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ABSTRACT: Underwater target detection in forward-looking sonar (FLS) images is a challenging but promising
endeavor. The existing neural-based methods yield notable progress but there remains room for improvement due
to overlooking the unique characteristics of underwater environments. Considering the problems of low imaging
resolution, complex background environment, and large changes in target imaging of underwater sonar images, this
paper specifically designs a sonar images target detection Network based on Progressive sensitivity capture, named
ProNet. It progressively captures the sensitive regions in the current image where potential effective targets may exist.
Guided by this basic idea, the primary technical innovation of this paper is the introduction of a foundational module
structure for constructing a sonar target detection backbone network. This structure employs a multi-subspace mixed
convolution module that initially maps sonar images into different subspaces and extracts local contextual features using
varying convolutional receptive fields within these heterogeneous subspaces. Subsequently, a Scale-aware aggregation
module effectively aggregates the heterogeneous features extracted from different subspaces. Finally, the multi-scale
attention structure further enhances the relational perception of the aggregated features. We evaluated ProNet on three
FLS datasets of varying scenes, and experimental results indicate that ProNet outperforms the current state-of-the-art
sonar image and general target detectors.
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1 Introduction

Underwater target detection aims to identify targets in underwater environments. This study has
consistently attracted interest because of its broad applications in areas like oceanography [1], underwater
navigation [2], and aquaculture [3]. Compared to light and electromagnetic waves, the attenuation of acoustic
waves during observation and measurement in water is much smaller. Therefore, sonar devices that utilize
the propagation characteristics of sound waves in water have become some of the most effective underwater
detection equipment available today. Among these, forward-looking sonar (FLS) is widely used because of its
advantages such as fast imaging speed and independence from platform movement. FLS emits sound waves
and receives echoes to map the pixel intensity values in sonar images. Strong echoes correspond to high
pixel intensity, while weak echoes exhibit low pixel intensity. By processing these FLS sonar images, rapid
localization and detection of underwater targets can be achieved.

A conventional approach to target detection in sonar imaging involves the manual design of template
matching rules that are informed by prior knowledge [4–7]. The matching methods include setting grayscale
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threshold, brightness, shadow areas and combining multiple templates, etc. This process necessitates the pre-
designation of the most effective and sensitive features pertinent to the specific task at hand. While such
methods can yield satisfactory detection performance in particular scenarios, they are inherently constrained
by low transferability and generalization across varied contexts. Moreover, the challenge of acquiring suffi-
ciently accurate prior knowledge exacerbates these issues, as it remains theoretically unattainable to achieve
a perfect understanding of all possible variations within sonar data. Consequently, this gap underscores a
significant potential for performance enhancement in existing methodologies.

As the field evolves, researchers are increasingly recognizing the necessity to move beyond traditional
template-based approaches. Recent advancements in deep learning techniques, particularly those employing
neural networks, have shown great promise in improving the robustness and adaptability of target detec-
tion systems. By harnessing large datasets and leveraging complex algorithms, deep learning models can
autonomously learn intricate patterns and features from raw sonar data, thereby mitigating the dependency
on predefined templates. Notably, in visual target detection tasks, both one-stage algorithms (such as SSD [8]
and YOLO [9]) and two-stage algorithms (such as Faster R-CNN [10] and Mask R-CNN [11]) have drawn
significant attention from researchers due to their respective advantages in computational complexity and
detection accuracy.

Inspired by this, many scholars have transferred relevant ideas from vision-based target detection
methods to sonar image target detection tasks, achieving certain results. For example, References [12–15]
has combined YOLOv2 [16], YOLOv3 [17], and YOLOv5 [18] with other neural structures to automatically
learn effective high-dimensional features in different environments. However, this paper argues that the
aforementioned deep learning methods still have room for performance improvement because they do not
fully consider the characteristics of underwater tasks. Compared to general vision-based target detectors,
there are several significant issues specific to sonar image-based target detectors.

• Low imaging resolution: The resolution of underwater sonar imaging is generally low, which results
in the loss of detail and structural texture information, making it very difficult to distinguish between
different targets. Meanwhile, due to the unique nature of the underwater environment, the boundaries
of the targets are often not clear, affecting the accuracy of target recognition.

