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ABSTRACT: Video camouflaged object detection (VCOD) has become a fundamental task in computer vision
that has attracted significant attention in recent years. Unlike image camouflaged object detection (ICOD), VCOD
not only requires spatial cues but also needs motion cues. Thus, effectively utilizing spatiotemporal information is
crucial for generating accurate segmentation results. Current VCOD methods, which typically focus on exploring
motion representation, often ineffectively integrate spatial and motion features, leading to poor performance in diverse
scenarios. To address these issues, we design a novel spatiotemporal network with an encoder-decoder structure.
During the encoding stage, an adjacent space-time memory module (ASTM) is employed to extract high-level temporal
features (i.e., motion cues) from the current frame and its adjacent frames. In the decoding stage, a selective space-time
aggregation module is introduced to efficiently integrate spatial and temporal features. Additionally, a multi-feature
fusion module is developed to progressively refine the rough prediction by utilizing the information provided by
multiple types of features. Furthermore, we incorporate multi-task learning into the proposed network to obtain more
accurate predictions. Experimental results show that the proposed method outperforms existing cutting-edge baselines
on VCOD benchmarks.
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1 Introduction
Camouflaged object detection (COD) aims to detect and segment objects that are hidden in their

surroundings. These objects closely resemble the background in texture, color, and shape, and their bound-
aries are often ambiguous. As a result, COD is more challenging than other tasks, such as general object
detection [1] and salient object detection [2]. Recently, COD has attracted interest from many researchers and
facilitated various practical applications, including agricultural management, industrial defect detection, and
medical analysis (e.g., polyp segmentation, lung infection segmentation). In terms of data types, the study
of COD can be categorized into two groups: image-based COD (ICOD), and video-based COD (VCOD).
While the former detects camouflaged objects in a single image by mining semantic information in the space,
the latter attempts to identify camouflaged objects by extracting motion cues from consecutive video frames.

In recent years, with the development of deep learning and the proposal of high-quality pixel-wise
annotated large-scale benchmark datasets, ICOD has been extensively researched. Numerous methods
based on Convolutional Neural Networks (CNNs) [3–5] have been developed, achieving notable progress.
However, due to the strong visual resemblances between camouflaged objects and their surroundings in
terms of texture, color, or boundaries, it is difficult to excavate discriminative semantic cues for camouflaged

Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2025.060653
https://www.techscience.com/doi/10.32604/cmc.2025.060653
mailto:Fu_Qiang@aeu.edu.cn


4320 Comput Mater Contin. 2025;82(3)

objects from the appearance and geometric information provided by static images, resulting in the existing
COD methods still struggling to accurately and reliably segment the camouflaged objects from the chaotic
backgrounds. To address these challenges, recent research [6–9] has explored the incorporation of temporal
motion cues, aiming to enhance COD performance by expanding the information dimensions. However,
processing motion cues presents challenges due to complex motion patterns, variable visual appearance, and
cluttered backgrounds.

Current research on VCOD primarily focuses on leveraging or modeling motion cues. One study [6]
employs optical flow generated by existing motion estimation models to provide motion cues for identifying
camouflaged objects. Notably, even state-of-the-art (SOTA) optical flow models fail to estimate motions for
camouflaged objects. The error in optical flow estimation accumulates with the duration of the video and
eventually affects the segmentation performance of the network. To address this issue, another study [7]
develops a short-term dynamic module to implicitly capture the motion between consecutive frames.
However, the reliability of motion learning cannot be assured due to the absence of explicit regularization
or evaluation in implicit modeling. To tackle these challenges, a novel VCOD framework of Explicit Motion
handling and Interactive Prompting is proposed in [8]. This framework explicitly handles motion cues using
an optical flow model and supervises the optical flow to learn the prompts fed to the motion flow in a self-
supervised manner. Consequently, the framework not only ensures the reliability of motion learning, but also
avoids the accumulation of optical flow errors, which improves the accuracy of segmentation. Although the
above methods have achieved success in extracting motion cues, motion cues are unstable. For instance, if
an object remains stationary for an extended period, the motion cues may be entirely absent [9]. In addition,
due to the concealed nature of camouflaged objects, motion cues can only provide an indication of rough
object motion, but not fine-grained details, e.g., the exact shape of the objects and their contours. Inspired
by ICOD works, spatial information should be emphasized in VCOD tasks, as it tends to be more stable than
motion cues for video data. Therefore, we believe that beyond motion cues, spatial information is also crucial
for VCOD tasks. However, efficiently combining motion cues and spatial information to achieve fine-grained
segmentation of camouflaged objects in space is an urgent research problem that needs to be addressed.

