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ABSTRACT: Tomato plant diseases often first manifest on the leaves, making the detection of tomato leaf diseases
particularly crucial for the tomato cultivation industry. However, conventional deep learning models face challenges
such as large model sizes and slow detection speeds when deployed on resource-constrained platforms and agricultural
machinery. This paper proposes a lightweight model for detecting tomato leaf diseases, named LT-YOLO, based on the
YOLOv8n architecture. First, we enhance the C2f module into a RepViT Block (RVB) with decoupled token and channel
mixers to reduce the cost of feature extraction. Next, we incorporate a novel Efficient Multi-Scale Attention (EMA)
mechanism in the deeper layers of the backbone to improve detection of critical disease features. Additionally, we design
a lightweight detection head, LT-Detect, using Partial Convolution (PConv) to significantly reduce the classification
and localization costs during detection. Finally, we introduce a Receptive Field Block (RFB) in the shallow layers of the
backbone to expand the model’s receptive field, enabling effective detection of diseases at various scales. The improved
model reduces the number of parameters by 43% and the computational load by 50%. Additionally, it achieves a mean
Average Precision (mAP) of 90.9% on a publicly available dataset containing 3641 images of tomato leaf diseases, with
only a 0.7% decrease compared to the baseline model. This demonstrates that the model maintains excellent accuracy
while being lightweight, making it suitable for rapid detection of tomato leaf diseases.
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1 Introduction

Tomatoes, as a widely cultivated fruit and vegetable, have an annual global production exceeding 170
million tons, often ranking first among vegetable crops [1]. Tomato cultivation in China has a history of
nearly 100 years [2]. China ranks first in global fresh tomato production and typically ranks second or third
in processed tomato production. Despite challenges such as an aging population and labor shortages, tomato
farming in China still relies heavily on manual labor. This increases the intensity of labor, worsens working
conditions, and raises both time and labor costs. Additionally, tomatoes are vulnerable to various diseases
during growth, which not only hampers their development but also causes significant agricultural economic
losses [3]. Among these diseases, the tobacco mosaic virus (TMV) is a major pathogen affecting tomato
leaves and accounts for a large proportion of disease burden [4]. Since most tomato diseases first appear on
the leaves and then spread to the entire plant, they severely impede the normal growth of tomato plants,
sometimes even halting growth entirely. Therefore, timely detection and identification of tomato leaf diseases
are crucial for the precise application of pesticides and controlling disease spread.

Object detection is fundamental to various computer vision tasks such as instance segmenta-
tion, keypoint detection, and object tracking. In recent years, the rapid advancement of deep learning
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technology [5] has significantly driven progress in object detection, leading to remarkable breakthroughs
and making it a prominent research focus. Object detection is now widely applied in agriculture, including
tasks like automated harvesting, pesticide spraying, and plant disease detection. Among the object detection
algorithms, YOLO (You Only Look Once) stands out for its high speed and accuracy. This paper selects the
YOLOv8 series, a novel and stable version of the YOLO family, for tomato leaf disease detection. However,
due to the specific requirements of this task, the model’s deployment environment is often constrained by
limited computational power, particularly for real-time detection on resource-constrained platforms. This
presents a challenge for model light-weighting. Furthermore, the size disparity of different disease areas on
the leaves, with some diseases being too small for accurate detection, adds to the difficulty. Variable outdoor
lighting conditions during detection also pose challenges. Due to these factors, the base YOLOv8 model
struggles to meet the required standards in tomato leaf disease detection, as its size and detection speed are
insufficient. Therefore, further research and optimization are needed.

To address these issues, this paper proposes a lightweight object detection model, LT-YOLO (Light
Tomato-YOLO), for high-performance detection of tomato leaf diseases in a lightweight model. The main
contributions of this study are as follows:

1. The RVB (RepViT Block) [6] is introduced for feature extraction to achieve a lightweight design in
feature extraction.

2. In the feature extraction backbone, the EMA (Efficient Multi-Scale Attention) [7] mechanism is
applied to certain blocks. This allows the model to maintain the channel dimensions while learning effective
channel descriptions and generating better pixel-level attention for producing high-level feature maps.

3. For the object classification head, a lightweight detection head is designed by integrating the Partial
Convolution (PConv) [8]. This reduces computational complexity and operational costs significantly, albeit
with a slight decrease in accuracy.

4. In the shallow layers of feature extraction, the Receptive Field Block (RFB) [9] is added to expand the
receptive field and address the detection of diseases of varying sizes.