• Complex background environment: The current underwater environmental background is influenced
by various factors such as water temperature, water quality, and depth. These factors can increase the
reflection noise during the sound wave propagation process, adding extra difficulties to detection. This
noise not only obscures the target signal but may also disguise itself as a target, further increasing the
complexity of detection.

• Impact of incident angle on imaging effect: Due to the limitations of the beam’s incident angle, even in
the same hydrological environment, the imaging effect of the same target can vary dramatically under
different orientations. This variation may lead to significant differences in the target’s shape, size, and
brightness, posing challenges to the stability and accuracy of automated detection systems.

To solve the above problems as much as possible, this paper specifically designed a sonar image target
detection network named ProNet. The ProNet adopts a progressive way to gradually focus on the sensitive
features of each stage of the backbone network, thereby improving the adaptability of the network to different
target features and noise environments. Specifically, the network first decomposes the input features of
each stage into multiple heterogeneous subspaces, processes these subspaces in parallel using different
local receptive fields, and finally aggregates the effective information obtained from different subspaces. By
repeatedly performing this operation in the network, the capture of sensitive areas of features is gradually
achieved. The primary contributions of this paper are outlined below:
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• We propose a basic block for the backbone network, which can decompose input features into multiple
heterogeneous subspaces, process these subspaces in parallel using different local receptive fields, and
finally aggregate the effective information obtained from different subspaces.

• Based on the proposed basic blocks, we designed a sonar image target detection network named ProNet.
We conducted experiments on different FLS image datasets MDD and WHD, and the experimental
results showed that our proposed network performed better than existing state-of-the-art methods.

2 Related Work
Early sonar image target detection methods used manually designed features for template matching to

achieve target localization and segmentation [19], by comparing whether the pixel grayscale of sonar images
exceeds a set detection threshold to implement a constant false alarm rate algorithm [20]. For instance,
Dobeck et al. [21] utilized prior knowledge to create a target template with high brightness areas, shadow
areas, and front and rear background areas, and conducted matched filtering detection on regions of interest
(ROI) in large-scale side view sonar images. Subsequently, utilizing the intensity, shape, and size of target
highlights and shadows, design features were created, and K-Nearest Neighbor classification was employed
for secondary confirmation of ROI, leading to the recognition of mine-like objects. Williams [22] developed
an unsupervised rapid target detector for large-scale synthetic aperture sonar images, utilizing a cascaded
architecture and integral images to accelerate detection speed, achieving near real-time detection. Hurtós
et al. [23] proposed a model suitable for cascading front view acoustic images. Each layer of the model
creates a template and uses template matching method to achieve target discrimination of front view acoustic
images. Although these methods can effectively identify targets under certain conditions, their limitations
are evident. For example, manual parameter adjustments are often required, relying on researcher’s prior
knowledge, and their adaptability to complex scenes is limited, making it difficult to achieve automatic
learning and optimization.

The mainstream sonar image target detection DL-based methods can be divided into two-stage methods
and one-stage methods. The two-stage method typically first generates a series of candidate regions in the
first stage, which may contain the target to be detected; Then, in the second stage, these candidate regions
are classified and the bounding boxes are fine-tuned. For instance, Jiang et al. [24] proposed an active target
detection method for sunken ships detection that selects key images as training samples. This improves
performance and reduces labeling costs, but is time-consuming. Furthermore, Zhang et al. [25] proposed
a self-training method that builds and optimizes a backbone network on the classification dataset. Using
this network, they created an automated detector that achieved good results on a small sonar image dataset.
Fan et al. [26] designed a feature extraction network that uses residual blocks instead of the backbone in
mask-based convolutional neural networks, reducing network parameters without affecting accuracy. Long
et al. [27] developed a denoising auxiliary network to reduce speckles in FLS images. They also introduced
a feature selection strategy using scene priors to eliminate features that don’t match the target size, reducing
redundant anchor points and improving detection speed. Although two-stage detection methods can handle
targets of different scales and shapes with high accuracy, their detection speed is usually inferior to that of
one-stage methods.

To further meet the real-time requirements of sonar detection, researchers focus on exploring one-stage
methods to achieve sonar image detection, which considers the detection task as a whole regression problem.
Kong et al. [12] proposed a dual path feature fusion network for feature extraction, which achieves robust and
real-time sonar target detection. Gao et al. [28] embedded a coordinate attention mechanism in the YOLOv5
backbone network and used transposed convolution in the neck network to achieve higher upsampling
performance, thereby improving detection accuracy. Qin et al. [29] introduced an attention mechanism into
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the backbone network of the YOLOV7 model and integrated Multi-GnBlock blocks in the Neck, improving
the model’s ability to handle complex backgrounds in sonar images. As shown in Table 1, we organized the
relevant methods mentioned above.