Space-time Memory Network (STM) has demonstrated its effectiveness in capturing temporal infor-
mation for video object segmentation (VOS) and video saliency object detection (VSOD) tasks [10,11].
Therefore, we employ the Adjacent Space-time Memory Module (ASTM) [11] as the temporal branch of
our model to collect temporal information from adjacent frames, i.e., to obtain motion cues from adjacent
frames. In the decoding stage, to efficiently combine temporal and spatial information, we propose a selective
space-time aggregation module (SSAM). This module is designed to facilitate collaborative learning between
temporal and spatial features and the biased combination of these features based on the object state (motion
or stationary) to improve the efficiency of information utilization. Inspired by the stepwise refinement
strategy adopted in ICOD, we develop a multi-feature fusion module (MFFM) to refine segmentation results
by focusing on ambiguous regions. Specifically, this module progressively integrates high-level features
and predictions to refine features from coarse to fine, generating more accurate predictions. Furthermore,
to obtain more accurate predictions, we incorporate the boundary detection task into our network and
construct a multi-task detection head. During multi-task processing, we enhance the interaction between
the boundary detection task and the segmentation task to fully exploit the mutually beneficial information
between them. The main contributions of this paper can be summarized as follows:

(1) We incorporate the STM mechanism into VCOD as a temporal branch to capture motion cues from
adjacent frames, providing an alternative for exploiting or modeling motion cues in VCOD tasks. We propose
an efficient space-time fusion module for mutual modulation and adaptive selective fusion between temporal
and spatial information.
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(2) We design a multi-feature fusion module to generate fine-grained prediction maps by leveraging
the complementary features of multiple types. In a coarse-to-fine manner, the module can accurately locate
objects and substantially eliminate ambiguous regions in space.

(3) We introduce boundary prediction into VSOD and enhance the interaction between different tasks,
enabling the model to focus on the perception of object boundaries while concentrating on object integrity.

(4) We evaluate the proposed method on two widely recognized VCOD benchmarks, and the experi-
mental results demonstrate that our method obtains better segmentation results than SOTA methods.

2 Related Work
In this section, we first provide a concise overview of ICOD and VCOD models proposed in recent years,

followed by an introduction to memory networks and their variants. In addition, we present the motivation
for developing our model inspired by related work.

ICOD. ICOD methods aim to discern camouflaged objects from a single RGB image. Early COD
methods relied on various handcrafted features (e.g., color, texture, and gradient) to distinguish camouflaged
objects from the background [12–14]. However, due to the limited expressiveness of handcrafted features,
early methods are only effective in relatively simple scenes and often suffer from significant performance
degradation or even failure when faced with complex scenes or when the camouflaged object features closely
resemble the background. With the development of deep learning and the establishment of large-scale
image COD datasets (CAMO [15], COD10K [4] and NC4K [16]), COD methods have undergone substantial
progress in recent years. Inspired by natural predatory behaviors or human visual mechanisms, some
works [3,4,17,18] employed a stepwise refinement strategy, first making a rough prediction of camouflaged
regions and then refining the prediction by various measures. Among them, Zhuge et al. [18] refined
the segmentation results by constructing an efficient feature fusion strategy. However, without additional
cues, the model is difficult to distinguish the part of the region where camouflaged objects are extremely
similar to the background by the feature fusion strategy alone. To improve segmentation performance, some
studies [15,16,19,20] constructed multi-task learning frameworks and introduced tasks like classification,
ranking, and gradient estimation for auxiliary the main segmentation task to obtain satisfactory results.
Zhong et al. [20] attempted to address the intrinsic similarity between foreground and background for COD
in the frequency domain. To obtain fine boundary contours, references [21–24] adopt boundary cues as a
focus of model learning. Specifically, Qin et al. [21] designed a hybrid loss to implicitly direct the network
to pay more attention to object boundary information, which is able to obtain fine camouflaged object
boundaries without explicitly extracting the boundaries. Ji et al. [22] and Zhang et al. [23] obtained boundary
priors through displaying supervision and refined the object by fusing multiple information. Zhai et al. [24]
treated boundary detection as a parallel task to segmentation task and detected camouflaged objects by
reasoning about the complementary information of the two tasks.

VCOD. Motion helps reveal camouflaged objects in video data by distinguishing them from their sur-
roundings. While Lamdouar et al. [6] proposed frame alignment and motion segmentation using difference
images and optical flow, even state-of-the-art optical flow algorithms struggle with camouflaged objects,
leading to cumulative errors. To address this, Cheng et al. [7] developed a dense volume approach with two-
stage refinement, while Zhang et al. [8] created a two-stream architecture combining flow estimation and
segmentation. Our approach differs by learning temporal information directly from frames without optical
flow estimation. Given the similarity between video and image camouflaged object detection, we incorporate
successful strategies from image-based methods, including boundary detection and multi-feature fusion for
progressive refinement of segmentation results.
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Memory Network. The memory network was first proposed for natural language processing, memoriz-
ing external information as key and value, and generating a correlation graph through non-local matching
between query and key. As an alternative to Long Short-Term Memory, memory networks have been
widely applied in a variety of computer vision tasks [25–27]. Oh et al. [10] applied memory networks
to VOS and proposed a novel space-time memory network (STM), achieving SOTA results at that time
and promoting the development of other STM variants in VOS. Cheng et al. [28] simplified the STM to
construct a minimalist form of a matching network. Liang et al. [29] designed a dynamic memory network
to obtain the current frame representation of target objects from the visual content of all past frames. Shaker
et al. [30] introduced an optimized dynamic long-term modulated cross-attentive memory to encode only
target-relevant information, substantially reducing computational complexity. Recognizing the successful
application of STM in VOS and its powerful ability to capture temporal information, Zhao et al. [11] applied
STM to VSOD and designed an ASTM built upon high-level features. The above work mainly focuses on
efficiently modeling temporal information and does not consider how to efficiently fuse temporal and spatial
information after obtaining them. For VCOD, we aim for temporal and spatial features to collaborate with
each other in learning and to fuse temporal and spatial information in a biased way according to the state
(motion or stationary) of objects. When the object is in motion, we want the network to be biased towards
temporal information, and when the object is in a stationary state, we want the network to be biased towards
spatial information. Considering the similarity between VCOD and VSOD, we directly employ ASTM to
extract temporal information.

