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ABSTRACT: Traffic datasets exhibit complex spatiotemporal characteristics, including significant fluctuations in
traffic volume and intricate periodical patterns, which pose substantial challenges for the accurate forecasting and
effective management of traffic conditions. Traditional forecasting models often struggle to adequately capture these
complexities, leading to suboptimal predictive performance. While neural networks excel at modeling intricate and
nonlinear data structures, they are also highly susceptible to overfitting, resulting in inefficient use of computational
resources and decreased model generalization. This paper introduces a novel heuristic feature extraction method
that synergistically combines the strengths of non-neural network algorithms with neural networks to enhance the
identification and representation of relevant features from traffic data. We begin by evaluating the significance of
various temporal characteristics using three distinct assessment strategies grounded in non-neural methodologies.
These evaluated features are then aggregated through a weighted fusion mechanism to create heuristic features, which
are subsequently integrated into neural network models for more accurate and robust traffic prediction. Experimental
results derived from four real-world datasets, collected from diverse urban environments, show that the proposed
method significantly improves the accuracy of long-term traffic forecasting without compromising performance.
Additionally, the approach helps streamline neural network architectures, leading to a considerable reduction in
computational overhead. By addressing both prediction accuracy and computational efficiency, this study not only
presents an innovative and effective method for traffic condition forecasting but also offers valuable insights that can
inform the future development of data-driven traffic management systems and transportation strategies.
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1 Introduction and Background

With the rapid development of science, technology and economy, people’s demand for travel is increas-
ing. However, the substantial growth of traffic volume has brought traffic congestion and traffic accidents to
the urban road traffic system, which has seriously affected people’s lives [1]. Therefore, the effective control of
traffic congestion has become one of the most important social issues in the 21st century. With the accelerated
integration of artificial intelligence in various fields [2], the adoption of intelligent transportation system
(ITS) for integrated urban traffic management is being accepted by more and more large and medium-sized
cities [3].

ITS is an intelligent traffic control system that integrates modern technologies such as communication
and control [4]. The concept of ITS was first proposed in the United States in the 1970s, and it has taken more
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than 50 years from the initial proposal to the formation of a relatively complete technical framework [5]. Since
the 2010s, the United States has used emerging technologies such as artificial intelligence and car networking
to study autonomous driving systems [6]. China began to study intelligent transportation systems in the
1990s, mainly focusing on electronic toll system, traffic management system and road monitoring system [7].
By 2015, China has successfully established an intelligent transportation system technology system that meets
its specific needs [8], and is now actively responding to challenges related to artificial intelligence and big data
technology to further develop autonomous driving and vehicle-road collaborative services [9]. Driven by
breakthroughs in emerging information technologies such as artificial intelligence, the Internet of Vehicles
(IoV) and big data analytics, the integration of these technologies and transportation systems continues to
evolve. The optimization and upgrading of intelligent automated transportation systems have recently gained
significant momentum [10].

In recent years, there has been a significant upsurge in the development of intelligent vehicles [11].
To effectively tackle the issue of traffic congestion, transportation research has progressively evolved into a
pivotal area of study for numerous scholars and scientists worldwide. As early as 2017, comprehensive analyses
of K-nearest neighbours (kNN) strategies for short-term traffic prediction emphasised the significance
of considering all parameter strategies simultaneously, particularly the window size in the flow-aware
strategy [12]. Building on this, further advancements in 2019 introduced weighted parameter tuples (WPT)
for kNN, which dynamically adjust parameters based on traffic flow, showcasing superior performance
compared to traditional methods like extreme gradient boosting (XGB) and SARIMA [13]. At present,
many researchers are using deep learning for traffic prediction. Compared with the traditional machine
learning method, it can better capture the complex pattern between multi-factors and traffic flow, and
has a wide application prospect in traffic flow prediction. The main deep learning models used include
convolutional neural networks (CNNS) [14], long short-term memory (LSTM) [15,16], gate control loop
units (GRUs) [17], graph convolutional networks (GCN) [18,19], and hybrid models [20]. The ability to learn
temporal and spatial features has an important effect on the performance of traffic prediction models. By
capturing the temporal and spatial correlation of traffic data, traffic speeds and congestion can be predicted
more accurately. Hu et al. [21] proposed a hybrid deep learning method AB-ConLSTM for large-scale
velocity prediction, which comprehensively considered the spatiotemporal and periodic characteristics of
traffic velocity data to achieve high-precision prediction results. Su et al. introduced a spatiotemporal graph
convolution network (MP-STGCN) that considered multiple flow parameters [22]. The model combines the
graph convolutional network (GCN) of spatial features and the long short-term memory (LSTM) of temporal
features to improve the accuracy of large-scale traffic prediction.