Table 1: Summary of related works

Method Type Features Limitations

[19] Template matching based on pixel
grayscale threshold comparison

These methods depend on prior knowledge, which limits
their adaptability to complex scenes. As a result, achieving
automatic learning and optimization becomes challenging.

[20] Target detection using constant
false alarm rate algorithm

[21] Handcrafted sonar image
target detection

Creating a target template with
high brightness areas, shadow

areas, and front and rear
background areas

[22] Utilizing a cascaded architecture
and integral images to enable

real-time detection
[23] Using model suitable for

cascading images and creating a
multi-layer template

[24] Introducing an iterative training
mechanism to improve detection

performance

Although two-stage detection methods can handle targets
of different sizes and shapes with high accuracy, their
detection speed is usually inferior to that of one-stage

methods
[25] Two-stage detection

method based on deep
learning

Proposing a self-training strategy
that automatically constructs and

optimizes a backbone network
[26] Designing a feature extraction

network based on residual blocks
to reduce network parameters

without affecting accuracy
[27] Introducing a denoising auxiliary

network and filing out the
size-mismatched feature levels

[12] Proposing a dual path feature
fusion network to reach robust

and real-time detection

The detection accuracy is slightly inferior to the two-stage
methods

[28] Combining transposed
convolution and YOLOv5 for

higher up-sampling performance
[29] One-stage detection

method based on deep
learning

Combining Multi-GnBlock
blocks and YOLOv7 to handle
complex backgrounds in sonar

images
[30] Lightweight downsampling and

feature extraction, focusing on
high-resolution shallow layers,

enhance detection accuracy and
speed.

Ours Pronet Proposing a novel sonar image
target detection method based on

progressive sensitivity capture

Improving the performance of existing one-stage methods

On the one hand, the recent YOLOv10 [31] has achieved excellent performance in general target detec-
tion tasks through various component optimization strategies, providing a new foundational technology for
sonar image target detection tasks. On the other hand, the recent although DL-based networks have made
great progress in sonar image target detection, the neglect of effectively utilizing rich spatial information
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and their interaction hinders further improvement of these methods. Therefore, this paper builds a novel
target detection network for FLS sonar images based on YOLOv10. The network decomposes the features of
each stage into multiple heterogeneous subspaces, uses multiple kernel sizes to process the subspace features
separately, and obtains multi-scale spatial features with rich spatial information. Then, a convolutional
modulation network [32] is used to execute the relevant interaction of these subspaces, thereby achieving
higher accuracy in FLS image target detection.

3 Proposed Method

3.1 Overall Architecture

Our proposed underwater forward-looking sonar image target detection network based on progressive
sensitivity capture, named ProNet, has its overall architecture as shown in Fig. 1. The design of the archi-
tecture is inspired by the ViT [33] and YOLOv10 [31]. We designed a backbone for feature extraction and
a detection head for outputting detection results, where an input FLS image is processed to produce an
output FLS image with target classes and detection boxes. Specifically, the backbone network we designed
is composed of basic blocks in four stages, with adoption rates of {4, 8, 16, 32} and layer depths as
{L1 , L2, L3, L4}. The detailed structure of each basic block is shown in Fig. 2, which will be discussed in the
following sections.

Figure 1: Overall architecture of our proposed underwater forward-looking sonar images target detection network,
called ProNet. It includes a backbone for feature extraction and a detection head for generating output detection results,
transforming input FLS images into output images with target classes and detection boxes. The backbone has four stages,
each made up of a basic block. The sampling rates for these stages are {4, 8, 16, 32}, with corresponding layer depths
of {L1 , L2 , L3 , L4}
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Figure 2: The detailed of the basic block proposed in this paper. (a) The workflow of the proposed basic block.
(b) and (c) are the module descriptions of multi-subspace mixed convolution (MSMC) and scale-aware aggregation
(SAA), respectively. In the figure, W-MSA denotes Window Multi-Head Self Attention and SW-MSA represents Shifted
Window Multi-Head Self Attention. DW-Conv means depth-wise convolution