3 Method
In this section, we first present an overview of the network architecture. Then, we describe the key

module, selective space-time aggregation module (SSAM), for efficiently integrating temporal and spatial
information. Subsequently, we introduce the multi-feature fusion module (MFFM) for efficiently fusing
various types of features. Furthermore, we construct a multi-task detection head with a boundary detection
task for applying the multi-task learning framework to VCOD. Finally, we provide a detailed explanation of
the training loss for the entire model.

3.1 Overall Architecture
As shown in Fig. 1, our model adopts an encoder-decoder structure. Given a consecutive frame

sequence X = (x1 , x2, . . . , xT), the current frame for processing is denoted as xt . The entire encoding phase
follows [11], employing two ResNet [31] with shared weights as parallel encoders, one to memorize the
temporal information of the previous frame xt−1 and the next frame xt+1, denoted as EM , and the other to
obtain the spatial information of the current frame, denoted as EQ . The high-level features Eres5

Q of current
frame and high-level features Eres5

M of adjacent frames are fed into ASTM for generating temporal high-
level features Et . During the decoding process, temporal high-level features Et and spatial high-level features
Eres5

Q of current frame are fed into the SSAM. This facilitates learning between temporal and spatial features
and adaptively updates the weight assignments based on the state of the current object, enhancing the
utilization of temporal and spatial information. The detection head employed in this paper, which consists of
a segmentation branch and a boundary detection branch, is specially designed to facilitate the propagation
of useful information between the segmentation task and the boundary detection task. Finally, a MFFM is
exploited to refine the object regions and boundaries, and accurate detection results will be generated by
the detection head. Detailed procedure of decoding is described in Algorithm 1. Different from previous
approaches [6,8] that rely on optical flow to establish temporal information, our network does not require
external temporal information and can be trained in an end-to-end manner. The design and implementation
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details of sub-modules in our proposed network are described in the following subsections. It should be
noted that ASTM, which is not our focus, will not be discussed in detail, and further information can be
found in the literature [11].

Algorithm 1: Decoding process
Input: Multi-level features from encoder: {Eresi

Q , i ∈ {2, 3, 4, 5}} Temporal features: Et

Output: Mask prediction: {mi
t , i ∈ {2, 3, 4, 5}} Boundary prediction: {e i

t , i ∈ {2, 3, 4, 5}}
1: for i = 5; i >= 2; i– do
2: if i == 5 then
3: Ẽt = SSAM (Eres5

Q , Et)
4: m5

t , e5
t , f 5

m , f 5
e = Head (Ẽt)

5: else if i == 4 then
6: f 4

s = MFFM (Eres4
Q , Ẽt , f 5

m , f 5
e )

7: m4
t , e4

t , f 4
m , f 4

e = Head ( f 4
s )

8: else
9: f i

s = MFFM (Eresi
Q , f i+1

s , f i+1
m , f i+1

e )
10: mi

t , e i
t , f i

m , f i
e = Head ( f i

s )
11: end for
12: return Mask prediction: {mi

t , i ∈ {2, 3, 4, 5}} Edge prediction:{e i
t , i ∈ {2, 3, 4, 5}}

Figure 1: Overall structure of the model

3.2 Selective Space-Time Aggregation Module
For VCOD tasks, motion cues play a crucial role in breaking camouflage, as camouflaged objects often

become salient and easily detectable when in motion. However, the motion of camouflaged objects is complex
and variable, alternating between motion and stationary states. When an object is stationary, the motion cues
will disappear, and only spatial cues can be utilized to identify the camouflaged object. In the process of fusing
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temporal and spatial information, directly treating temporal and spatial information as equally important
without considering the motion state of the object may lead to information waste. Moreover, temporal and
spatial features should not be treated independently.

To address the aforementioned problems, we propose the SSAM for enhancing learning between
temporal and spatial features and performing adaptive bias aggregation of temporal and spatial information.
As shown in Fig. 2, SSAM takes temporal features Et and spatial features Eres5

Q as inputs and outputs
spatiotemporal features Ẽ. First, we transform Et and Eres5

Q into query (Qt , Qr), key (Kt , Kr), and value
(Vt , Vr) via MLP layers, respectively. Attention is employed for cross-domain modulation between temporal
and motion information, computed by extracting the key from one domain and the query from another
domain, and generated via Softmax. Then, we apply the attention to the query in the current domain and
residually connect it with the original features, which in turn yields enhanced features Ẽt and Ẽres5

Q . The
calculation process can be expressed as follows:

Ẽt = So f tmax (Qr × Kt/
√

d) × Vt + Et

Ẽres5
Q = So f tmax (Qt × Kr/

√
d) × Vr + Eres5

Q

(1)

where d denotes the dimension of linear projection, × and + denote element-wise multiplication and
addition operation, respectively. After temporal-enhanced features Ẽt and spatial-enhanced features Ẽres5

Q
are obtained by cross-domain modulation, selective bias mechanism is used to adaptively learn a weight for
weighing temporal and spatial features. The weight is generated as:

w = σ (FC (Cat (GAP (Ẽt) , GAP (Ẽres5
Q )))) (2)

where σ is sigmoid function, FC is a full connectivity layer, Cat is channel-wise concatenation operation,
and GAP is global average pooling.