These technologies are increasingly being integrated into urban traffic management systems to optimize
traffic flow, reduce congestion, and improve road safety. This paper proposes a novel approach that integrates
heuristic feature extraction methods with deep learning models to further improve the accuracy and
robustness of traffic flow predictions. The main contributions of this paper are as follows:

1. A feature heuristic method is proposed that combines non-neural network machine learning
algorithms with neural network machine learning algorithms.

2. Using multiple non-neural network algorithms, three evaluation methods are utilized to assess the
significance of various temporal features. These temporal data are combined with a weighting mechanism to
generate heuristic features.

3. Combined the proposed heuristic features with neural network algorithms to improve the accuracy
of prediction applications.

4. Four different types of real datasets were collected and created, and the prediction accuracy of the
proposed method was verified on them.
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2 Related Work
Transportation data, a type of time-series data within the realm of the Internet of Things (IoT),

demonstrates significant volatility and intricate characteristics [23]. In recent years, machine learning
algorithms have been widely used in traffic prediction, and their methods are generally divided into
non-neural network-based and neural network-based methods.

Non-neural network algorithms are efficient and fast for predicting simple time series data [24]. How-
ever, they struggle to process complex spatio-temporal data because they cannot capture spatial dependencies
between traffic patterns on different roads, limiting their effectiveness in urban traffic prediction tasks with
interconnected road networks [25]. The neural network algorithm has shown high effectiveness in capturing
the spatio-temporal dependence of traffic data. However, they also have obvious disadvantages. On the one
hand, the structure of neural network algorithms is quite complex, including many neurons, and the layers are
completely connected. Such complex structural characteristics directly lead to the problem of slow iteration
speed in the calculation process, and also put forward high requirements on the computing performance of
the computer.

Therefore, a hybrid method combining heuristic drive feature engineering and neural network is
proposed in this paper. By using XGBoost to evaluate and weight critical time features, we reduce the input
dimension and improve computational efficiency. This approach also improves interpretability, as it clearly
identifies which features will affect predictions. The hybrid approach overcomes the limitations of traditional
and deep learning approaches to provide a more scalable, interpretable, and efficient solution for real-time
traffic prediction.

2.1 Non-Neural Network Machine Learning Algorithms
In recent years, research on non-neural network machine learning algorithms has been mainly rep-

resented by decision trees, which exhibit very good predictive performance for tabular data. However,
single-learner learning algorithm models have significant limitations, so ensemble learning decision tree
algorithms have been proposed [26]. The essence of traffic data is a type of tabular data, which can
be divided into tabular data describing spatial features (such as adjacency matrices) and tabular data
describing temporal features (such as feature matrices). Algorithms represented by XGBoost are often used
by researchers for tabular data prediction and have been proven to have good predictive performance for
tabular data. XGBoost is a typical representative of these algorithms and is often used by researchers to predict
various data types. In this article, we will provide a detailed introduction using XGBoost as an example [27].
The XGBoost Algorithm

The XGBoost algorithm is a tree-based ensemble learning method, where its funda-mental tree
structure follows the Classification and Regression Tree (CART) approach. CART represents a binary tree
structure that continuously partitions the sample space of input features. By defining feature thresholds, each
region is recursively divided into two subregions, with the output value determined for each subregion. The
splitting criterion for these subregions depends on the specific type of tree. CART typically uses the minimum
squared error criterion [28]. The objective function of CART regression tree generation is

∑xi∈Rm
(yi − f (xi))

2 (1)

f (xi) represents the fitted data, yi represents the real data, and this function represents the accumula-
tion of variance.

The XGBoost algorithm incrementally improves the model by adjusting the weight distribution of
samples with each new tree added, effectively learning a new function to fit the residuals of previous
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predictions. The objective function for XGBoost to obtain the extreme points and extreme values is as follows:

L(ϕ) = ∑i l (yi , ŷi) +∑k Ω ( fk) (2)

2.2 The Neural Network Machine Learning Algorithms
The machine learning algorithms in neural networks primarily consist of Convolutional Neural

Networks [29], Recurrent Neural Networks [30], Generative Adversarial Networks, and Graph Neural
Networks [31]. Among these, graph neural network algorithms can be categorised into five groups: Graph
Convolutional Networks [32], Graph Attention Networks [33], Graph Auto-encoders [34], Graph Gener-
ative Networks [35], and Graph Spatial-Temporal Networks [36]. In recent years, spatiotemporal network
algorithms have gained increasing attention from researchers, leading to the emergence of several high-
performance algorithms such as T-GCN, DySAT, LSTM-GL-ReMF, etc. These algorithms have demonstrated
excellent performance in areas including IoT time series data imputation, prediction, and monitoring.

