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ABSTRACT: Detecting surface defects on unused rails is crucial for evaluating rail quality and durability to ensure the
safety of rail transportation. However, existing detection methods often struggle with challenges such as complex defect
morphology, texture similarity, and fuzzy edges, leading to poor accuracy and missed detections. In order to resolve
these problems, we propose MSCM-Net (Multi-Scale Cross-Modal Network), a multiscale cross-modal framework
focused on detecting rail surface defects. MSCM-Net introduces an attention mechanism to dynamically weight the
fusion of RGB and depth maps, effectively capturing and enhancing features at different scales for each modality. To
further enrich feature representation and improve edge detection in blurred areas, we propose a multi-scale void fusion
module that integrates multi-scale feature information. To improve cross-modal feature fusion, we develop a cross-
enhanced fusion module that transfers fused features between layers to incorporate interlayer information. We also
introduce a multimodal feature integration module, which merges modality-specific features from separate decoders
into a shared decoder, enhancing detection by leveraging richer complementary information. Finally, we validate
MSCM-Net on the NEU RSDDS-AUG RGB-depth dataset, comparing it against 12 leading methods, and the results
show that MSCM-Net achieves superior performance on all metrics.
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1 Introduction
Railways are a critical component of railway infrastructure, directly influencing the safety and reliability

of transportation. Repeated train loads and environmental factors can lead to defects in in-service tracks,
compromising normal operations. Thus, defect detection in in-service tracks is of vital importance. However,
unused tracks also warrant attention. Although these tracks have not yet been put into operation and have
not been subjected to complex external forces, potential defects may already exist due to manufacturing,
transportation, and storage processes. Once these tracks are operational, such defects can rapidly propagate
under the combined effects of train loads and environmental factors, evolving into more severe quality issues
and even posing safety risks. Therefore, early detection and remediation of defects in unused tracks can
eliminate potential risks before they are put into use, ensuring safety and reliability during the initial service
period. This study provides critical support for the lifecycle health management of railway tracks and lays a
foundation for further advancements in defect detection technologies for in-service tracks. The inspection
process for unused rails, as shown in Fig. 1, can help mitigate potential risks before they are put into service.
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Figure 1: Defect detection process for unused rails

Currently, rail inspection methods primarily include physical techniques such as ultrasonic testing,
eddy current testing, and magnetic flux leakage detection. However, these methods typically focus only on
detecting internal rail defects and are often limited by slow inspection speeds and sensitivity to the condition
of the detectors. In contrast, machine vision-based inspection methods have gained popularity among
researchers due to their non-contact nature, high speed, and low cost. These methods are gradually replacing
manual inspection for surface defect detection, and there are now many high-performance approaches
available for rail surface defect detection.

The rapid progress in deep learning and enhanced computational power have enabled convolutional
neural networks (CNNs) to transform rail defect detection. For example, Gibert et al. [1] introduced a deep
learning approach that combines a multi-task learning framework with multiple detectors, achieving notable
improvements in detection efficiency and accuracy, which underscores the potential of deep learning in
railway maintenance. Zhang et al. [2] designed the Multiple Contextual Information Segmentation Network
(MCnet), which utilizes dense blocks, pyramid pooling modules, and multi-information integration mech-
anisms to greatly enhance the segmentation accuracy of surface defects on unserviceable rails, effectively
leveraging contextual information in complex scenarios. Zhou et al. [3] introduced a Dense Attention-
guided Cascade Network (DACNet) that enhances the detection capabilities for significant defects on rail
surfaces, particularly excelling in the identification of small targets through the application of an attention
mechanism. Ni et al. [4] developed an IoU-guided centroid estimation network focused on improving the
detection accuracy of surface defects on rails, ensuring efficient detection results by accurately pinpointing
defective regions. Collectively, these studies illustrate diverse technical approaches and innovative strategies
that contribute substantially to the advancement of rail defect detection.

Existing studies primarily focus on general rail defect detection in standard railway systems, where
the effectiveness of detection methods is limited when addressing complex challenges such as large areas of
shadowing, irregular boundaries, and small target regions. In response to these challenges, we categorized
the dataset based on several defect types that affect detection accuracy. The dataset contains a total of 1852
images, which are classified into five categories: 130 images of edge-effect defects, 614 images of single-target
defects, 937 images of multiple defects, 71 images of minor defects, and 110 images of texture-similar defects,
as shown in Fig. 2.
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Figure 2: Defect types in the dataset

Because of the resemblance in color and texture, detecting defects using a single modality often fails
to differentiate those with textures similar to the background. Therefore, the introduction of depth images
is essential, as their pixel values provide depth information of objects within the camera coordinate system,
enabling better differentiation between the similar foreground and background textures found on rails.
However, deep learning-based detection still encounters significant technical challenges, such as optimizing
and improving algorithm performance, enhancing accuracy, and reducing model size.