2 Related Work
Object detection techniques based on handcrafted feature extraction faced significant bottlenecks

around 2010. With the maturation of deep learning technologies, object detection methods based on
Convolutional Neural Networks (CNNs) were first proposed in 2014 [10,11]. Since then, CNN-based object
detection techniques have advanced rapidly and are now broadly divided into two categories: multi-stage
object detection and single-stage object detection. Multi-stage models follow a coarse-to-fine detection
process, initially improving recall rates and then refining the localization for greater precision, typically
achieving higher accuracy. In contrast, single-stage object detection models detect all objects in one inference
step, offering superior speed.

2.1 Multi-Stage Object Detection
Prominent examples of multi-stage object detection include RCNN, Faster-RCNN [12], and SPPNet [13].

Significant progress has been made in optimizing multi-stage object detection models. For instance, Peng
et al. [14], building on Faster-RCNN, introduced a multi-network adaptive distillation method and designed
an efficient, end-to-end incremental object detection model. This approach addresses the problem of
catastrophic forgetting [15] in deep learning models, enabling the model to learn new knowledge without
forgetting previously acquired knowledge. Ren et al. [16] replaced the fully connected layers in Fast/Faster-
RCNN’s classification head with convolutional layers. Their experiments demonstrated that using a deeper
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ConvNet as the feature classifier enhances detection performance. Sharma et al. [17] based on Faster-RCNN,
utilized saliency detection, proposal generation, and bounding box regression to improve detection and loss
functions, proposing SGFr-RCNN, which achieved higher mean accuracy on public datasets such as PASCAL
VOC 2007. Wang et al. [18] replaced the Visual Geometry Group Network (VGG) backbone in the Faster R-
CNN model with Res2Net101 to enhance the receptive field representation capability of each network layer.
This modification improved the network’s mAP@0.5 to 71.7%, representing a 3.3% increase compared to the
original Faster R-CNN model.

2.2 Single-Stage Object Detection

YOLO [19], SSD (Single Shot MultiBox Detector) [20], and RetinaNet [21] are exemplary single-stage
object detection models. Zhang et al. [22] proposed a lightweight underwater object detection method
based on YOLOv4, which incorporates MobileNetV2 and depthwise separable convolution to reduce the
number of model parameters and the overall model size. The method integrates attentional feature fusion to
achieve lightweight target detection in marine environments. Cui et al. [23] replaced the backbone network
of YOLOv4-Tiny with the lightweight Enhance ShuffleNet to extract pinecone features. By introducing a
squeeze-and-excitation feature pyramid network for multi-scale information fusion and retaining only a
26 × 26 detection head for pinecone prediction, the computational cost was reduced to 17.35% of YOLOv4-
Tiny. Li et al. [24] designed a mobile-based Apple-YOLO model by incorporating the double-branch
Apple-CSP module and a Focus layer with depthwise separable convolution and an attention mechanism
module into YOLOv5, effectively reducing the model’s Floating Point Operations (FLOPs) and achieving an
mAP of 96.04%. Wang et al. [25] pruned the convolution kernels of the YOLOv4-tiny model and integrated
dilated convolution layers into the residual module. Additionally, they introduced the Receptive Field Block
(RFB) module, which mimics the human visual receptive field to expand the model’s receptive field and
enhance feature extraction efficiency. By combining spatial and channel attention via the convolutional block
attention module, they further improved the model’s ability to capture effective features and reduced the
adverse impact of noise on performance. Zhai et al. [26] addressed SSD’s lack of feature complementarity
between feature layers and its poor performance in small object detection by proposing an improved SSD
algorithm based on DenseNet and feature fusion, increasing detection accuracy by 3.1% mAP on VOC
2007. Hu et al. [27] selected a scaling factor to lightweight the YOLOv7 model. By integrating ECA and CA
attention mechanisms with ELAN-B3 and DownC modules, they developed a new lightweight model called
Multimodule-YOLOv7-L, which provides valuable insights for designing intelligent robots for inter-row
weed control. Ren et al. [28] designed a lightweight feature enhancement backbone network (LFEBNet) to
reduce computational costs and constructed a Channel and Position Enhanced Attention (CPEA) module. By
embedding the CPEA module into the backbone network, they effectively captured positional information
to more accurately locate target positions. Based on YOLOv5, they proposed an efficient lightweight network
called YOLO-Lite for SAR ship detection.