2.2.1 Long Short-Term Memory
The Recurrent Neural Network (RNN) is a recursive neural network well-suited for processing sequen-

tial data with memory [37]. The structure consists of three distinct layers: the input layer, the hidden layer,
and the output layer. Its distinguishing feature lies in the fact that the value of the hidden layer at each time
step not only depends on the input value at that time step but also on the value of the hidden layer from
previous time steps, establishing correlations among output results. Consequently, it possesses short-term
memory capabilities and proves suitable for addressing problems pertaining to sequential data [38].

To establish long-term dependencies, the LSTM algorithm incorporates a gating mechanism. Compared
to RNN, LSTM introduces a transfer state that regulates feature flow and selection. The forget gate serves as
the forgetting stage of the algorithm, selectively discarding previous node inputs to ensure the retention of
essential information while reducing input length over time. It determines both the previous time unit’s state
and its remaining quantity at the current time step. The input gate, acting as the memory component within
the algorithm, regulates the extent to which the present input from the network is retained within the unit’s
state. Lastly, the output gate acts as an output stage control for both United States and determines how much
of the current output value should be emitted by LSTM.

2.2.2 Matrix Factorization
Fundamentally, the time series data of the Internet of Things (IoT) can be represented as a high-

dimensional matrix due to its extensive temporal span and multitude of interrelated features, thereby
resulting in computationally intricate operations. To effectively discern significant features for machine
learning purposes, researchers have proposed employing matrix factorisation techniques to capture and
extract salient characteristics from the matrix [39].

Matrix factorisation means that the matrix is decomposed into two low-rank matrices. The formula is
as follows:

Y ≈WX (3)

where Y ∈ RN×T is the original matrix, W ∈ RN×r represents the matrix capturing the low-rank spatial
characteristics, and X ∈ Rr×T represents the low rank temporal characteristic matrix. Matrix factori-
sation effectively reduces matrix dimensionality, facilitates computation, and increases the algorithm’s
iteration speed.
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2.2.3 Graph Laplacian
When considering graph neural networks, the significance of the graph Laplacian transform cannot

be overlooked. Even before the emergence of algorithms for graph neural networks, numerous researchers
have utilised the graph Laplacian transform to aggregate information from neighbouring nodes within a
given graph. The primary distinction between the Graph Laplacian Transform and the Laplace Transform
lies in their respective operational domains. At the same time, the Laplace operator operates within Euclidean
space and typically deals with objects situated in regular regions lacking topological structure. Conversely,
the graph Laplacian operator handles objects located within non-Euclidean space, often exhibiting a certain
degree of topological structure [40]. The formula for the graph Laplacian matrix is as follows:

L = D − A (4)

where D is the degree matrix, and A is the adjacency matrix. The following is a brief introduction to the
degree matrix and the adjacency matrix. The degree matrix is diagonal, and the value of each row is the sum
of the values of the current row in the Tulaplacian matrix, that is

Di = ∑ j∈N aij (5)

The adjacency matrix is a square matrix of N ∗ N , and aij = 1 if the tnode is connected to the j node.
The normalized Tulaplacian matrix is

Lsym = I − D−
1
2 AD−

1
2 (6)

2.2.4 LSTM and Graph Laplacian Regularized Matrix Factorization
This paper proposes an algorithm named LSTM-GL-ReMF for sequence data prediction based on

LSTM and Graph Laplacian (GL) models [41]. The algorithm utilises the time series matrix method to
break down multi-dimensional spatiotemporal data into separate temporal and spatial matrices. Here, the
spatial information is encapsulated within the W matrix, which is aggregated using Tulaplacian space
regularisation to derive the spatial representation of the features. The time data is represented by the X
matrix and is processed by utilising the LSTM module to capture the temporal patterns in the data. The
matrices obtained are subsequently merged to create a spatiotemporal data matrix, which is then utilised for
prediction purposes.

In this paper, we choose the XGBoost algorithm as the representative of non-neural network machine
learning algorithms and the LSTM-GL-ReMF algorithm as the representative of neural network machine
learning algorithms for conducting relevant experiments. In the following account of this paper, the LSTM-
GL-ReMF algorithm will be abbreviated as LSTM-GR.

3 Methods

3.1 Outlining Experiment Procedure
The feature extraction of traditional spatiotemporal data often employs algorithms such as RNN and

LSTM to capture the temporal characteristics of the data. Additionally, methods like GAT and GCN
are utilised for spatial feature aggregation through convolution and attention mechanisms to capture the
inherent characteristics of the data. This experiment emphasises the significance of capturing temporal
features using non-neural network algorithms. To achieve this, relevant weight parameters are introduced
to facilitate the aggregation of related data by weighting the time feature matrix. Data aggregation proves
effective in reducing neuron count, decreasing computational complexity, and implementing a more efficient



4224 Comput Mater Contin. 2025;82(3)

and faster prediction scheme with lower computational requirements. The specific method flow of the study
is shown in Fig. 1. First, data is collected from the roadside sensors (D1 and D2) and the floating car data
(D3 and D4). The data is then preprocessed, including cleaning and filling in missing values. Then the data
processing is carried out to generate the adjacency matrix and the feature matrix. After that, the temporal
significance of the data is captured, weighted and dimensionally reduced. Finally, the processed data is input
into the neural network algorithm for prediction, and the prediction results are evaluated and analyzed.