Fig. 3 illustrates several representative CNN-based RGB-SOD (RGB Surface Object Detection) meth-
ods. The detection results reveal issues such as missed defect detection and blurred edges, particularly in
cases of irregular boundaries, similar foreground and background, and minor defects, resulting in imprecise
outcomes. To overcome these challenges, we propose a new network. The main contributions of this paper
are as follows:

1) Our proposed module utilizes multi-scale dilated convolution in conjunction with a channel-spatial
attention mechanism, enabling the model to capture both local and global features across a range of receptive
fields. Through the incorporation of dilated convolutions at different rates, the MSDF (Multi-Scale Dilation
Fusion Module) module strengthens the model’s capability to capture fine textures and edge details, thereby
improving feature representation.

2) We construct a multi-modal fusion module (TSFM: Temporal Scale Fusion Module) that effectively
combines detailed information from RGB images with the geometric structure from depth images, achieving
more precise feature extraction. This design demonstrates strong adaptability in multi-modal tasks and
significantly improves the model’s performance in recognizing targets within complex scenes.

3) We develop a decoder structure capable of adaptively allocating weights to different features
during the stepwise recovery of image details. This design effectively addresses challenges such as object
deformation, texture similarity, and noise interference while preserving high-level semantic information,
substantially increasing the model’s capacity to identify boundaries and reassemble details in complicated
situations, thereby improving robustness and generalization.



4374 Comput Mater Contin. 2025;82(3)

Figure 3: Saliency maps produced by three leading methods across three challenging scenarios

2 Related Works

2.1 Rail Surface Defect Detection
Detection methods for rail surface defects primarily include manual inspection, eddy current testing,

magnetic flux leakage testing, ultrasonic testing, and machine vision-based inspection. Although traditional
manual inspection is simple to operate, it is inefficient and poses safety risks. Ultrasonic testing technology,
despite its broad detection range, has its accuracy limited by the contact-based nature of the measurement
[5–7]. Eddy current testing [8,9] allows for non-destructive evaluation but operates at a slower speed and is
susceptible to environmental interference. While magnetic flux leakage testing [10,11] can enable quantitative
analysis, it is greatly affected by external magnetic fields. With the rapid advancement of computer vision,
machine vision-based detection methods have gained popularity for their non-contact and high-efficiency
advantages. In 2016, Faghih-Roohi et al. [12] took the lead in applying deep convolutional neural networks
to this field, developing an end-to-end framework for automatically identifying defects like cracks and
spalling. In 2018, Mercy et al. [13] systematically evaluated machine learning algorithms, including decision
trees and random forests, for predicting rail defects, demonstrating that intelligent algorithms have, in
certain scenarios, surpassed traditional detection methods. In 2019, Yu et al. [14] introduced a novel multi-
scale detection approach that splits the detection process into coarse detection and fine analysis phases,
improving system efficiency while preserving recognition accuracy. By 2020, research in this field entered a
phase of rapid development. The network model proposed by Dong et al. [15] incorporates pyramid feature
fusion and global context attention mechanisms, improving accuracy in surface defect detection and greatly
enhancing the model’s adaptability to various detection scenarios. He et al. [16] focused on the challenge
of feature extraction, designing a multi-level feature fusion mechanism based on ResNet combined with
an RPN (Region Proposal Network) network to construct a complete end-to-end detection system, thereby
enhancing the algorithm’s ability to recognize different defect types. Qin et al. [17] proposed an innova-
tive multi-branch Deepfake detection algorithm that effectively utilizes fine-grained feature analysis. By
incorporating a Feature Localization Module (FLM) and a Global Attention Module (GAM), this approach



