounds that range from simple to highly cluttered. Such attributes
mirror the challenges present in SOD datasets. Leveraging U 2

− Net robust feature extraction capabilities,
transfer learning can be employed to adapt the model to the domain of pill image segmentation, particularly
when dealing with datasets like CURE, which contain limited data samples. The nested U-structure ensures
precise segmentation of small and intricate details, making it an excellent candidate for detecting pills
with complex backgrounds. Furthermore, the model’s ability to generalize with minimal fine-tuning further
supports its suitability for pill image segmentation.

The architectural strengths of U 2
− Net and the similarities between SOD datasets and pill segmentation

challenges suggest that transfer learning with U 2
− Net on datasets like CURE could yield highly accurate

segmentation results, even in low-data scenarios. Faster R-CNN [84] is an advanced object detection model,
designed to detect and classify objects in images efficiently and accurately. The combination of object
segmentation and detection in the combination of U 2

− Net and Faster R-CNN leverages the strengths of
U 2
− Net in accurate segmentation and Faster R-CNN in object detection, creating a more comprehensive

solution to the pill recognition problem. U 2
− Net segments pills and related features, and Faster R-CNN

detects and classifies these pills, providing the necessary information for pill recognition. Despite its good
segmentation capabilities, U 2

− Net lacks the depth of object detection and classification capabilities, which
reduces the overall effectiveness of pill recognition that requires both segmentation and object detection.

6.3.2 Developing Deep TextSpotter (DTS) Pill Imprint Extraction Method Based on Improvement and Flexible
Application of Existing Algorithms
Ling et al. [101] used the Deep TextSpotter (DTS) method for pill imprint extraction [104], a framework

for text localization and recognition in scenes, the model is trained for both text detection and recognition
in scenes in a single framework. This framework uses a region-based text detection model to identify regions
in the image that are likely to contain text. This model uses methods such as Region Proposal Networks
(RPN) to generate text region proposals. After identifying text regions, a recognition network is used to
classify the characters in these regions. This recognition model uses Recurrent Neural Networks (RNN)
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and Convolutional Neural Networks (CNN) architectures to process and recognize text strings from the
suggested regions.

The Deep TextSpotter framework is designed to be end-to-end trainable, meaning that both the
detection and recognition models are trained together. This helps to minimize the cumulative error between
the detection and recognition steps, thereby improving the overall performance of the system. However,
DTS may be limited in accuracy and performance when applied to complex text cases or low-quality images.
Therefore, another algorithm may be needed to effectively recognize the pill’s imprint.

Recent advancements in pill image recognition have seen the integration of Transformer-based models,
which offer significant improvements over traditional convolutional neural networks (CNNs) due to their
self-attention mechanism. Unlike CNNs, which function by processing local receptive fields and pooling
layers, Transformers are built to capture long-range dependencies and contextual information throughout
the entire image. This self-attention mechanism enables Transformers to focus on different regions of the
image simultaneously, rather than sequentially, making them highly effective in recognizing fine-grained
details. In the context of pill image recognition, this ability is particularly beneficial for detecting subtle
variations in shape, text, and imprints, which are crucial for accurate identification. Transformers can also
handle complex image conditions, such as varying backgrounds, lighting, and distortion, better than CNNs,
further enhancing their suitability for pill image recognition tasks.

Two notable examples of Transformer-based models applied to pill imprint recognition are PP-OCR-
v3 [160] and Robust-Scanner [161]. Both models leverage the strengths of Transformer architecture to
improve the accuracy of optical character recognition (OCR) and imprint identification. In PP-OCR-v3, a
combination of convolutional layers for feature extraction and Transformer-based sequence modeling for
text recognition allows the model to process pill imprint images with greater precision. The Transformer
encoder in this model helps capture the global context of the text imprints, enabling the system to recognize
sequences of characters even in challenging conditions, such as noisy or partially obscured images. Similarly,
Robust-Scanner uses a Transformer-based encoder-decoder architecture, with the encoder transforming the
image into a sequence of features, while the decoder decodes these features to produce the recognized text.
The self-attention mechanism within the encoder ensures that long-range relationships between different
parts of the imprint, such as text or logos, are accurately captured, leading to more reliable recognition results.
Both models demonstrate the effectiveness of Transformer-based architectures in pill image recognition,
offering improved performance over traditional CNN-based methods, particularly in handling complex and
variable image conditions.

6.3.3 Building a New Model Based on Superpixels Combined with U2
− Net Model for Pill Image

Segmentation Instead of the W2
− net Image Segmentation Algorithm

The integration of superpixel methods with the U 2
− Net model presents a promising approach for pill

image segmentation, particularly within the context of the CURE dataset, which is characterized by limited
data and complex backgrounds. Superpixel techniques segment an image into smaller, homogeneous regions,
thereby reducing the computational load and preserving critical features such as object boundaries. This
preprocessing step is crucial for enhancing the efficiency and accuracy of subsequent segmentation tasks.
U 2
− Net, with its nested U-structure, excels in capturing both local and global information, making it adept

at handling intricate backgrounds. By first using superpixel segmentation to simplify the image and then
applying U 2

− Net for accurate boundary detection, this combined approach takes advantage of the strengths
of both methods. The superpixel preprocessing reduces the number of pixels to be processed, while U2

− Net
ensures high accuracy in segmenting the pill from the background. This conbination not only optimizes
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computational resources but also enhances segmentation performance, making it particularly effective for
datasets with limited samples like CURE.