Figure 1: The figure shows the experimental process of this paper

Relevant traffic data is collected from diverse channels. Subsequently, the collected data undergoes a
thorough cleaning process (i.e., preprocessing). The processed data is then subjected to non-neural network
algorithms to capture the significance of temporal features. Afterwards, various time correlation strategies
are employed to predict the data using neural network algorithms. Finally, prediction results are obtained,
and pertinent metrics are calculated for evaluation and analysis.

3.2 Acquisition and Collection of Data
The transportation data collected in this project includes four datasets from cities of different sizes and

geographical locations, covering both eastern and western regions. These datasets represent two main types
of traffic data: road sensor data and floating car data. Road sensor data, obtained from monitoring probes
and toll stations (Seattle and Shenzhen), provides precise, location-specific traffic flow information. Floating
car data, sourced from vehicle networking systems with real-time uploads (Chengdu and a third-tier city in
China), captures dynamic vehicle trajectories, offering a more flexible view of traffic flow. The diversity in
data types and city characteristics allows us to comprehensively evaluate the model’s adaptability to varying
road network complexities, urban scales, and traffic patterns, ensuring robust performance across diverse.
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Firstly, relevant data must be obtained. The data collected for this experiment mainly came from two
channels: publicly available network data and relevant traffic department data. We collected two important
cities from the public network channel: Seattle and Shenzhen, which are in China and the United States,
respectively, and have publicly available traffic data.

3.2.1 Seattle Traffic Speed Dataset
This dataset is publicly available on Google Cloud, which captures Seattle traffic speed data gathered

from 323 sensors placed throughout the city, spanning 17,568 distinct time intervals, with each period lasting
5 min. The data includes a 323 × 323 adjacency matrix representing the road network information and a 323
× 17,568 feature matrix representing the average vehicle speed recorded by the sensors in different periods.
It will be referred to as Dataset 1 (D1).

3.2.2 Shenzhen Dataset
This data is publicly available in related academic papers and describes the traffic speed data of Shenzhen

City. It documents the average vehicle speed across 156 roads within a specific region of Shenzhen City. The
data spans 2976 time intervals, from 01 January 2015, to 31 January 2015, with each interval lasting 15 min. The
data includes a 156× 156 adjacency matrix representing the road network information of Shenzhen City and a
156× 2976 feature matrix representing the average passing speed of vehicles on each road in different periods.
It will be referred to as Dataset 2 (D2). Next, we obtained small-scale traffic datasets from Chengdu and some
third- and fourth-tier cities in China through big data competitions and related transportation departments.

3.2.3 Chengdu Floating Car Dataset
This dataset, publicly available on a big data platform, describes the GPS data related to Chengdu’s taxis.

The dataset includes over 300 million GPS records collected from 14,000 taxis operating in Chengdu. The data
is collected through sensors embedded in the vehicles, recording the latitude, longitude, passenger status,
and time for each taxi. The period covered is from 06:00 to 24:00 every day from 17 August to 23 August
2014. We refer to this dataset as Dataset 3 (D3).

3.2.4 Traffic Dataset from a Third- or Fourth-Tier City in China
In metropolitan areas, traffic data sources are typically abundant, while smaller and medium-sized

cities primarily rely on their local transportation departments for data collection. These departments mainly
gather information from traffic violation monitoring systems installed at city road intersections, which
often lack a network structure, resulting in relatively simple data formats and structures. To enhance the
diversity of datasets and comprehensively evaluate algorithmic predictive performance, we collected a dataset
of crossroad violation monitoring data from a third- or fourth-tier city in China. The dataset includes
monitoring data from three consecutive traffic sections situated upstream, mid-stream, and downstream
along the main city roads. The collected information includes timestamps of vehicle passage through
monitoring points, license plate numbers, travel directions, and speeds. The dataset covers a period spanning
31 days from 01 August to 31 August 2021. We refer to this dataset as Dataset 4 (D4).

3.3 Processing of Data
Transportation, as an outdoor human activity, relies heavily on vehicle sensors and fixed-point sensors

installed on the road for data transmission. However, this method of data collection is prone to missing data
in both the production and transmission phases, and when there is a certain degree of missing information,
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this can seriously affect data processing and analysis. Therefore, it is imperative to pre-process the collected
data. The main tasks involved in the data preprocessing phase of this study include cleaning the data set by
eliminating outliers such as duplicates or inaccuracies. After these procedures, the processed data can be
used for further analysis.