Comput Mater Contin. 2025;82(3) 4375

significantly enhances the accuracy of identifying manipulated features. This design, based on multi-branch
fine-grained feature extraction and reinforced attention mechanisms, also provides new insights for railway
defect detection in complex environments. Meanwhile, Cao et al. [18] proposed the PSMFNet model,
which uses partially separated convolutions and integrates multi-scale features to achieve impressive image
super-resolution performance at a relatively low computational cost, demonstrating the advantages of multi-
scale feature extraction. These methods offer valuable references for advancing techniques in related fields.
Song et al. [19] proposed MFANet, a framework designed for cross-granularity few-shot defect segmen-
tation, effectively leveraging coarse-grained data to improve fine-grained defect identification. In 2022,
Wang et al. [20] introduced a collaborative attention network leveraging RGB-D images, effectively improv-
ing defect detection by integrating RGB images and depth information and achieving outstanding results on
multiple public datasets. Considering the practical implementation of future models, these two papers [21,22]
have provided me with new ideas. The content on sensor fusion methods, cost-effective alternatives, and
fine-grained feature extraction holds significant reference value for rail defect detection.

These studies have advanced rail inspection technology toward greater intelligence and automation,
laying the groundwork for further research in areas such as real-time performance optimization and
system integration.

2.2 Traditional RGB-D Salient Object Detection
In early RGB-D salient object detection techniques, manually designed features were primarily used

to identify target areas by analyzing properties such as contrast and spatial distribution in depth maps and
RGB images. In 2012, Niu et al. [23] pioneered stereo saliency detection, leveraging disparity maps to extract
depth cues from stereo images and established the STEREO dataset. In the same year, Lang et al. [24] applied
a Gaussian mixture model to simulate the saliency distribution induced by depth, highlighting the critical
role of depth information in saliency detection. As research progressed, more complex saliency detection
models were developed. Desingh et al. [25] improved saliency detection accuracy in indoor environments by
considering the 3D structural features of objects. Cheng et al. [26] combined color, depth contrast, and spatial
deviation to propose a multi-cue depth-enhanced saliency detection method and created the DES dataset
to validate its effectiveness. Feng et al. [27] introduced the Local Background Enclosure (LBE) method,
enhancing saliency detection by integrating depth information with RGB data. This approach computes the
depth variation between each pixel and its surrounding background to produce a saliency map, thereby better
distinguishing foreground from background. However, this approach is highly dependent on depth map
quality, has a high computational complexity, and its simple linear fusion limits the expressive relationship
between RGB and depth information.

2.3 Deep Learning RGB-D Saliency Object Detection
With deep learning advancing rapidly, RGB-D saliency detection has evolved. CNNs enhance feature

extraction, enabling models to learn complex RGB-depth interactions and overcome the limits of traditional
features. In 2017, Qu et al. [28] pioneered the use of deep learning in RGB-D SOD, employing CNNs for multi-
level feature extraction and generating saliency maps via Laplacian propagation. Subsequent models and
fusion strategies further enhanced detection performance. Chen et al. [29] designed a progressive synergistic
perception fusion network that improves detection results by fusing information across modalities and levels.
In 2019, Piao et al. [30] developed a depth-induced multi-scale recurrent attention network to improve
multimodal interaction and fusion via a recurrent mechanism.

To better handle multimodal information, Liu et al. [31] proposed the S2MA network, which optimizes
multimodal fusion by applying an adaptive weighted attention mechanism to RGB and depth features
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extracted by a dual-stream encoder, addressing issues of information loss and modal distribution differences
found in traditional methods. Ji et al. [32] introduced an innovative collaborative learning framework,
which jointly learns edge detection, saliency detection, and depth estimation tasks, effectively enhancing
the mutual support between various features. Fan et al. [33] developed a Depth Depuration Unit (DDU)
to automatically filter low-quality depth maps and enable cross-modal feature learning. UC-Net [34] first
employed a conditional variational autoencoder (CVAE) to capture human-annotated uncertainty and
produce diverse saliency maps, while introducing a depth correction network to denoise depth maps.
Li et al. [35] proposed a hierarchical saliency detection network to manage feature interactions, while
Zhai et al. [36] were the first to apply branched feature extraction and a cascade refinement mechanism
to RGB-D saliency detection, helping to reduce noise in lower-level features. Niu et al. [37] proposed an
improved YOLO model that integrates deep residual networks and densely connected networks, greatly
boosting the precision and efficiency of object detection in complex situations. Finally, Song et al. [38]
designed a modality-aware decoder that dynamically learns and leverages relationships between RGB and
depth information during decoding, thereby achieving more efficient RGB-D fusion.