Figure 2: Detailed structure of the SSAM

Finally, the spatiotemporal features Ẽ are obtained by fusing the temporal-enhanced features and
spatial-enhanced features under the modulation of weights. The fusion process can be formulated as:

Ẽ = w ⊙ Ẽt + (1 −w) ⊙ Ẽres5
Q (3)
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where ⊙ denotes element-wise multiplication with the broadcasting strategy.

3.3 Multi-Feature Fusion Module
It is well known that high-level features contain semantic information for localizing objects, while low-

level features tend to retain spatial details for constructing object boundaries. With high-level spatiotemporal
features, we can only locate the rough position of camouflaged objects, and need to utilize low-level spatial
features to further refine the camouflaged regions and boundaries. Due to the extremely high intrinsic
similarity between camouflaged objects and their surroundings, it is difficult to locate camouflaged objects in
low-level features with rich detail information without additional cues for guidance. Therefore, we propose a
multi-feature fusion module to enable the network to be more focused on ambiguous regions by fusing high-
level features and rough predictions. Furthermore, MFFM is applied to three layers of low-level features (res4,
res3, and res2) to realize the gradual refinement of camouflaged regions. Compared with some existing fusion
modules [18,22–24], MFFM is able to effectively fuse multiple types of features, and its structure is shown
in Fig. 3. First, we fuse the low-level features Eresi

Q with the high-level features f i+1
s or spatiotemporal features

Ẽ to enrich spatial semantic information. Then, we perform a reverse operation on the rough prediction map
f i+1
m to obtain the reverse attentional guidance. Subsequently, we perform element-wise multiplication and

jump connection between the fused features and the attentional guidance to obtain the initial fused features
Êres i

Q , which can be denoted as:

�Eresi
Q = Eresi

Q + f i+1
s

Êres i
Q = f 3×3 (�Eresi

Q × (1 − σ ( f i+1
m )) + �Eresi

Q )
(4)

where f 3×3 is 3 × 3 convolution. To exclude unreasonable regions and enhance the feature representation of
object regions, we introduce local channel attention to highlight object-related feature channels. Specifically,
global average pooling is first adopted to aggregate features. Then, the weights of each channel are obtained
via a 1 × 1 convolution and a subsequent sigomid function. Finally, the feature f̃ i

s will be obtained by
multiplying the channel weights with the initial fusion feature Êres i

Q and using 1 × 1 convolution to reduce the
number of channels. The process can be depicted as:

f̃ i
s = f 1×1 (σ ( f 1×1

k (GAP (Êres i
Q ))) × Êres i

Q ) (5)

where f 1×1 is 1 × 1 convolution, f 1×1
k is 1 × 1 convolution with kernel size k. The convolution kernel size k can

be set autonomously according to the number of channels C of Êres i
Q , which can be calculated as:

k = ⌊(1 + log2 C) /2⌋ (6)

where ⌊⋅⌋ denotes the rounding down operation. Obviously, utilizing channel attention strategy can suppress
redundant channels and highlight critical channels, which can filter out unrelated regions and enable the
network to pay more attention to the regions where camouflaged objects exist.

Finally, f̃ i
s is cascaded with boundary features f i+1

e to enhance the feature representation. The final
output f i

s can be represented as:

f i
s = Cat ( f̃ i

s , f i+1
e ) (7)



4326 Comput Mater Contin. 2025;82(3)

Figure 3: The architecture of our proposed MFFM

3.4 Multi-Task Detection Head
In the ICOD task, several previous studies [21–24] have demonstrated that the introduction of a multi-

task learning framework can facilitate the learning of segmentation and boundary detection tasks, which
mutually enhances the performance of each task. Inspired by the instance segmentation work [32], we add
a boundary detection branch parallel to the segmentation branch in the detection head, forming a multi-
task detection head that makes the model focus more on object boundaries and shapes. Intuitively, object
masks and object boundaries have a close relationship, i.e., mask features can provide semantic information
for learning boundaries, and shape and location information in boundary features can guide more precise
mask prediction. Furthermore, object masks and object boundaries can be easily converted to each other.
Therefore, there is a large amount of mutually exploitable information between the segmentation branch
and the boundary detection branch. To facilitate their interaction, we adopt a fusion strategy [32] to fully
leverage the special relationship between mask features and boundary features. The structure of the multi-
task detection head is shown in the lower right corner of Fig. 1. First, we perform a 3 × 3 convolution on
spatiotemporal feature Ẽ or feature f i

s to obtain the initial mask feature f̆ i
m and boundary feature f̆ i

e . Then,
f̆ i

e is fused with f̆ i
m operated by a 1 × 1 convolution operation and a 3 × 3 convolution is applied to obtain the

fusion feature �f i
e . Subsequently, f̆ i

m is fused with �f i
e operated by a 1 × 1 convolution operation to obtain the

fusion feature �f i
m . Finally, two 3 × 3 convolution operations are applied to �f i

m and �f i
e , respectively, to obtain

the final mask prediction map mi
t and boundary prediction map e i

t . The above process can be formulated as
follows:

f̆ i
e = f 3×3 ( f i

s )
f̆ i
m = f 3×3 ( f i

s )
�f i

e = f 3×3 ( f 1×1 ( f̆ i
m) + f̆ i

e )
�f i

m = f̆ i
m + �f i

e

mi
t = f 3×3 ( f 3×3 (�f i

m))

e i
t = f 3×3 ( f 3×3 (�f i

e ))