To employ the graph neural network algorithm for forecasting the dataset, it is necessary to first create
the adjacency matrix and feature matrix for datasets D3 and D4. Based on the characteristics of the data,
a graph network (i.e., adjacency matrix reflecting the correlation of the data space) is constructed, with
different methods employed for floating cars and road sensors.

3.3.1 D3 Floating Car Data
Floating vehicle data refers to the global positioning system of traffic vehicles through sensors and

other terminal equipment to regularly record the longitude and latitude, speed, time, direction, and other
information of the vehicle; the current taxi-based data is widely used floating car data.

Firstly, the floating car data is integrated with Chengdu’s urban area map to aim to ascertain the
delineation of primary functional zones, the positioning of urban arterial roads, and the geographical
interrelations among various regions. Subsequently, the GPS data is synchronized with the map of the city’s
road network to determine critical locations for the distribution of floating car data. Once these distribution
points are determined, vehicle density is assessed in various locations. Areas exhibiting high density, heavy
traffic flow, and extensive functional area coverage prone to congestion are selected as focal points for this
experiment based on their latitude and longitude range.

Next, the overall range is divided into a series of small areas in a grid-like manner. These areas can
intuitively reflect the number of vehicles in the latitude and longitude range. Therefore, the size of the grid
determines the characteristics of the described data. The size of each grid should be carefully chosen to
avoid being excessively large or small. Insufficient representativeness may occur if the grid size is too small,
hindering comprehensive analysis. Conversely, an overly large grid may result in overly general data, making
it difficult to pinpoint specific issues like traffic congestion. In this experiment, we adopted a 10 × 10 grid,
obtaining a total of 100 grids, with each grid covering about two blocks, as shown in Fig. 2.

To ensure the spatial correlation of the data, we implemented grid division within a unified area, where
each grid is positioned adjacent to its neighbouring grids. By considering each grid as a node and establishing
connections between adjacent nodes, we derived an adjacency matrix that effectively captures the spatial
characteristics of the data.

Subsequently, we geospatially matched the latitude and longitude coordinates of the floating car data
with different grid regions. Initially, we determined the precise vehicle location based on the latitude and
longitude data, followed by identifying the corresponding time range when the vehicle traversed through
each region. Subsequently, we assigned a unique vehicle ID to each respective region. Notably, in cases where
multiple instances of a vehicle’s data are recorded within the same region during an identical time period,
redundant calculations are avoided.

By correlating the vehicle data with the urban area through the outlined steps, we conducted a statistical
analysis of the vehicle IDs for all regions within a fixed time interval of 5 min. The statistical analysis
was performed using Python, with pandas for data manipulation and aggregation, and scipy for statistical
calculations. In this way, we obtained the traffic flow data for all regions every five minutes. Through the
above processing, we finally received the Chengdu traffic flow dataset, which includes a 100 × 100 adjacency
matrix representing the road network information and a 100 × 1296 feature matrix representing the traffic
flow in different regions.
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Figure 2: The figure shows the geographical location of the grids designed in this paper, with each grid covering
approximately one to two blocks and having the same area

3.3.2 Road Monitoring Data for D4
To accurately depict the topological structure of the graph and derive the adjacency matrix for the

dataset, this experiment established relevant nodes based on the geographical locations of road monitoring
sensors. Given that these sensors are installed in bidirectional lanes at intersections, a total of eight nodes
are designated per intersection to capture traffic data, with two nodes positioned on each side of the
road. By employing this approach, a cumulative count of 24 nodes is established across three consecutive
intersections. Subsequently, connections are made between corresponding nodes to account for vehicle
movements involving left turns, straight-ahead directions, and right turns within each intersection. Finally,
by linking the respective nodes in an upstream-to-downstream sequence for all three intersections involved,
we obtained the resulting adjacency matrix for our dataset.

On the other hand, since the data recorded by the road monitoring sensors is traffic volume data, this
experiment selected a fixed time interval of 5 min and processed the traffic data recorded by each node into
traffic flow data. Through the aforementioned processing, a small-scale traffic flow dataset is finally obtained.
The dataset includes a 24 × 24 adjacency matrix representing the positional correlation of nodes and a 24 ×
8928 feature matrix representing traffic flow data for different nodes.

3.4 Capture of the Importance of Temporal Features
As a common and complex type of IoT time series data, traffic data has strong trends and patterns,

including daily, weekly, and monthly trends. The regular fluctuation trends of traffic data are daily, weekly,
and monthly. As shown below, we plot the processed flow and speed data as trends over time. Thus,
capturing temporal correlations of traffic time series data essentially involves identifying the differences in
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the importance of different data features over a certain period for predicting future data. Since the collected
data have different time dimensions, the daily trend is prioritised in this experiment. The trend plots of the
dataset used in this paper are shown in Fig. 3.