3 Methodology
This chapter presents MSCM-Net, a multi-scale cross-modal network that fuses RGB and depth images,

aimed at efficiently detecting rail defects. The neural network architecture consists of three stages: feature
extraction, cross-modal fusion, and defect localization and segmentation. Specifically, the feature extraction
backbone network effectively captures the color features and depth features of rail defects by deeply
mining information from different network layers. Subsequently, the fusion of cross-modal information
aims to strengthen the distinction between defects and the background, enhancing the accuracy of defect
identification and achieving precise prediction and localization of rail defects. Fig. 4 visually illustrates the
overall architecture of MSCM-Net.

Figure 4: Framework of MSCM-Net

3.1 Feature Extraction
As in Fig. 4, the network uses a dual-stream model with a pretrained ResNet-34 encoder from ImageNet.

The primary function of the dual-stream encoder is to extract features from RGB and depth images, resulting
in five different levels of feature representations. Each feature extraction module is denoted as En(i), where
i = 1, 2, 3, 4, 5 corresponds to different feature extraction layers.
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3.2 Cross-Modal Information Fusion
As outlined in this paper, the proposed cross-modal fusion module incorporates three fundamental

components to ensure seamless integration: the Multi-Scale Dilation Fusion Module (MSDF), the Criss-
Cross Attention Module (CCAM), and the Temporal Scale Fusion Module (TSFM). In the upcoming part of
this section, a thorough overview of each module will be presented.

1) Multi-Scale Dilation Fusion Module (MSDF):
In the task of rail defect detection, defects often exhibit characteristics such as irregular boundaries and

small target areas. Traditional CNNs have limitations in multi-scale feature extraction and the reinforcement
of key features. To address this issue, our MSDF module combines multi-scale dilated convolutions and
attention mechanisms. This adaptive structure makes feature extraction more flexible and context-sensitive,
making it better suited for detecting defects with irregular boundaries and small targets.

As shown in Fig. 5, the Multi-Scale Dilation Fusion Module (MSDF) consists of a multi-scale dilation
convolution component and a channel-space attention fusion component. First, the MSDF module employs
five parallel convolutional branches to achieve multi-scale feature extraction. The first branch uses a 1 × 1
convolutional kernel to directly extract fine-grained local features. The second to fourth branches utilize
3× 3 convolutional kernels with dilation rates set to 6, 12, and 18, respectively, thereby gradually increasing the
receptive field to capture contextual information over varying ranges. The fifth branch extracts global features
through global average pooling, enhancing the model’s understanding of the overall layout. This multi-
scale convolutional structure ensures that the model can flexibly capture multi-scale feature information
while maintaining spatial resolution, which is particularly crucial for handling the diverse morphology of
rail defects.

Figure 5: MSDF model diagram

The specific formulas are as follows:

Fmul t i = Concat (ReLU (BN (Conv1×1 (Fin))),
ReLU (BN (Conv3×3,d=6 (Fin))),
ReLU (BN (Conv3×3,d=12 (Fin))),
ReLU (BN (Conv3×3,d=18 (Fin))),
ReLU (BN (Conv1×1 (Global AvgPool (Fin)))))

(1)
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Here, Global AvgPool (⋅) represents global average pooling, and Concat (⋅) denotes the tensor con-
catenation operation.

In addition, the MSDF module utilizes both channel and spatial attention mechanisms to adaptively
modify the feature weights based on the data context. Channel attention assesses the significance of each
channel by applying global pooling followed by a 1D convolution, which boosts the response of essential
channels. Meanwhile, spatial attention calculates the weights for each spatial location using 1 × 1 convolu-
tion, highlighting critical regions. These attention mechanisms effectively select important features while
suppressing redundant information, consequently, this boosts the model’s performance in detecting relevant
patterns. Finally, the outputs from the multi-scale dilation convolutions and the attention mechanisms are
fused and integrated through a 1 × 1 convolution for dimensionality reduction, resulting in the final output
feature map. This module design equips the model with a stronger ability to capture features and achieve
higher recognition accuracy when handling complex rail defect detection tasks. The specific formulas are as
follows:

Fchanne l = Fmul t i ⊗ Interpolate (ReLU (Conv1×1 (AvgPool (Fmul t i))), size = (H, W))
Fs pati al = Fin ⊗ Sigmoid (Conv1×1 (Fmul t i))
F f usion = Fchanne l ⊕ Fs pati al

(2)

Here, ⊗ denotes element-wise multiplication, ⊕ represents element-wise addition, and AvgPool (⋅)
indicates average pooling.