3.2 Basic Blocks

The basic block structure we proposed is shown in Fig. 2, each basic block is composed of the
feature reconstruction proposed in this paper and the functional modules W-MSA and SW-MSA of Swin
Transformer [34]. The basic idea of the feature reconstruction process in this paper is to highlight the
sensitive regions within the features that may contain targets while filtering out some noise that interfere
with subsequent target detection. In terms of specific implementation, this paper constructs a dual-stream
network, where branch one consists of a linear layer aimed primarily at accelerating the convergence of
the network during the training phase. Branch two is composed of a linear layer, a Multi-Subspace Mixed
Convolution (MSMC) module, and a Scale-Aware Aggregation (SAA) module. We have provided detailed
descriptions of the structures of the MSMC and SAA modules in Fig. 2. The design idea of this branch is
to first use the MSMC module to map the input features into N different subspaces, where convolutional
filters with various local receptive fields are employed to extract local associative features at different scales
from these N subspaces. Subsequently, for the features obtained from these N subspaces, we utilize the
SAA module for group cross-fusion, and finally, the resulting features are element-wise multiplied with
the features obtained from the first branch. The subsequent MSA structure is used for further relational
perception of the aggregated features.

As shown in Fig. 2a, after capturing multi-scale spatial features using MSMC and aggregating them with
SAA, we obtain an output feature map M, which we call a reconstructor. Then, through the scalar product,
we use this reconstructor to reconstruct the value V. For the input feature X ∈ RH′×W′×C′ , we calculate the
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output Z ∈ RH′×W′×C′ as follows:

Z = M ⊙ V (1)
V =Wv X (2)
M = SAA(MSMC(Ws X)) (3)

where ⊙ is element level multiplication, Wv and Wv are the weight matrices of the linear layer. The value of
the reconstructor M is determined by MSMC and SAA, and it dynamically adjusts with different inputs to
achieve adaptive reconstruction, which focuses on the sensitive areas of the feature maps.

3.2.1 MSMC
We proposed the MSMC to obtain various spatial features across multiple scales. Furthermore, MSMC

can expand the receptive field using a large convolutional kernel, enhancing its ability to model long-range
dependencies. As shown in Fig. 2b, MSMC divides the input channel into N subspaces and introduces
multiple convolutions of different kernel sizes to process these subspace features in parallel. We set an initial
kernel size of 3 × 3 and gradually increase it by 2 in the subsequent subspaces. In this way, the feature maps
within each subspace adaptively filter background information and focus on sensitive features of different
granularities. This process can be expressed as follows:

MSMC(X) = Concat(DWk1×k1(x1), ..., (DWkn×kn(xn)) (4)

where x = [x1 , x2, ..., xn] represents split up the input feature x into multiple subspaces in the channel
dimension, and ki ∈ {3, 5, ..., 2N − 1} represents a monotonic increase of 2 in kernel size.

3.2.2 SAA
We have introduced a SAA module for information interaction between multiple subspace features. As

shown in Fig. 2c, we select a channel from each subspace to construct a group and then use convolution
operations to perform feature fusion within the group, thereby increasing the diversity of multi-scale spatial
features. Furthermore, we use additional convolutions to perform cross group fusion. This process can be
expressed as follows:

M =Winter([G1 , G2, ..., GM]) (5)
Gi =Wintra([H1 , H2, ..., HM]) (6)
Hi

j = DWConvki×k j(Hx i
j) ∈ R

H×W×1 (7)

where Winter and Wintra are the weight matrices of point-wise convolution. j ∈ {1, 2, ..., N} and i ∈
{1, 2, ..., M}, where N and M = C

N represent the number of subspaces and groups, respectively. Here, H j ∈
R

H×W×M denotes the j−th subspace with depth-wise convolution, and Hi
j represents the i−th channel in the

j−th subspace.