In this study, we selected the YOLOv8 model for the following reasons: 1. For lightweight object
detection tasks, single-stage object detection models inherently outperform multi-stage models in terms of
model size and detection speed. 2. The YOLO series of single-stage object detection models offers compre-
hensive documentation and strong community support, which greatly facilitates model usage, debugging,
and deployment, thereby aiding the execution of our experiments. 3. YOLOv8 has been extensively validated
through practical applications, demonstrating its reliability and stability.



4304 Comput Mater Contin. 2025;82(3)

3 Proposed Methods

3.1 YOLOv8n
The basic structure of YOLOv8n is illustrated in Fig. 1. Aside from the input layer, the YOLOv8n object

detection model is primarily composed of three sections: the BackBone, which extracts feature information;
the Neck, which facilitates feature fusion and interaction across different levels; and the Head, responsible
for object localization and classification. The Conv module consists of standard convolution blocks, batch
normalization layers, and the SiLU activation function. The Conv block is typically used to apply convolution
to input images or feature maps, reducing resolution while increasing the number of channels. The C2f
module is designed for deep feature extraction. It preserves the size of the input and output feature maps,
while performing lightweight feature extraction through its internal Bottleneck residual structure. Finally,
the Head layer uses three decoupled detection heads corresponding to feature maps of different scales,
outputting the predicted object locations and classification information.

Figure 1: The YOLOv8n structural model consists of three main components: Backbone, neck, and head
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3.2 Improvements to YOLOv8n
To address the challenges encountered by the basic YOLOv8n model in tomato leaf disease detection,

and to meet the lightweight requirements for agricultural applications, we developed a lightweight LT-YOLO
object detection network. As shown in Fig. 2, this algorithm includes four key improvements. First, we
replaced the C2f feature extraction block with the C2fRVB, achieving better feature extraction performance
with the same number of parameters and computational complexity. Second, we applied the EMA attention
mechanism to the deeper layers of the feature extraction network to improve the capture of key feature maps
with minimal computational cost, we refer to it as C2fRVBE.Additionally, we significantly reduced the size
of the detection heads using PConv (partial convolution), resulting in only a slight loss in accuracy. Finally,
we incorporated the RFB module into the shallow layers of the feature extraction network to expand the
model’s receptive field, enabling better detection of diseases across various sizes.

Figure 2: Improved YOLOv8n model

3.3 RepViT Block
Recently, lightweight vision transformers (ViTs) have demonstrated superior performance and lower

latency compared to lightweight convolutional neural networks (CNNs) on resource-constrained mobile
devices [29]. The block structures of lightweight ViTs typically include separate token mixers and channel
mixers [30]. Building on this insight, the RVB (RepViT Block) splits the channel mixer and token mixer
found in the original MobileNetV3 block to emulate the behavior of existing lightweight ViTs.

As depicted in Fig. 3a, the original MobileNetV3 block employs 1 × 1 expansion convolutions and 1 × 1
projection convolutions to facilitate channel interaction, effectively serving as a channel mixer. Subsequently,
it utilizes depthwise (DW) convolutions following the 1 × 1 expansion convolution to amalgamate spatial
information, acting in the capacity of a token mixer. This configuration integrates the channel mixer
with the token mixer. Within the RVB block, the depthwise convolution is repositioned upwards, and
the SE (squeeze-and-excitation) block, which is predicated on spatial data, is also relocated prior to the
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expansion convolution. Ultimately, structural reparameterization techniques [31] are applied to the DW
layer to augment the model’s learning capability without incurring additional computational expenses
during inference.

Figure 3: (a) Original MobileNetV3 block; (b) RepViT block

3.4 Efficient Multi-Scale Attention
There are three widely recognized attention mechanisms: channel attention, spatial attention, and

a combination of both [7]. EMA (Efficient Multi-Scale Attention) is inspired by attention mechanisms
such as SE (Squeeze-and-Excitation) [32], CBAM (Convolutional Block Attention Module) [33], and CA
(Coordinate Attention) [34], observing that cross-dimensional interaction aids in predicting channel or
spatial attention. Based on the fundamental structure of the CA block, the design of the EMA block is
illustrated in Fig. 4.