Wang et al. [162] review many Superpixel segmentation algorithms, for example: SLIC [163], LSC [164],
ERS [165], SEEDS [166], PB [167], CRS [168], LRW [169], TPS [170], CS [171,172], CIS [171], N-cut [173],
Superpixel Lattices [174], VCells [172], Turbopixel [175], and Watershed [176].

We choose an appropriate method for pill image segmentation involves assessing the suitability of
various superpixel segmentation techniques for handling the specific details and structures within pill
images. Among the methods discussed, SLIC (Simple Linear Iterative Clustering) emerges as the most
suitable choice for several reasons:

Firstly, SLIC is valued for its simplicity and efficiency. It uses a k-means clustering algorithm to segment
pixels in both color and spatial domains. This simplicity helps minimize processing time and computational
demands, which is particularly important when dealing with large pill images that contain complex details.

Secondly, SLIC produces superpixels that are uniformly sized and nearly rectangular, which helps
preserve well-defined boundaries between the different regions of the pill image. This characteristic is crucial
for distinguishing various components of the pill, such as the coating, core, and finer details.

Lastly, SLIC is known for its high segmentation quality, especially in applications that require detailed
image analysis like pill segmentation. It consistently creates even and reliable superpixels, aiding in the
accurate analysis and recognition of small structural details within the pill images.

When comparing SLIC to other methods, its advantages become clearer. LSC (Linear Spectral Clus-
tering), while effective for spectral feature-based segmentation, might be too complex for the relatively
straightforward task of pill image segmentation. ERS (Edge-Relabeling Segmentation), based on edge
segmentation, may not maintain the uniformity of superpixels as well as SLIC. SEEDS (Superpixels Extracted
via Energy-Driven Sampling), though it produces high-quality superpixels, can be more resource-intensive
compared to SLIC. PB (Pyramid-based) segmentation is suitable for multi-resolution images but may not
be ideal for pill segmentation, which generally does not require multi-scale analysis. CRS (Contour-based)
methods focus on contours and might not be effective in maintaining uniform superpixels. LRW (Learning-
based Recurrent Model), which uses deep learning, could achieve higher accuracy but demands significantly
more computational resources. TPS (Imprint-Partitioning Segmentation), which segments based on imprint,
might not align well with the specific needs of pill image details. CS (Connected Component) segmentation
could fail to produce uniform superpixels. CIS (Clustered Image Segmentation) might lack the necessary
uniformity for effective pill segmentation. N-cut (Normalized Cut), while useful, tends to be more complex
and might not be necessary for simpler segmentation tasks. Superpixel Lattices and VCells are unlikely to
provide the consistent superpixel sizes or appropriate segmentation for pill images. Turbopixel generates
superpixels quickly but may not maintain the detailed boundaries as effectively as SLIC. Lastly, Watershed
segmentation, using terrain concepts, may not preserve the necessary uniformity and detailed boundaries
required for pill segmentation.

Therefore, SLIC stands out as the preferred method for pill image segmentation due to its balanced
approach, providing high accuracy, efficiency, and maintaining crucial details within the images.

6.4 Interdisciplinary Collaboration in Pill Image Recognition
Despite the significant advancements in pill image recognition, one of the open research problems is the

need for deeper interdisciplinary collaboration. As this field spans multiple domains, including computer
vision, machine learning, pharmacology, and clinical medicine, research in pill image recognition would
greatly benefit from the integration of knowledge and expertise from these diverse fields.
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Collaboration with pharmacologists can ensure that recognition systems account for the specific
characteristics of pill imprints, shapes, and colors that are critical for accurate classification. Meanwhile,
clinical medicine can help refine these systems, ensuring that they are not only accurate but also useful
in real-world healthcare applications such as medication verification and patient safety. Computer vision
and machine learning experts can improve model performance, but understanding the complexities of
medication usage and patient populations will require input from other disciplines.

Thus, fostering collaboration across these domains is not just an opportunity but a necessity for advanc-
ing the state of pill image recognition and addressing challenges like dataset limitations, algorithm accuracy,
and clinical applicability. This collaboration has the potential to open new research and development
opportunities, fostering the creation of more efficient, scalable, and clinically applicable systems.

7 Conclusions
In this survey, we review recent methods for pill image recognition using pill image datasets. We

summarize the main techniques employed by various authors and classify them into four groups, comparing
the advantages and disadvantages of these groups. We also discuss a range of benchmark datasets for pill
image recognition used in recent methods. Specifically, we compare six popular datasets: NLM, ePillID,
CURE, mCURE, VAIPE, and VAIPEPCIL. Additionally, we evaluate the metrics used in studies involving
the NLM, mCURE, and VAIPE datasets. Finally, we suggest potential research directions for advancing pill
image recognition.
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