3.2.3 W-MSA and SW-MSA
The output feature maps Z obtained from the feature reconstruction of the first part of the basic block is

input into the second part, which consists of W-MSA and SW-MSA modules connected head-to-tail. W-MSA
and SW-MSA are the main functional modules of the Swin Transformer [34]. Unlike traditional Transformer
that compute attention globally, resulting in high computational complexity, the Swin Transformer limits
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attention within each window through W-MSA and SW-MSA. It also introduces operations such as windows
shift for inter-window information interaction, which can improve computational efficiency and feature
extraction capability. Typically, W-MSA and SW-MSA appear in pairs. As shown in Fig. 3, the difference
between them lies in the absence of windows shift and reverse operations in W-MSA. Fig. 4 illustrates the
windows partition and shift processes, assuming that layer l is W-MSA (as shown in Fig. 4a), and layer l + 1
is SW-MSA (as shown in Fig. 4b). By comparing the two images in (a) and (b), it can be observed that the
divided windows first move O pixels to the left and up, and then the pixels within the windows move P pixels
to the left and up. Performing windows shift operation followed by MAS operation enables information
exchange between windows.

Figure 3: The flowcharts of W-MSA (Window Multi-Head Self Attention) and Shifted Window Multi-Head Self
Attention (SW-MSA). The difference between them is that SW-MSA has windows shift and reverse operations, while
W-MSA does not

Figure 4: Schematic diagram of SW-MSA windows partition and shift operations. The divided windows first move O
pixels to the left and up, and then the pixels within the windows move P pixels to the left and up

Next, the Merge windows layer reduces the resolution while increasing the number of channels, so
that the size of the feature maps in each stage gradually decreases and the number of channels increases.
Reverse rotation is the inverse operation of performing shift, aiming to restore the original order of the
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feature maps; Norm is layer normalization; MLP is a multi-layer perceptron; DropPath is used to prevent
overfitting. Finally, the final FW−MS A and FSW−MS A are obtained through residual calculation. The entire
backbone network processing procedure is shown in Algorithm 1.

Algorithm 1: The processing procedure of backbone network
Input: The layer depths of basic blocks {L1 , L2, L3, L4}; Input image X0; Stage_num=4;
Output: The extracted image feature Zstage_num;

1 Z0 = X0;
2 for s = 1 to stage_num do
3 for l = 1 to Lstage_num do
4 if l = 1 then
5 Input Zs−1 and use Eqs. (1) to (7) to calculate Zinter ;
6 else
7 if l is an even number then
8 Perform W-MSA operation on Zinter to obtain a new Zinter;
9 else
10 Perform SW-MSA operation on Zinter to obtain a new Zinter;
11 end
12 end
13 end
14 Zs = Zinter ;
15 end
16 Obtain features Zstage_num extracted from the backbone network

4 Experiments

4.1 Datasets
We employed three different FLS image datasets, MDD [35], WHD [36], and UATD [37], to evaluate

the target detection method proposed in this paper. Among them, MDD was obtained by the Ocean Systems
Laboratory (Heriot-Watt University) using ARIS Explorer 3000 FLS at a frequency of 3.0 MHz. This dataset
consists of 1868 images, including ten types of targets: tire, propeller, shampoo bottle, drink carton, bottle,
can, chain, valve, standing bottle, and hook. WHD was captured by Tritech 1200ik FLS in Weihai, China. This
dataset contains 4000 images, divided into eight categories: ball, cylinder, tire, cube, human body, circular
cage, metal bucket, and square cage. UATD was collected by the Pengcheng Laboratory using Tritech Gemini
1200ik sonar from lakes and shallow water environments in Maoming and Dalian. It includes ten types of
targets: metal bucket, cylinder, ROV, cube, tyre, circle cage, plane, human body, square cage, and ball. The
training set of this dataset contains 7600 images, with two test sets, TEST-1 and TEST-2, containing 800
images each. As shown in Table 2, to ensure a fair comparison with the baseline algorithm, we attempted to
set the dataset partitions the same as the comparison algorithm [27,30].

Table 2: Statistical data of three FLS datasets

Set MDD WHD UATD (TEST-1) UATD (TEST-2)

Img count Obj count Img count Obj count Img count Obj count Img count Obj count
Training 1345 1345 2880 5068 6756 10,935 6756 10,935

Test 149 149 320 565 800 1172 800 1160

(Continued)
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Table 2 (continued)

Set MDD WHD UATD (TEST-1) UATD (TEST-2)

Img count Obj count Img count Obj count Img count Obj count Img count Obj count
Validation 374 374 800 1444 844 1372 844 1372

Total 1868 1860 4000 7077 8400 13,542 8400 13,530

Upon the release of the UATD dataset, the training set included 7600 sonar images, while the test set
comprised 800 sonar images. Here, we divide the training set into a training and validation split of 8:1, while
keeping the test set unchanged. Note that in the MDD dataset, the number of images is equal to the number
of targets, with only one target per image, belonging to a single-target detection task. In contrast, in the WHD
and UATD datasets, the number of images is less than the number of targets, with each image containing at
least one target, belonging to a multi-target detection task.