(8)

3.5 Loss Function
Our network is a multi-task framework that contains two tasks: segmentation and edge detection. For

segmentation task, following previous work [7,8], we adopt a hybrid loss function, which includes weighted
cross-entropy loss Lw

ce , weighted intersection-over-union loss Lw
iou , and enhanced-alignment loss Le . The

hybrid loss Lse g can be defined as:

Lse g = Lw
ce + Lw

iou + Le (9)
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For boundary detection task, following previous work [32], we use dice loss Ld ic and weighted cross-
entropy loss Lw

ce to optimize the boundary prediction. The boundary loss Lbou can be expressed as follows:

Lbou = Ld ic + Lw
ce (10)

As shown in Fig. 1, we perform multiple supervisions for the mask prediction maps and boundary
prediction maps output from four layers. Here, each prediction map is upsampled to have the same size as
the ground truth map. Therefore, the overall loss Ltotal can be formulated as follows:

Ltotal =
5
∑
i=2

Lse g (mi
t , m) +

5
∑
i=2

Lbou (e i
t , e) (11)

where m and e denote mask and boundary ground-truth maps, respectively.

4 Experiments
In this section, we initially provide an introduction to the dataset utilized in our experiments, the

evaluation metrics employed, and the details of model training. Subsequently, a comprehensive evaluation
of our model is performed in both quantitative and qualitative terms. Furthermore, ablation studies are
conducted to validate the effectiveness of our proposed components.

4.1 Experimental Setup
1) Datasets: we utilize the most widely used datasets in the COD field for model training and

performance evaluation, including COD10K [3], MoCA-Mask [33], and CAD [34].
COD10K. COD10K is currently the largest camouflaged object dataset with high-quality pixel-level

annotations, containing 5066 camouflaged images, of which 3040 are used for training and 2026 for testing.
MoCA-Mask. MoCA-Mask is reorganized from the MoCA dataset and annotated with segmentation.

The dataset contains 87 sequences, of which 71 sequences with 19,313 frames are for training and the
remaining 16 sequences with 3626 frames are for testing. These images are sampled from YouTube videos
and have a resolution of 720 × 1280 in most cases.

CAD. CAD is a small VCOD dataset containing 9 short video sequences with accompanying hand-
labeled ground truth every 5th frame.

In our experiments, the COD10K dataset is employed to pre-train all ICOD methods as well as encoders
of VCOD methods. Except for the 71 sequences in the MoCA-Mask training set that are employed for
training, the rest of the video sequences are used for testing [7].

2) Evaluation Metrics: We adopt the same evaluation metrics used in [7] to assess model performance,
i.e., Mean Absolute Error (M), Enhanced-alignment Measure (Eϕ), Weighted F-measure (Fω

β ), Structure
Measure (Sα), mean Dice (mDic), and mean IoU (mIoU). Evaluation code: https://github.com/lartpang/
PySODEvalToolkit (accessed on 30 November 2024).

3) Training Details: As demonstrated in previous work [7], pre-training the model using the COD10K
dataset can further improve its performance on MoCA-Mask dataset. Following [7], we pre-trained the
proposed model on the COD10K dataset and fine-tuned it on the MoCA-Mask training set. Specifically, we
first perform 15 epochs for pre-training on COD10K with an initial learning rate of 1e − 5, and the learning
rate decays by a factor of 10 after 10 epochs of training. Then, we load the pre-training weights on the COD10K
dataset and perform 100 epochs for training. The initial learning rate is set to 1e − 4, and the learning rate
decays by a factor of 10 after 50 epochs of training. The inter-frame interval is set to 4. The entire model

https://github.com/lartpang/PySODEvalToolkit
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is trained in an end-to-end manner on an NVIDIA 3090 GPU. All input images are resized to 352 × 352
after random flipping, random rotation, and color dithering. The Adam optimizer is applied to optimize the
model parameters.

4.2 Comparisons with Other Methods
We conduct a comparative analysis of our proposed method with several recent image-based and

video-based methods, including SINet [3], SINetV2 [4], HitNet [17], ASBI [23], DGNet [19], FSPNet [5],
RCRNet [35], SCANet [36] MMN [11], STL-Net [7], and EMIP [8]. To ensure fair comparisons, the results
of all these methods are generated by models retrained using their publicly available code. In cases where no
publicly available code or results are difficult to obtain, we directly cite the results from the corresponding
papers. The quantitative results for all methods are summarized in Table 1, and the qualitative performance
is shown in Figs. 4 and 5.