Compared to CA, EMA introduces a unique cross-spatial learning capability, offering a method for
cross-spatial information aggregation along different spatial dimensions, leading to richer feature aggrega-
tion. It not only encodes inter-channel information to adjust the importance of different channels but also
retains precise spatial structure information within the channels. As shown in Fig. 5, we replaced the SE block
in the original RVB with EMA attention, creating the C2fRVBE module. To reduce additional computational
overhead, EMA is applied only to the deeper layers of the BackBone.
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Figure 4: The specific structure of the EMA block, with the blue box indicating its unique cross-spatial learning
component
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Figure 5: Incorporating EMA into RepViT Block

3.5 Lightweight Detection Head Based on PConv
In neural network training, a key factor affecting network speed, apart from FLOPs (Floating Point

Operations), is FLOPS (Floating Point Operations Per Second), which measures effective computational
speed. Generally, network latency is related to both FLOPs and FLOPS. A primary cause of low FLOPS is
frequent memory access [8].

Latenc y = FLOPs
FLOPS

(1)

To address this issue, PConv (Partial Convolution) was proposed. PConv reduces both FLOPs and mem-
ory access, thereby increasing the convolutional operation’s FLOPS. In convolutional neural networks, feature
maps across different channels often exhibit high redundancy [8]. However, few approaches effectively exploit
this redundancy in a simple and efficient manner.

As illustrated in Fig. 6, PConv applies standard convolution to only a portion of the input feature
map’s channels, leaving the remaining channels unchanged. Typically, PConv selects the first cp channels to
represent the entire feature map. Record the input height as h, width as w, and convolution kernel size as k,
the FLOPs of a PConv operation are given by:

h ×w × k2 × c2
p (2)

Record the number of input channels as c, under a compression ratio of r = c p
c =

1
4 , PConv’s FLOPs

are only 1
16 of those of a standard convolution, and its memory access requirement is similarly reduced. It

requires only 1
4 of the memory access compared to a standard convolution [8].

As shown in Fig. 7, YOLOv8n employs a decoupled detection head, where Localization loss (Bbox.Loss)
and Classification (Cls.Loss) are computed separately, and their results are summed as the final loss. Each
part of the decoupled head consists of two 3 × 3 convolutional blocks and a final 1 × 1 convolution.
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Figure 6: (a) Conventional convolution; (b) Partial convolution

Figure 7: YOLOv8 detection head

Our improved detection head is shown in Fig. 8. In the initial stage of the decoupled head, we applied
PConv with a 3 × 3 kernel and a compression ratio. This is followed by a 1 × 1 convolutional block and then
a standard 1 × 1 convolution. We conducted comparison experiments to select the optimal value for the
compression r, and results showed that the improved lightweight detection head significantly reduces the
number of parameters and computational cost with only minimal loss in accuracy.

Figure 8: LT-detect detection head
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3.6 Receptive Field Block
The Receptive Field Block (RFB) is a novel module inspired by the structure of receptive fields (RFs)

in the human visual system. It was proposed to enhance the distinctiveness and robustness of features by
considering the relationship between the size of the receptive field and its eccentricity.

As shown in Fig. 9, the RFB employs a multi-branch structure that combines different sizes of convolu-
tional kernels and dilated convolution layers. This design simulates the human visual system’s ability to focus
on objects of varying sizes, thereby expanding the receptive field of the model. This not only increases the
receptive field size but also strengthens the detection capability for small disease spots, effectively extracting
features of different sizes.

Figure 9: Multi-branch receptive field of the receptive field block

As Fig. 10, the RFB we utilized includes three branches with dilated convolutions, with dilation rates of
3, 3, and 5, respectively. In the fourth branch, a standard 3 × 3 convolution is used to refine the extraction of
feature details, and its results are concatenated with the outputs of the other convolutions. Lastly, a residual
connection is applied in the fifth branch.
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Figure 10: The specific structure of receptive field block

4 Experiment
In these experiments, we used a server equipped with an Intel Platinum 8255C CPU (2.50 GHz) and an

RTX 3080 (10 GB) GPU as the experimental environment. The operating system was Linux Ubuntu 20.04.
Both the training and inference phases used an input resolution of 448 × 448, with a batch size set to 16.
The training was conducted for a total of 500 epochs, with a patience parameter of 40, meaning the training
would stop if no improvement in accuracy was observed for 40 consecutive epochs. The chosen optimization
algorithm was SGD (Stochastic Gradient Descent), with an initial learning rate of 0.01.