Figure 3: (a) shows the traffic speed data from dataset D2 with a time interval of 15 min, and (b) shows the traffic
flow data from dataset D4 with a time interval of 5 min. Both the flow and speed data have strong regularity, especially
with similar daily trends. During peak hours in the morning and evening, the flow data increases significantly, and the
average speed decreases noticeably

The data involved in traffic analysis typically exhibits a significant temporal dimension, necessitating the
processing of extensive time-based information to capture the temporal correlations within traffic patterns.
However, providing all this time-related data to the algorithm can lead to sluggish model iteration speed,
demanding high computational resources such as computing power and memory, and even potential issues
like overfitting, gradient vanishing, or explosion. Simultaneously, a specific type of IoT time series data
primarily comprising traffic updates exhibits rapid fluctuations, necessitating the acceleration of prediction
speed while ensuring accuracy. This entails enhancing algorithmic iteration speed and promptly delivering
precise predictions to aid relevant authorities in guiding urban road traffic control and preemptively
addressing potential issues concerning pertinent vehicles.

Due to the necessity of timely traffic data prediction, addressing the issue of reducing algorithm model
iteration speed is crucial in traffic data processing and prediction. Numerous studies have demonstrated that
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the XGBoost algorithm effectively handles and predicts tabular data with rapid prediction speed and minimal
computing power requirements. Additionally, its decision tree-based model ensures strong interpretability
by numerically displaying feature importance. However, it lacks explicit spatial correlation representation.
Hence, we establish three sets of lag time features to predict future conditions and determine which past time
features yield optimal predictive performance.

In this study, we set up three different time capture strategies for four datasets to form a control
experimental group, as shown in the following Fig. 4.

Figure 4: The figure illustrates the three-lag time feature construction schemes designed in this study. Scheme A
represents the past ten-time units, Scheme B represents the ten-time units from the previous day, and Scheme C
combines the two data sets

Fig. 4 shows the three temporal strategies adopted in this paper: Scheme A assembles the features of the
past period, Scheme B assembles the time features of the previous day, and Scheme C combines Scheme A
with Scheme B.

The three lagged time feature generation strategies designed in this paper are presented in Fig. 4. Each
strategy is designed to capture different temporal aspects of traffic data to enhance predictive accuracy.
Specifically, Scheme A incorporates the past 10-time units as lagged time features, which enables the model
to consider recent trends in traffic data. Scheme B, on the other hand, uses the past 10-time units from the
same time on the previous day, capturing daily periodicity and accounting for traffic patterns that may recur
at similar times each day. Scheme C combines both Scheme A and Scheme B, allowing the model to leverage
recent data trends alongside daily recurring patterns.

For each strategy, we employ the XGBoost algorithm to predict the current moment and assess
feature importance, leveraging its decision tree-based approach for rapid calculation of feature relevance.
By quantifying the importance of lagged features under each strategy, we aim to identify which temporal
patterns whether recent trends, daily patterns, or a combination of both are most influential in predicting
future traffic conditions. The feature importance results for these lagged features, evaluated across different
datasets, are illustrated in Fig. 5.

Fig. 5 presents the importance scores for temporal features, obtained through the use of the XGBoost
algorithm across four datasets. The results indicate that XGBoost is particularly adept at capturing data
trends, as it assigns higher importance scores to features with a longer time span. This pattern is consistent
across all datasets and is evident under three different lag strategies, highlighting the algorithm’s ability to
recognize the significance of long-term temporal features in improving prediction accuracy.
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Figure 5: The figure shows the importance of time features under three different lag strategies for the four datasets

3.5 Weighting and Dimensionality Reduction of Data and Neural Network Algorithm Prediction

We normalise each data group after obtaining the numerical values representing the importance of
different lag time features. By normalising, we obtain the weight coefficients W corresponding to each
lag feature. We then multiply the weight parameters by the corresponding feature values representing the
time point. Finally, we sum all the data to obtain new time features, achieving the effect of dimensionality
reduction.
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For different strategies, we use different aggregation methods:
1. In Scheme A, we extract the features from the past two-time units separately and put the remaining

values from 3 to 7-time units together for the aforementioned normalization and weighted sum operation.
2. In Scheme B, we extract the features from the past two-time units of the previous day separately and

put the remaining values from 3 to 7-time units together for the aforementioned normalization and weighted
sum operation.

3. In Scheme C, we extract the features from the past two time units and the current time unit of
the previous day separately and put the remaining 17 time units’ values together for the aforementioned
normalization and weighted sum operation.

After obtaining the corresponding parameters, we employ the LSTM-GR algorithm to construct our
model. We decompose the intricate feature matrix into a spatial feature matrix and a time feature matrix
through matrix factorisation. The spatial feature matrix is combined with the adjacency matrix for Laplacian
transformation, while the time feature matrix is aggregated and reduced based on calculated parameters from
the aforementioned schemes. Subsequently, we feed this reduced data into an LSTM algorithm to capture
temporal correlations and ultimately output prediction results. Fig. 6 shows the full block diagram of the
LSTM-GL_W experimental model, which illustrates the model structure and data flow.