Table 1: Quantitative comparisons with state-of-the-art methods on MoCA-Mask and CAD datasets

Method Model MoCA-Mask CAD

Sα↑ Fω
β ↑ M↓ Eϕ↑ mDic↑ mIoU↑ Sα↑ Fω

β ↑ M↓ Eϕ↑ mDic↑ mIoU↑

Image-based SINet [3] 0.605 0.231 0.021 0.669 0.276 0.202 0.665 0.403 0.042 0.794 0.439 0.334
SINetV2 [4] 0.596 0.206 0.024 0.623 0.245 0.181 0.658 0.412 0.045 0.771 0.447 0.340
HitNet [17] 0.572 0.179 0.010 0.488 0.182 0.150 0.639 0.397 0.036 0.631 0.402 0.314
ASBI [23] 0.598 0.213 0.020 0.708 0.255 0.194 0.665 0.443 0.046 0.815 0.490 0.370

DGNet [19] 0.583 0.198 0.027 0.666 0.232 0.170 0.705 0.511 0.038 0.800 0.537 0.414
FSPNet [5] 0.588 0.151 0.044 0.593 0.201 0.147 0.699 0.434 0.046 0.713 0.468 0.363

Video-based RCRNet [35] 0.558 0.138 0.026 0.536 0.165 0.113 0.656 0.345 0.052 0.693 0.372 0.277
SCANet [36] 0.624 0.261 0.013 0.703 0.296 0.217 0.717 0.521 0.038 0.820 0.570 0.443

MMN [11] 0.547 0.130 0.029 0.554 0.150 0.110 0.654 0.414 0.037 0.702 0.432 0.334
SLT-Net [7] 0.631 0.311 0.027 0.759 0.360 0.272 0.696 0.481 0.030 0.845 0.493 0.402

EMIP [8] 0.675 0.381 0.015 – 0.426 0.333 0.719 0.514 0.028 – 0.536 0.425
Ours 0.682 0.401 0.012 0.777 0.422 0.345 0.767 0.646 0.025 0.862 0.540 0.534

Note: “↑”/“↓” indicates that larger/smaller is better. The best three results are highlighted in red, green and blue.

Figure 4: PR, Fβ and Eϕ curves on the CAD dataset
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Figure 5: Number of parameters and FPS for different methods

1) Quantitative Comparison: Table 1 shows the detailed comparison results of each method on different
datasets. On the MoCA-Mask test set, our method significantly outperforms recent methods, notably by 2%
and 1.2% on metric Fω

β and metric mIoU, respectively, compared to the best method EMIP in this evaluation.
On the CAD dataset, our method obtains the best performance in five evaluation metrics except mDic,
further validating its generalization ability. Besides, we show the PR, Fβ and Eϕ curves of the comparison
methods on CAD dataset in Fig. 4 to provide a more comprehensive evaluation. Note that the higher the
curve, the better the model performance. It is clear that our method (red curves) is better than other
competitors. Fig. 5 provides a detailed comparison of the number of model parameters and the inference
speed (FPS) of each method. As the method proposed in this paper requires a complex network structure to
achieve effective extraction of spatiotemporal features, its number of parameters is relatively large, but still
lower than the comparison methods such as SCANet and SLT-Net. Notably, despite the relative complexity
of the model structure, our method demonstrates excellent performance in inference speed, with its frames
per second (FPS) processing not only outperforming most of the comparative methods, but also reaching
more than 25 FPS, which meets the basic requirement of real-time processing in practical applications. This
result shows that the proposed method achieves a good balance between model efficiency and practicality.

2) Qualitative Comparison: Visual comparison of different methods on several typical samples are
shown in Figs. 6 and 7. They present some challenging cases (sharp torsos, complex appearance textures, or
blurred boundaries) in Fig. 6 and different states (moving or stationary) in Fig. 7. These results intuitively
demonstrate the superior performance of the proposed method. Specifically, as shown in Fig. 6, our method
can accurately localize and segment camouflaged objects with clear boundaries in complex contexts. As
presented in Fig. 7, whether camouflaged objects are in motion or at rest, our method performs well in
separating them from their surroundings. This success can be attributed to the effective utilization of
temporal and spatial information.
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Figure 6: Visual comparisons of some recent methods and ours on different types of samples

Figure 7: Visual comparison of some recent methods and ours on a sequence of frames spaced at intervals of 4

4.3 Ablation Studies
In this section, we perform a comprehensive ablation analysis to validate the effectiveness of our

proposed modules.
In order to systematically evaluate the contribution of each key module to the network detection perfor-

mance, we constructed a series of simplified models by removing SSAM, MFFM, and multi-task detection
header modules one at a time, and performed a complete training and testing process on them. Table 2
presents the quantitative evaluation results for each simplified model in detail. The experimental data show
that removing any of the modules resulted in varying degrees of model performance degradation, which
strongly confirms the positive contribution of each module to improving detection performance. Particularly
noteworthy is that the removal of the MFFM module results in the most significant decrease in model
performance, a phenomenon that can be attributed to the multiple deployments of the MFFM at three
different layers of the network, the cumulative effect of which makes the absence of this module have a more
pronounced impact on the overall performance.
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Table 2: Quantitative results of ablation experiments. M-Head indicates Multi-task Detection Head