The samples of the three datasets are shown in Fig. 5. These three datasets were obtained using different
devices and in different scenarios. It can be seen that there is a significant difference in the imaging effect
between the three. Compared with WHD and UATD samples, MDD samples have higher resolution, lower
noise in the image, and clearer targets. Overall, the detection difficulty of the WHD and UATD datasets will
be greater than that of MDD.

Figure 5: Samples from three experimental datasets, MDD, WHD, and UATD. The MDD dataset is a single-target
detection task, while the WHD and UATD datasets are multi-target detection tasks
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4.2 Experimental Setup
All experiments in this research were performed with the PyTorch framework and run on an NVIDIA

GeForce RTX 3090. Except for the backbone network, the other structures of the network adopted the
same architecture and hyperparameters as YOLOv10s. The pre-trained parameters of YOLOv10s [31] on
the COCO [38] dataset were applied as the initial parameters for the detection head. Here, the values of
the depths {L1 , L2, L3, L4} of the four stages’ basic blocks are {2, 2, 6, 2}. To optimize the model, we
used the SGD optimizer with a learning rate of 1e-2 and a momentum of 0.937. The model was trained through
500 epochs with a batch size of 32. The size of the input FLS image was adjusted to 640 × 640 × 3. The settings
of other hyperparameters are shown in Table 3.

Table 3: Model parameters

Attribute Value Attribute Value
Input size 640 × 640 × 3 Batch size 32

Layer depths {L1, L2, L3, L4} {2, 2, 6, 2} Weight decay 5e-4
Optimizer SGD Warmup momentum 0.8

Learning rate 1e-2 Warmup epochs 3
Momentum 0.937 Subspace N 4

Epoch 500 Group M 8

4.3 Evaluating Metrics
To assess and compare the performance and detection outcomes of our network, we utilize mean

Average Precision (mAP) from COCO as the primary metric for accuracy evaluation. The method for
calculating AP is defined as follows:

mAP = 1
O ∑

i∈[0.50∶0.05∶0.95]
APi (8)

mAP represents the average of the AP across all categories at various IoU thresholds, where O denotes
the total number of categories. The AP is determined by integrating to find the area under the precision-recall
curve relative to the coordinate axes for all categories. The precision P and recall R metrics are calculated as
follows:

P = TP
TP + FP

(9)

R = TP
TP + FN

(10)

F1 = 2 × R × P
R + P

(11)

where true positive (TP) and true negative (TN) refer to correct predictions, while false positive (FP) and false
negative (FN) indicate incorrect outcomes. F1 takes into account both P and R, it is their harmonic mean.
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4.4 Baseline System
We take recent target detection methods in the field as benchmark methods.
MBSNN: Wang et al. [39] improved the accuracy and speed of sonar target detection by introducing

shortcut connections from the residual network and a multi-branch shuttle network based on the Yolov5s
framework. At the same time, they changed the neck structure to a Bidirectional Feature Pyramid Network,
further enhancing the connections between feature maps and improving detection performance.

UFIDNet: Long et al. [27] use supervised residual attention blocks to achieve better feature optimization
for sonar image speckle reduction. In addition, the filtering strategy for scene prior detection reduces
redundant anchor points, further improving detection speed.

FLSD-Net: Yang et al. [30] reduce information loss in sonar image downsampling through a lightweight
initial downsampling (LID) module and a lightweight feature extraction (LFE) module. The LID module
captures diverse features while minimizing information loss, and the LFE module efficiently extracts sparse
target features from FLS images. By emphasizing shallow, high-resolution feature maps, FLSD-Net improves
target identification.

Faster RCNN: Ren et al. [10] achieve end-to-end training and efficient candidate region generation by
introducing a Region Proposal Network, significantly improving the speed and accuracy of object detection.
Although not as real-time as YOLO, it still performs well in accuracy and is the preferred method for many
high-precision object detection tasks.