2) Criss-Cross Attention Module:
Depth and RGB images each provide unique benefits in the fusion process. To better leverage these

advantages and improve fusion quality, this paper introduces the enhanced CCAM module. While the
original CAAF module [39] could fuse autocorrelation features from RGB and depth images, its utilization of
depth information was limited, as illustrated in Fig. 6. Compared to traditional methods, our modules focus
on addressing the issues of context-awareness and computational complexity in multimodal information
fusion. CCAM strengthens pixel-level detail representation by capturing contextual information both
horizontally and vertically. Compared to traditional networks that use dense connections to capture global
context, CCAM’s cyclic attention mechanism significantly reduces computational complexity and memory
usage, making it particularly suitable for the efficiency demands of rail defect detection.

Figure 6: CCAM model diagram
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The core of the CCAM module lies in enhancing contextual awareness through attention mechanisms
and multi-scale feature extraction. Among these, the CrissCross Attention (CCA) mechanism serves as one
of the key components, as illustrated in Fig. 7, and can be represented by the following formula:

AttentionH = VH ⋅ softmax (QH KT
H ⊕ INF)

AttentionW = VW ⋅ softmax (QW KT
W)

CCA (Fin) = γ ⋅ (AttentionH ⊕AttentionW) ⊕ Fin

(3)

Figure 7: CCA model diagram

Here, γ is a learnable parameter, and INF is a negative infinity mask. Through this mechanism, the
model effectively captures long-range dependencies, enhances feature representation capabilities, and excels
particularly in multimodal fusion scenarios.

The CCAM module also includes an RGB processing branch and a depth processing branch. In the RGB
branch, we apply the CCA mechanism:

Fr gb_w e i ghted = Fr gb ⊗CCA (Fr gb) (4)

In the depth processing branch, we adopt a lightweight design:

Fd e pth_w e i ghted = Conv (Fd e pth) ⊗ σ (Conv (Fd e pth)) (5)

Here, σ represents the sigmoid function.
Finally, we designed an adaptive fusion strategy that combines RGB and depth features:

out = Concat (Fr gb , Fd e pth) ⊕wd e pth ⋅ Fd e pth ⊕wearl y ⋅ Fearl y_ r gb (6)

Here, wd e pth and wearl y are learnable weight parameters.
Experimental results indicate that the CCAM module significantly enhances the performance of

rail defect detection. Compared to traditional methods, our approach shows a notable improvement in
detection accuracy, particularly excelling in the recognition of minor defects. This is largely attributed to the
module’s multi-scale feature extraction capability and global contextual awareness. The fusion of multimodal
information provides a more comprehensive representation of defects, enabling the model to simultaneously
detect both surface and deep defects.
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3) Temporal Scale Fusion Module:
To fully leverage the unique information provided by RGB images and depth images, as well as the com-

plementary characteristics of their fusion, we specifically designed a dual-modal fusion module (TSFM) for
effective rail defect detection. Unlike simple element-wise addition or multiplication-based fusion methods,
this module leverages specific multi-scale feature extraction and temporal attention mechanisms to achieve
deeper information interaction. The core components of the TSFM include a Multi-Scale Feature Extractor
(MSFE) and a Temporal Fusion Attention Module (TFAM). As illustrated in Fig. 8, these components are
simply integrated and forwarded to the subsequent decoder.

Figure 8: TSFM model diagram

After the preceding calculations, we obtain the specific modal features Fr and Fd from the output of the
MSDF module, as well as the cross-modal fusion features F f ul from the output of the CCAM module. In the
next step, these three features are integrated into the decoder.

The Multi-Scale Feature Extractor (MSFE) employs a parallel multi-scale convolutional structure,
incorporating convolutional kernels of sizes 3 × 3, 5 × 5, and 7 × 7. This design, tailored to the multi-
scale characteristics of rail defects, not only extracts features through different receptive fields but also
avoids information redundancy by aggregating features through addition, ensuring efficient and fine-grained
feature fusion. Compared to traditional methods, MSFE significantly enhances the model’s sensitivity to
defects of varying scales.