SSAM MFFM M-Head MoCA-Mask CAD

Sα↑ Fω
β ↑ M↓ Eϕ↑ Sα↑ Fω

β ↑ M↓ Eϕ↑
√ √ × 0.657 0.324 0.023 0.735 0.743 0.586 0.037 0.846√ × √

0.557 0.310 0.032 0.646 0.676 0.469 0.040 0.720
× √ √

0.657 0.333 0.018 0.767 0.752 0.600 0.034 0.850√ √ √
0.682 0.401 0.012 0.777 0.767 0.646 0.025 0.862

1) Effectiveness of SSAM: As described in Section 3.2, our SSAM integrates temporal features and spatial
features with full consideration of their correlation and difference, enabling efficient fusion of different type
features and obtaining more effective fusion features. To validate the effectiveness of SSAM, we conduct an
ablation study using the following four variants obtained by changing the fusion method, and the simplified
structures of the different variants are shown in Fig. 8.

i) “SSAM-A” uses simple element-wise addition to fuse temporal and spatial features.
ii) “SSAM-B” employs concatenation to fuse temporal and spatial features.
iii) “SSAM-C” applies element-wise addition to fuse enhanced temporal and spatial features.
(iv) “SSAM-D” uses concatenation to fuse enhanced temporal and spatial features.

Figure 8: Structure of different SSAM variants

The quantitative results of the models equipped with SSAM or its variants are shown in Table 3. The
model equipped with SSAM-C or SSAM-D outperforms the model equipped with SSAM-A or SSAM-B in
all metrics, which validates the efficacy of enhanced learning between temporal and spatial features. Besides,
the results in the bottom three rows of Table 3 indicate that biased fusion can better exploit the advantages
of different features for VCOD than simple element-wise addition or concatenation operations. Overall, the
model equipped with SSAM achieves the best performance among the various networks, which sufficiently
demonstrates the effectiveness of our SSAM design. To more intuitively demonstrate the effect of SSAM, we
visualize its input feature Eres5

Q and output feature Ẽ. The results are shown in Fig. 9. By comparing the third
and fourth columns of Fig. 9, we can clearly observe that SSAM effectively suppresses the background noise
while significantly enhancing the positional salience of the camouflaged objects. This visualization result
further corroborates the excellent performance of SSAM in fusing temporal and spatial features, providing
intuitive and strong support for our method.
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Table 3: The SSAM verification on MoCA-Mask dataset and CAD dataset

Method MoCA-Mask CAD

Sα↑ Fω
β ↑ M↓ Eϕ↑ Sα↑ Fω

β ↑ M↓ Eϕ↑
SSAM-A 0.657 0.333 0.018 0.767 0.752 0.600 0.034 0.850
SSAM-B 0.657 0.329 0.018 0.763 0.752 0.599 0.035 0.850
SSAM-C 0.674 0.357 0.016 0.774 0.757 0.614 0.031 0.856
SSAM-D 0.673 0.354 0.017 0.771 0.755 0.610 0.032 0.853

Ours 0.682 0.401 0.012 0.777 0.767 0.646 0.025 0.862

Figure 9: Feature visualization graphs in SSAM

2) Effectiveness of MFFM: As shown in Figs. 1 and 3, the Multi-Feature Fusion Module (MFFM) at the
i-th layer (i ∈ {2,3,4}) refines its feature map (Eresi

Q ) by considering additional three inputs: high-level features
( f i+1

s or Ẽ), mask features ( f i+1
m ), and boundary features ( f i+1

e ). To evaluate the effectiveness of MFFM, we
perform an ablation study by simplifying the proposed model in the following five cases:

i) “model-A”: we remove all MFFMs from our model and make predictions directly on Eres2
Q , Eres3

Q and
Eres4

Q .
ii) “model-B”: we add MFFMs to layers 2, 3, and 4, but refine features only using high-level features

( f i+1
s or Ẽ).

iii) “model-C”: we keep all the MFFMs of our model, but the MFFM only employs high-level features
( f i+1

s or Ẽ) and mask features ( f i+1
m ) to refine the feature map.

iv) “model-D”: we construct the model following model-C and add local channel attention to highlight
important features.

v) “model-E”: we add boundary features ( f i+1
e ) to model-C to further refine the feature map, i.e., remove

local channel attention from MFFM.
Table 4 reports the quantitative results for our full model and the above variants. Combining the

additional three features (i.e., high-level features, mask features, and boundary features) together in MFFM
yields better VCOD performance since, in Table 4, model-E achieves better metric results than the other
three variants (i.e., model-A, model-B, and model-C). When comparing the MFFM with local channel
attention (fourth and sixth rows) to the variants without local channel attention (third and fifth rows), the
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model with local channel attention achieves better results, indicating that focusing on the important features
in the MFFM helps our method identify the camouflaged objects more effectively. In addition, to further
understand the effectiveness of our MFFM, some visualization results are shown in Fig. 10. By comparing
the 3rd–5th and 7th columns, it can be noticed that the overall completeness of objects in the prediction
results increases with the addition of additional features, and the clarity of objects’ boundaries is significantly
improved after the introduction of edge features. By comparing the 5th and 6th columns or the 7th and 8th
columns, it is obvious that the fuzzy regions are dramatically reduced and the accuracy of objects’ regions
is further improved. In summary, the model with complete MFFM achieves the best performance in both
quantitative and qualitative aspects, which proves the rationality and effectiveness of our MFFM design.