4.1 Dataset
The dataset used in this study comes from Roboflow’s open-source pest and disease dataset [35]. The

original dataset contains nine categories related to tomato leaf pests and diseases, including eight disease/pest
categories and one healthy category. To focus specifically on tomato leaf diseases, we filtered out the pest
categories, leaving six disease categories and one healthy category. The diseases included are Early Blight,
Late Blight, Yellow Leaf Curl Virus, Leaf Mold, Mosaic Virus, and Septoria. In total, 3641 images were used,
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including the healthy leaf category. The dataset was split into training, validation, and testing sets at a ratio
of 8:1:1. The six diseases in the dataset are shown in the Fig. 11.

Figure 11: Six types of tomato leaf diseases

4.2 Evaluation Metrics

The primary metrics used to evaluate model size in this study are Parameters(Params) and Floating
Point Operations (FLOPs). Parameters is a key indicator of spatial complexity, directly impacting model
efficiency. Floating Point Operations represent the model’s temporal complexity, determining how long it
takes the network to complete tasks.

Additionally, precision, recall, and mAP@0.5 are selected because they are widely used metrics in
the object detection domain, effectively evaluating the model’s detection accuracy and recall ability. The
selection of evaluation metrics should align with the study’s specific goals and challenges. Our focus on
lightweight and high-speed detection justifies the use of these metrics. Precision is the proportion of correctly
predicted positive samples among all samples predicted as positive, reflecting the model’s accuracy. Precision
is calculated as:

Precision = TP
TP + FP

(3)

where TP (True Positive) is the number of correctly predicted positive samples, and FP (False Positive) is the
number of incorrect positive predictions. Recall is the proportion of correctly predicted positive samples out
of all actual positive samples, reflecting the model’s ability to capture positive cases. Recall is calculated as:

Recal l = TP
TP + FN

(4)
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where FN (False Negative) is the number of incorrectly predicted negative samples.

AP@0.5 = 1
n

n
∑
i=1

Pi =
1
n

P1 +
1
n

P2 + ⋅ ⋅ ⋅ +
1
n

Pn (5)

mAP@0.5 = 1
N

N
∑
k=1

AP@0.5k (6)

AP@0.5 refers to the Average Precision for a specific category when the Intersection over Union (IoU)
threshold is set to 0.5. In object detection, IoU measures the overlap between two bounding boxes, calculated
as the ratio of their intersection to their union. AP@0.5 means that a prediction is considered correct if the
IoU between the predicted and ground truth boxes is at least 0.5. The mAP@0.5 (mean Average Precision at
IoU 0.5) is the average AP@0.5 across all categories.

4.3 Comparative Experiments
To further evaluate the performance of LT-YOLO, we compared it with seven representative models

in the field of object detection: Faster R-CNN, SSD, RT-DETR, YOLOv5n, YOLOv8n, YOLOv10n, and
YOLO11n. The evaluation focused on two main aspects: model size and detection capability. As shown
in Table 1.

Table 1: Model performance comparison

Model P(%) R(%) mAP@0.5(%) Params(M) FLOPs(G)
Faster-RCNN 91.5 81.6 90.1 137.1 370.2

SSD 90.2 81.7 91.4 24.5 30.7
RT-DETR(L) 91.5 78.2 86.9 26.6 51.1

YOLOv5n 88.4 82.1 89.5 2.5 3.5
YOLOv8n 90.8 81.8 91.6 3.0 4.0
YOLOv10n 88.1 80.5 90.3 2.7 4.0
YOLO11n 89.5 82.9 91.7 2.6 3.1

LT-YOLO(Ours) 88.1 83.4 90.9 1.7 2.0

The experimental results demonstrated that the LT-YOLO model has significantly fewer parameters and
lower computational complexity than the other models, with counts of 1.7 M parameters and 2.0 G FLOPs,
thereby meeting the lightweight requirements. Compared to the baseline model YOLOv8n, LT-YOLO
reduces parameters by approximately 43.3% and FLOPs by 50%, while only sacrificing 0.7% in mAP@0.5.
Furthermore, LT-YOLO shows an improvement of 1.6% in recall. When compared to the latest second-best
model, YOLO11n, LT-YOLO decreases mAP by 0.8%, along with reductions of 34.6% in parameters and
35.5% in computational complexity, while still maintaining excellent performance.