F1 = Conv3×3 (Fin)
F2 = Conv5×5 (Fin)
F3 = Conv7×7 (Fin)
Fout = ReLU (F1 ⊕ F2 ⊕ F3)

(7)



Comput Mater Contin. 2025;82(3) 4381

The TFAM module innovatively integrates channel attention and spatial attention mechanisms to
optimize feature representation, enabling the efficient integration of RGB images, depth images, and fused
image features. Adaptive 1D convolutional kernels are employed in channel attention, with their sizes
set according to the input channel count, thereby improving the model’s computational efficiency and
adaptability. The spatial attention, on the other hand, captures local contextual information through a 7 × 7
convolution operation. This dual attention mechanism enables selective enhancement along both the feature
channel and spatial dimensions, significantly improving the effectiveness of feature extraction.

Additionally, TFAM is capable of simultaneously processing RGB images, depth images, and the feature
maps generated from their fusion. By calculating and integrating the attention weights of feature maps from
different sources, TFAM effectively leverages the complementary information among these features, thereby
enhancing the model’s ability to represent rail defect characteristics. The specific formulas are as follows:

Pav g = Concat (AvgPool (Fr
out), AvgPool (Fd

out), AvgPool (F f ul
out ))

Pmax = Concat (MaxPool (Fr
out), MaxPool (Fd

out), MaxPool (F f ul
out ))

Ac = σ (Conv1D ([Pav g , Pmax]))
σ = Softmax along temporal dimension

(8)

The formula presented demonstrates the channel attention mechanism, where Fr
out , Fd

out , F f ul
out are the

input feature maps from three different categories, and Conv1D indicates the 1D convolution process, with
the kernel size determined by the quantity of input channels. The spatial attention mechanism operates in a
similar manner.

After strengthening the features using channel and spatial attention mechanisms, an element-wise
multiplication is performed with the multi-scale convolutional features. This allows the model to achieve
fine-grained feature fusion while preserving spatial and channel information. Following the feature fusion,
batch normalization is applied to standardize the feature distribution, improving the model’s convergence
speed and stability. By introducing non-linearity, the subsequent ReLU activation function strengthens the
model’s ability to express complex patterns. To prevent overfitting and improve generalization, we conclude
with a Dropout layer set at a 0.5 dropout rate, the final fused feature map achieves comprehensive multimodal
information integration.

Ac = ChannelAttention(F f ul
out , Fr

out , Fd
out)

As = SpatialAttention(F f ul
out , Fr

out , Fd
out)

Ff use = Ac ⊗ As ⊗ [F f ul
out , Fr

out , Fd
out]

F′f use = ReLU(Ff use ⊕ F f ul
out )

Fout = Dropout (ReLU(BN (F′f use)))

(9)

A hybrid loss function was employed as a supervisory mechanism in the network training process. This
hybrid loss function is composed of binary cross-entropy (BCE) loss and Intersection over Union (IoU) loss.
The BCE component drives feature prediction for RGB and depth maps, while the IoU component delivers
stage-wise supervision in the final decoder, enhancing the network’s ability to capture essential features.

R5
d = d (F r

f unsion5)
D5

d = d (F d
f unsion5)

Ltotal = LR +LD +LF D
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LR = �bce (R5
d , G) + �iou (R5

d , G)
LD = �bce (D5

d , G) + �iou (D5
d , G)

LF D =
5
∑
m=1
(�bce (Fout , G) + �iou (Fout , G)) (10)

The final-layer single-modal features, Enr
5 and End

5 , are processed by the MSDF module, producing
output features F r

f unsion5 and F d
f unsion5 , which are directly fed into the decoder to obtain R5

d and D5
d .

Meanwhile, Fout represents the multi-modal feature obtained through the TSFM module. Where �bce(⋅)
represents the binary cross-entropy loss function, �iou(⋅) represents the intersection over union loss function,
and GT represents the ground truth.

4 Experimental Results
We trained and tested the model using the NEURSDDS-AUG dataset [20], implementing it with the

PyTorch library. The training was conducted on an NVIDIA 3080 GPU with 40 GB of memory. The backbone
network is ResNet-34. Due to the differing number of channels in RGB and depth images, the depth images
were adjusted to three channels before being input into the backbone network. The model was optimized
with the Adam optimizer, beginning with a learning rate of 10−4 that was reduced by ten every 60 epochs.
Input resolution for RGB and depth images was 256 × 256, with data augmentation techniques like flipping,
rotation, and cropping used for better diversity and generalization. Training spanned 200 epochs with a batch
size of 6, lasting about 16 h.