Figure 6: The diagram is the full block diagram of LSTM-GL_W experimental model

Additionally, missing values may occur due to various collection issues in real-life traffic data, such as
equipment malfunctions or signal interference. To validate the predictive performance of this approach in the
presence of missing values in the dataset, the experiment sets 10% of random missing values. Subsequently,
the dataset is partitioned into a training set and a testing set proportionally, and the three strategies
mentioned above are employed for model training and prediction.
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In this paper, the data without aggregation operation and the data with the aforementioned aggregation
operation are put together to form a control group to investigate whether aggregating data will affect the
prediction results.

3.6 Evaluation Metrics
Finally, through a comparative analysis of the predicted results against the actual observations, we

derive experimental performance indicators and analyze their trends by plotting the data. Given that traffic
data entails time series regression prediction, in this study, a selection of indicators commonly employed
by researchers in regression prediction was adopted, including (1) Mean Absolute Error (MAE); (2) Mean
Squared Error (MSE); (3) Root Mean Squared Error (RMSE); (4) R-squared (R2).

4 Results and Analysis
The relevant experimental results are shown in the table, where LSTM-GR represents the original neural

network algorithm, and LSTM-GR_W represents the neural network algorithm with weight aggregation
performed. The experimental results of D1 are shown in Table 1, the experimental results of D2 are shown
in Table 2, the experimental results of D3 are shown in Table 3, the experimental results compared with RNN
are shown in Table 4, and the experimental results of D4 are shown in Table 5.

Table 1: Prediction results for D1

SchmeA LSTM-GL LSTM-GL_W SchmeB LSTM-GL LSTM-GL_W SchmeC LSTM-GL LSTM-GL_W
MSE 23.030 28.431 MSE 58.385 52.278 MSE 24.369 34.516
MAE 3.373 3.511 MAE 4.731 4.744 MAE 3.461 3.751
RMSE 4.799 5.116 RMSE 7.641 7.230 RMSE 4.936 5.686

R2 0.742 0.719 R2 0.346 0.414 R2 0.727 0.657

Table 2: Prediction results for D2

SchmeA LSTM-GL LSTM-GL_W SchmeB LSTM-GL LSTM-GL_W SchmeC LSTM-GL LSTM-GL_W
MSE 20.735 20.876 MSE 20.418 20.614 MSE 21.537 20.943
MAE 3.306 3.321 MAE 3.286 3.308 MAE 3.391 3.329
RMSE 4.553 4.569 RMSE 4.518 4.54 RMSE 4.64 4.576

R2 0.794 0.793 R2 0.797 0.795 R2 0.786 0.793

Table 3: Prediction results for D3

SchmeA LSTM-GL LSTM-GL_W SchmeB LSTM-GL LSTM-GL_W SchmeC LSTM-GL LSTM-GL_W
MSE 572.22 863 MSE 1150 1131 MSE 1072 885
MAE 18.605 22.07 MAE 25.42 24.948 MAE 23.045 22.256
RMSE 23.921 29.38 RMSE 33.926 33.64 RMSE 32.751 29.752

R2 0.896 0.843 R2 0.791 0.795 R2 0.805 0.839

Regarding dataset D1, there is not much difference in the overall performance of the two algorithms.
Under Scheme A, both algorithms perform well in prediction, with LSTM-GR showing better results with
an R2 value of 0.742. However, under Scheme B, neither algorithm can predict future conditions well, with
LSTM-GR_W showing slightly better results with an R2 value of 0.414. Under Scheme C, the LSTM-GR
algorithm performs better than LSTM-GR_W with an R2 value of 0.727. Overall, the LSTM-GR algorithm
shows better experimental results on dataset D1.
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Table 4: Comparison of D3 predictions on RNN and LSTM-GL_W

SchmeA RNN LSTM-GL_W SchmeB RNN LSTM-GL_W SchmeC RNN LSTM-GL_W
MSE 922 863 MSE 1951 1131 MSE 2051 885
MAE 20 22.07 MAE 32 24.948 MAE 32 22.256
RMSE 30 29.38 RMSE 44 33.64 RMSE 45 29.752

R2 0.832 0.843 R2 0.642 0.795 R2 0.624 0.839

Table 5: Prediction results for D4

SchmeA LSTM-GL LSTM-GL_W SchmeB LSTM-GL LSTM-GL_W SchmeC LSTM-GL LSTM-GL_W
MSE 20.84 23.97 MSE 28.979 27.737 MSE 20.965 23.27
MAE 2.954 3.023 MAE 3.192 3.149 MAE 2.927 3.014
RMSE 4.565 4.989 RMSE 5.383 5.266 RMSE 4.578 4.827

R2 0.541 0.485 R2 0.363 0.39 R2 0.539 0.504

For dataset D2, both algorithms perform well under all three strategies. Under Scheme A, both
algorithms show good performance in prediction, with the LSTM-GR algorithm performing slightly better
with an R2 value of 0.794. Under Scheme B, LSTM-GR’s prediction results are still better than LSTM-GR_W,
with an R2 value of 0.797. Under Scheme C, the LSTM-GR_W algorithm performs better than LSTM-
GR with an R2 value of 0.793. Overall, both algorithms show good performance on dataset D2, and the
performance difference between the two algorithms is not significant.