4.4 Training Process Analysis
Additionally, we tracked the training processes of both the improved model and the baseline model

as Fig. 12. The experiments revealed that the training of the baseline model, YOLOv8n, stopped at 314
epochs, achieving convergence at 274 epochs. In contrast, the LT-YOLO model trained for 318 epochs, with
convergence occurring at 278 epochs. This indicates that the modifications made to the model did not result
in a significant increase in training duration.
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Figure 12: The mAP during training process of the base model and the improved model

4.5 Ablation Study
To assess the effectiveness of each improvement module, we conducted a series of experiments by

systematically combining the modules. The primary metrics for the ablation study included Precision, Recall,
mAP@0.5, Params, and FLOPs. As shown in Table 2.

Table 2: Ablation experiment results

RVB EMA LT-Detect RFB P(%) R(%) mAP@0.5 Params(M) FLOPs(G)
90.8 81.8 91.6 3.0 4.0

✓ 89.8 81.7 90.4 2.3 3.1
✓ ✓ 90.1 82.8 90.9 2.3 3.2

✓ 88.5 82.6 90.1 2.4 2.7
✓ 90.6 83.5 91.8 3.1 4.1

✓ ✓ ✓ 88.4 82.2 90.7 1.7 1.9
✓ ✓ ✓ ✓ 88.1 83.4 90.9 1.7 2.0

From the table, it is evident that each of the designed modules contributes to either an increase in
mAP@0.5 or a reduction in parameters and computational load. The first row represents the performance of
the baseline model, YOLOv8n, without any modifications. Replacing the C2f module with RVB resulted in
an overall reduction of approximately 23.3% in parameters and 22.5% in computational load. The integration
of the EMA attention mechanism within the RVB module and its application to deeper layers improved
mAP@0.5 by 0.5%. Utilizing LT-Detect for the lightweight detection head led to a 20% decrease in parameters
and a 32.5% decrease in computational load. Additionally, the incorporation of RFB in the shallow feature
extraction network resulted in a 0.2% increase in mAP@0.5. Overall, the enhancements to the feature
extraction block (RVB) and the detection head (LT-Detect) successfully achieved the goal of lightweight
design, while the inclusion of EMA and RFB Ensured good detection capabilities.

We conducted a detailed comparison experiment regarding the compression ratio (r) of PConv within
the detection head. A comprehensive explanation of the ratio can be found in Section 3.5. We set the
compression ratios for the improved detection head’s PConv to 3, 4, 5, and 6, and conducted experiments
accordingly. The results are as follows (Table 3).
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Table 3: Experiments with different values of r

r P(%) R(%) mAP@0.5 Params(M) FLOPs(G)
None 90.8 81.8 91.6 3.00 3.96

3 88.8 82.8 90.2 2.46 2.71
4 88.5 82.6 90.1 2.42 2.68
5 88.0 80.1 88.8 2.40 2.66
6 87.8 80.0 88.6 2.39 2.65

We observed that setting r to 4 resulted in a noticeable reduction in both parameters and computational
load compared to r= 3, without significant loss in detection performance. Conversely, when r= 5, the decrease
in parameters and computational load relative to r= 4 was minimal, yet it led to a substantial drop in detection
capability. Therefore, we ultimately selected r = 4 for the PConv in our detection head as the optimal choice.

5 Conclusion

This study presents modifications to the YOLOv8n network structure, focusing on enhancing feature
extraction, receptive field size, and the detection head. Additionally, a novel Efficient Multi-Scale Attention
(EMA) mechanism is incorporated into the feature extraction block. Compared to the original model, these
improvements result in approximately 43.3% reduction in parameters and 50% reduction in computational
load. Ablation experiments confirm the effectiveness of these enhancements. The revised model achieves a
mean Average Precision (mAP@0.5) of 90.9% on a publicly available dataset comprising 3641 images across
seven categories of tomato leaf diseases. Furthermore, the improved model maintains strong detection capa-
bilities while significantly reducing its size, effectively addressing the computational limitations encountered
in resource-constrained platforms and agricultural machinery application.

Moreover, despite its excellent detection capabilities, this model still has certain limitations. Firstly,
when detecting images containing multiple leaves, the model tends to mistakenly identify the healthy portion
of a diseased leaf as an independent healthy leaf. Secondly, we observed that, compared to other types of
diseases, Yellow Leaf Curl Virus has a higher visual similarity to healthy leaves, resulting in a lower detection
rate for this disease. Lastly, this model is specifically designed for detecting tomato leaf diseases, and further
research is required to address the detection of tomato leaf pests. This will enable the development of a model
capable of simultaneously detecting both diseases and pests in tomato leaves.
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