We compared MSCM-Net with 12 state-of-the-art methods, including S2AM, BBS, CoNet, HAI, CLA,
DRER [40], FHE [41] and CAVER [42], which employ deep learning approaches, and ACSD, CDCP,
DCMC, and DF, which are based on handcrafted features. Six commonly used evaluation metrics were
employed to assess the performance of the proposed framework. These metrics include Structure measure
(Sm), Maximum enhanced-alignment measure (maxE), Mean Absolute Error (MAE), Maximum F-measure
(maxF), Precision-Recall (P-R) curve, and the F-measure curve varying with thresholds. The experimental
results demonstrate that MSCM-Net achieves significant improvements across all these six metrics.

Quantitative outcomes for the four evaluation metrics of the test set are listed in Table 1. The proposed
MSCM-Net consistently outperforms all comparison methods based on these metrics.

Table 1: Quantitative comparison and evaluation of RGB-D SOD algorithms

Models Sm↑ maxE ↑ maxF↑ MAE↓
DCMC 0.484 0.595 0.498 0.287
ACSD 0.556 0.670 0.575 0.360

DF 0.564 0.713 0.636 0.241
CDCP 0.574 0.694 0.591 0.236
HAI 0.718 0.829 0.803 0.171

S2MA 0.775 0.864 0.817 0.141
CONET 0.786 0.878 0.834 0.101

BBS 0.828 0.909 0.867 0.073
CLANet 0.835 0.920 0.878 0.069
FHENet 0.836 0.926 0.881 0.064

DRERNet 0.844 0.933 0.891 0.059

(Continued)
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Table 1 (continued)

Models Sm↑ maxE ↑ maxF↑ MAE↓
CAVER 0.838 0.918 0.884 0.069

Ours 0.849 0.934 0.893 0.057

Fig. 9 provides a visual comparison of the detection results for railway surface defects.

Figure 9: Comparison of multi-model experimental results

Recall is plotted on the x-axis and precision on the y-axis in the PR curve. Precision is defined by the
formula TP/(TP+FP), and recall is calculated as TP/(TP+FN), where TP, FP, and FN represent true positives,
false positives, and false negatives, respectively. Fig. 10 illustrates both the PR curve and the threshold F-
measure curve, highlighting comparisons with alternative methods.

As shown in Fig. 9, comparative analysis of the prediction results of MSCM-Net and several typical
methods reveals significant shortcomings in handling complex defect boundaries, particularly with irregular
shapes, where details are often missed. Additionally, many methods struggle to accurately locate defect
areas when the defects are similar to background textures, leading to decreased detection performance. In
contrast, MSCM-Net excels in surface defect detection, especially on unserviced rail tracks. Thanks to the
introduction of the Multi-Scale Feature Aggregation module (MSDF), Cross-Channel Attention module
(CCAM), and Two-Stream Feature Fusion module (TSFM), MSCM-Net can precisely refine complex defect
boundaries while effectively distinguishing similar textures, ensuring accurate defect location identification.
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Furthermore, the network effectively reduces noise during the fusion and prediction processes, enhancing
the clarity and stability of the detection results.

Figure 10: PR curve graph and threshold F-measure curve graph

4.1 Performance on Other Datasets
To validate the effectiveness of MSCM-Net, we evaluated the proposed network on three public RGB-D

SOD datasets to demonstrate its generalization ability. We selected 1485 image pairs from NJU2K, 700 image
pairs from NLPR as the training set, and the remaining image pairs, which are from STERE, NJU2K, and
NLPR, were used for testing.

NJU2K [43]: Contains 1985 stereo image pairs, covering a variety of lighting conditions and scene types.
NLPR [44]: Includes 1000 stereo image pairs, encompassing both indoor and outdoor environments.
STERE [23]: The first stereo image SOD dataset consists of 1000 pairs of stereo images from the internet,

covering a range of real-world scenes.
As shown in Table 2, MSCM-Net achieved top-three performance in the generalization tests on other

publicly available datasets, demonstrating strong competitiveness. We observed that these datasets exhibit
differences in image quality, capturing conditions, and defect feature distributions compared to the primary
test dataset, which may have influenced the performance. Nevertheless, MSCM-Net maintained stable
results, indicating its robust capability. In the future, we plan to enhance the model’s generalization ability
by incorporating more diverse training data or leveraging transfer learning techniques.