Table 4: The ablation verification of MFFM on MoCA-Mask dataset and CAD dataset

Method MoCA-Mask CAD

Sα↑ Fω
β ↑ M↓ Eϕ↑ Sα↑ Fω

β ↑ M↓ Eϕ↑
model-A 0.557 0.310 0.032 0.646 0.676 0.469 0.040 0.720
model-B 0.665 0.370 0.022 0.751 0.756 0.634 0.029 0.852
model-C 0.671 0.380 0.014 0.772 0.761 0.639 0.025 0.850
model-D 0.676 0.399 0.014 0.774 0.764 0.640 0.027 0.857
model-E 0.675 0.399 0.014 0.772 0.761 0.636 0.025 0.855

Ours 0.682 0.401 0.012 0.777 0.767 0.646 0.025 0.862

Figure 10: Some visual comparisons of the outputs of different variants

3) Effectiveness of Multi-task Detection Head: As mentioned in Section 3.4, our multi-task detection
header establishes an explicit link between the segmentation branch and the boundary detection branch to
enrich the feature representations of both branches. To verify the effectiveness of the multi-tasking detection
head, we construct several detection head variants for ablation studies as follows, the structures of which are
shown in Fig. 11.

i) “Head-A” uses only the segmentation branch.
ii) “Head-B” employs both branches without any interaction between them.
iii) “Head-C” allows information from the segmentation branch to pass to the boundary detec-

tion branch.
iv) “Head-D” allows information from the boundary detection branch to pass to the segmenta-

tion branch.
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Figure 11: Structure of different multi-tasking detection head variants

Table 5 presents the quantitative detection results for models with different detection head variants.
Even without inter-task interaction, Head-B outperforms the single-task model (Head-A), demonstrating
the gains of multi-task learning. Models equipped with Head-C or Head-D performs better than Head-
B, indicating that inter-task information transfer enhances performance and is beneficial for VCOD.
Notably, the model with our proposed detection head achieves the best performance, showing that VCOD
benefits from inter-task interaction. These results indicate that our model better leverages the mutually
beneficial information between tasks compared to models with no interaction or only unidirectional
information transfer.

Table 5: The multi-task detection head verification on MoCA-Mask dataset and CAD dataset

Method MoCA-Mask CAD

Sα↑ Fω
β ↑ M↓ Eϕ↑ Sα↑ Fω

β ↑ M↓ Eϕ↑
Head-A 0.657 0.324 0.023 0.735 0.743 0.586 0.037 0.846
Head-B 0.668 0.348 0.017 0.766 0.756 0.608 0.033 0.853
Head-C 0.673 0.358 0.015 0.772 0.760 0.613 0.030 0.856
Head-D 0.677 0.361 0.014 0.775 0.763 0.619 0.028 0.859

Ours 0.682 0.401 0.012 0.777 0.767 0.646 0.025 0.862

Fig. 12 visualizes the impact of different detection heads on the model performance. By comparing the
detection results between the second and third columns, it can be observed that the introduction of the
boundary detection branch significantly enhances the model’s target recognition capability, resulting in a
significant improvement in the detection performance. Further analysis of the results in the third, fourth
and fifth columns shows that the information transfer mechanism between different branches effectively
improves the model’s localization accuracy of the overall contour and boundary details of the target, where
the information flow from the boundary branch to the segmentation branch brings about a more significant
performance gain. Notably, by comparing the sixth column with other columns, it can be clearly found that
the optimal detection effect is achieved by the detector head architecture with the bidirectional interaction
mechanism between branches. This qualitative observation highly aligns with the previous quantitative
evaluation results, further validating the effectiveness of the proposed detection head design.
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Figure 12: Detection results of models equipped with different detection heads

4.4 Limitations
We present some representative failure cases along with the results from the two SOTA methods

in Fig. 13. Although the quantization performance of our method is satisfactory, it may fail in dim scenes
or long-range camouflaged object detection. Specifically, as shown in the first row of Fig. 13, in a dim scene
with low lighting, the model tends to confuse the object with the background due to fewer available cues in
the space. As shown in the second row of Fig. 13, when the object is at a long distance, the object occupies
a smaller area in the image. Motion cues are difficult to capture and the object is easily overwhelmed by the
background, which leads to the model failing to accurately localize the camouflaged object. As can be seen
from Fig. 13, such cases also easily confuse SOTA methods, so it is worth exploring further.

Figure 13: Representative failure cases

5 Conclusion
In contrast to previous methods, our approach in this paper emphasizes the efficient utilization of

both temporal and spatial information for accurate detection of camouflaged targets in video sequences.
Specifically, we first introduce STM into VCOD to obtain temporal information. Then, we propose the
selective space-time aggregation module (SSAM), which enables collaborative learning and biased fusion
of temporal and spatial information, resulting in spatiotemporal features with strong representational
capabilities. Subsequently, drawing inspiration from the stepwise refinement strategy often adopted in ICOD,
we develop the multi-feature fusion module (MFFM) to refine the camouflaged objects in a coarse-to-fine
manner by exploiting the complementary nature of multi-type features. Finally, we introduce the multi-
task detection header to prompt the model to benefit from multi-task learning. Our method achieves
impressive results on the MoCA-Mask dataset and outperforms existing SOTA methods on the CAD dataset.
In addition, we provide comprehensive ablation studies showing that the design of our modules is reasonable
and effective.
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