For dataset D3, the two algorithms have a certain performance gap. Under Scheme A, LSTM-GR’s
prediction results are significantly better than LSTM-GR_W, with LSTM-GR having an R2 value of 0.896,
which is 0.05 higher than LSTM-GR_W’s value. Under Scheme B, both algorithms show good performance,
with LSTM-GR_W having an R2 value of 0.795, which is only 0.04 higher than LSTM-GR’s R2 value.
Under Scheme C, LSTM-GR_W performs better than LSTM-GR, with an R2 value of 0.839. Although the
two algorithms have different performances under different strategies, overall, LSTM-GR_W shows better
experimental results on dataset D3.

For dataset D3, we compare the predictive performance of RNN and LSTM-GR_W across the three
temporal feature schemes. The experimental results consistently demonstrate that LSTM-GR_W outper-
forms RNN in terms of prediction accuracy. Specifically, at shorter time lag intervals (fewer time units),
RNN performs slightly worse than LSTM-GR_W, likely due to the inherent limitations of RNNs in capturing
long-term dependencies within the data. As the time lag unit increases, the prediction results of RNN will
be significantly worse than LSTM-GR_W. Overall, LSTM-GR_W performs better than RNN on this dataset.

Regarding dataset D4, there is not much difference in the overall performance of the two algorithms.
Under Scheme A, both algorithms show average performance in prediction, with LSTM-GR showing better
results with an R2 value of 0.541. Under Scheme B, neither algorithm can predict future conditions well, with
LSTM-GR and LSTM-GR_W having R2 values of 0.363 and 0.39, respectively. Under Scheme C, the LSTM-
GR algorithm performs better than LSTM-GR_W, with an R2 value of 0.539. Overall, both algorithms show
average performance on dataset D4. The above experimental results indicate that both the LSTM-GR and
LSTM-GR_W methods can provide reasonable predictions for the vast majority of datasets. Specifically, in
Scheme A, the performance of LSTM-GR is better than that of LSTM-GR_W. However, in Scheme B, LSTM-
GR_W tends to have better predictive performance than LSTM-GR. When facing Scheme C, LSTM-GR_W
achieves better predictive results on datasets D2 and D3, while LSTM-GR performs better on datasets D1 and
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D4. At the same time, we compare with RNN. Both LSTM-GR and LSTM-GR_W show better ion prediction
results than RNN. Overall, the performance of the two methods varies depending on the characteristics of
the dataset. Scheme A performs better than Scheme C, and Scheme B performs worse. This indicates that
the closer the input neural network algorithm is to the predicted time, the better the prediction effect.

Furthermore, we analysed that the D4 dataset covers the smallest range of the four datasets and has
the fewest road nodes. This results in the neural network algorithm being unable to capture more node
information during modeling, leading to poorer prediction results. However, as the range of the data expands
and the number of nodes in the data increases, the neural network algorithm can effectively aggregate
information from adjacent nodes to make more accurate predictions for future data.

Overall, the proposed LSTM-GR_W method shows good predictive performance when facing datasets
with different characteristics, especially for data with longer time spans. The reason is that the proposed
method effectively improves the capture of features for data with long time spans. At the same time,
by reducing the number of neurons in the input layer, the method effectively reduces the complexity
of the model and reduces the requirements of the model for hardware, such as computer memory and
computing power.

5 Conclusion and Future Work
This study introduces a heuristic feature engineering method that extracts significant features from time

series data using non-neural network algorithms. These features are aggregated to reduce model complexity
and computational overhead, enabling the development of a more efficient approach for traffic prediction.
By integrating these heuristic features with neural networks, the method offers flexibility for addressing
diverse spatiotemporal data patterns. The effectiveness of the proposed method was evaluated through
controlled experiments on four real-world datasets, including road sensor data and floating car data. The
results demonstrate that the method not only improves prediction accuracy but also reduces computational
demands, making it suitable for practical traffic applications. This approach provides a complementary
perspective to existing neural network methods, emphasizing the importance of feature engineering in traffic
data analysis.

Future work will focus on extending the method’s capabilities by comparing it with advanced models,
such as Transformer and Informer, when larger datasets become available. Additionally, further exploration
will aim to enhance the method’s adaptability to complex traffic conditions and investigate its integration
with large-scale models.
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