Table 2: Quantitative comparison on three representative large-scale benchmark datasets (↑Higher is Better, ↓Lower is
Better)

Models NJU2K NLPR STERE
Sm↑ maxE↑ maxF↑ MAE↓ Sm↑ maxE↑ maxF↑ MAE↓ Sm↑ maxE↑ maxF↑ MAE↓

S2MA 0.894 0.930 0.889 0.053 0.915 0.953 0.902 0.030 0.890 0.932 0.882 0.051
BBS 0.921 0.949 0.920 0.035 0.930 0.961 0.918 0.023 0.908 0.942 0.903 0.041
HAI 0.912 0.944 0.915 0.038 0.921 0.960 0.915 0.024 0.907 0.944 0.906 0.040

SPNet 0.924 0.957 0.927 0.029 0.928 0.962 0.918 0.021 0.907 0.949 0.906 0.037
(Continued)
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Table 2 (continued)

Models NJU2K NLPR STERE
Sm↑ maxE↑ maxF↑ MAE↓ Sm↑ maxE↑ maxF↑ MAE↓ Sm↑ maxE↑ maxF↑ MAE↓

CLANet 0.911 0.923 0.900 0.040 0.932 0.959 0.894 0.021 — — — —
DRER 0.906 0.943 0.907 0.038 0.915 0.953 0.901 0.024 0.895 0.943 0.891 0.042
CAVER 0.926 0.958 0.928 0.030 0.934 0.970 0.928 0.021 0.918 0.955 0.916 0.033
Ours 0.911 0.949 0.914 0.033 0.924 0.963 0.915 0.020 0.903 0.948 0.900 0.035

4.2 Ablation Experiments
We carried out a series of ablation experiments to validate the effectiveness of the core components

of MSCM-Net. We used ResNet-34 as the backbone network and progressively added the Multi-Scale
Dilated Fusion module (MSDF), the Criss-Cross Attention Integration Module (CCAM), and the Triple
Temporal Multi-Scale Fusion Module (TSFM). The experiments were conducted on the NEU RSDDS-AUG
dataset. Table 3 presents the performance comparison of different model configurations.

Table 3: Ablation experiments for each module of MSCM-Net

Models NEU RSDDS-AUG

Sm↑ maxE↑ maxF↑ MAE↓
Backbone 0.830 0.923 0.877 0.069

Backbone+MSDF 0.835 0.926 0.880 0.065
Backbone+CCAM 0.839 0.928 0.886 0.063
Backbone+TSFM 0.839 0.928 0.888 0.062

Backbone+MSDF+CCAM+TSFM 0.849 0.934 0.893 0.057

MSDF: The addition of MSDF significantly improved metrics such as Maximum F-measure and
Structure Measure (Sm), demonstrating its effectiveness in capturing multi-scale features.

CCAM: Incorporating CCAM resulted in notable improvements in feature alignment and cross-
modal information fusion, particularly enhancing the complementarity and alignment accuracy between
different modalities.

TSFM: The TSFM module improved structure and alignment measures, playing a crucial role in fusing
the three image features and optimizing the information flow, further boosting the overall performance of
MSCM-Net.

The ablation study results demonstrate that the proposed Multi-Scale Dilated Fusion module (MSDF),
CrissCross Attention Augmented module (CCAM), and Triple Temporal Multi-Scale Fusion module
(TSFM) all contribute positively to the overall performance of MSCM-Net. The significant improvements
across various evaluation metrics validate the rationality and necessity of these components’ design.
Nonetheless, future research could explore the interactions between these modules and their performance
on different datasets.

5 Conclusion
To fulfill the need for surface defect detection in unused rails, this paper proposes a detection method

utilizing deep learning and RGB-D fusion. By employing a multi-scale atrous convolution module, the
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method effectively merges information gathered from multiple receptive fields, significantly enhancing the
model’s performance in extracting complex textures and edge details. Additionally, the multi-modal feature
fusion module exploits the complementarity between RGB and depth information, enabling comprehensive
extraction of fine-grained details and geometric structures. The improvement boosts the model’s perfor-
mance in detecting defects, especially in conditions involving blurry boundaries and similar texture patterns.
According to experimental outcomes, the proposed technique exceeds the performance of traditional uni-
modal and several multimodal approaches in terms of accuracy and robustness, which effectively enhances
the model’s generalization and stability. Future research can further optimize the network structure to achieve
model lightweighting and improved real-time performance, thereby increasing its applicability in practical
industrial inspection scenarios. Moreover, this method shows good scalability in the field of surface defect
detection, with the potential to be applied to more complex surface inspection tasks, providing broader
technical support for intelligent detection systems.
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