YOLOv10s: YOLOv10 [31] introduces lightweight classification heads, spatial channel decoupled down-
sampling, level guided blocks, large kernel convolution, and partial attention modules, achieving significant
improvements in general object detection tasks. YOLOv10s is a compact version that balances speed
and accuracy.

ER-DETR: Ref. [40] is the first real-time end-to-end object detector that surpasses existing YOLO
detectors in terms of speed and accuracy, eliminating the negative impact of Non-Maximum Suppression
(NMS) post-processing. By quantitatively analyzing the impact of NMS and establishing speed benchmarks,
it achieves flexible speed adjustment and can adapt to object detection tasks in different scenarios.

4.5 Experimental Results
4.5.1 Experiment on MDD Dataset

The comparison results between ProNet and other methods are presented in Table 4, with the best
performance highlighted in bold and the second-best in underlined. It can be seen that our ProNet
outperforms existing sonar image detectors and general detectors. Specifically, ProNet performs better than
the current state-of-the-art sonar image detectors RF-DETR, achieving a 2.7% higher accuracy on the overall
metric mAP50∶95, as well as 0.1% and 0.3% higher accuracies on the metrics mAP50 and mAP75, respectively.
In addition, YOLOV10 is currently the most advanced method in the YOLO series, and its YOLOV10s version
is our base model; The main difference between its structure and ProNet is the backbone network. It achieves
the second-best performance across all previous metrics, but our ProNet surpasses it by 2.6% on the overall
metric mAP50∶95 and by 0.4% and 1.8% on mAP50 and mAP75, respectively. We attribute this improvement
to the application of the backbone network proposed in this paper, which enhances the representation ability
of features and focuses more on the sensitive areas of the image.
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Table 4: Performance comparison on MDD

Method mAP50(%) mAP75(%) mAP50∶95(%) P(%) R(%) F1(%)
MBSNN 73.7 61.9 52.5 62.8 65.7 64.2
UFIDNet 88.0 83.4 70.5 76.9 87.7 81.9
FLSD-Net 88.2 84.1 72.7 81.4 80.9 81.1

Faster RCNN 87.6 72 60.2 77.8 79.5 78.6
YOLOv10s 90.4 85.1 73.5 85.7 82.6 84.1
RT-DETR 90.7 86.6 73.4 82.0 86.8 84.3

ProNet 90.8 86.9 76.1 80.4 91.9 85.8

Note: The underlined font in the table indicates suboptimal, while bold indicates optimal.

4.5.2 Experiment on WHD Dataset
The comparison results of the second experimental dataset, WHD, are presented in Table 5. WHD

presents a more challenging scenario compared to MDD due to its higher level of ambiguity in targets and
increased noise. In terms of performance metrics, ProNet, and the comparative methods exhibited lower
performance on this dataset than on MDD. Despite this, ProNet emerged as the best performer. Specifically,
ProNet achieved a mAP50∶95 that was 1.5% and 1.6% higher than RT-DETR and YOLOV10s, respectively.
Moreover, it obtained a mAP50 that was 2.6% and 0.4% higher than RT-DETR and YOLOV10s, respectively,
and a mAP75 that was 1.2% higher than YOLOV10s, respectively. ProNet showcased excellent adaptability
across diverse scenes, demonstrating its robust performance in various real-world scenarios and strong
generalization capabilities.

Table 5: Performance comparison on WHD

Method mAP50(%) mAP75(%) mAP50∶95(%) P(%) R(%) F1(%)
MBSNN 85.3 25.6 38.9 58.7 55.2 56.9
UFIDNet 90.9 47.3 36.4 85.7 83.7 84.7
FLSD-Net 92.7 46.1 53.8 85.1 80.1 82.5

Faster RCNN 82.3 24.0 37.8 79.2 76.9 78.0
YOLOv10s 94.7 47.1 54.2 86.6 80.0 83.2
RT-DETR 92.5 48.4 54.3 85.8 79.2 82.4

ProNet 95.1 48.3 55.8 86.1 85.5 85.8

Note: The underlined font in the table indicates suboptimal, while bold indicates optimal.

4.5.3 Experiment on UATD Dataset
As mentioned in the datasets section, the UATD dataset comprises two test subsets. In this section,

experiments are conducted to train and optimize the model using the training and validation sets of UATD.
The optimized models are subsequently utilized to evaluate performance on the two subsets, with the
experimental results presented in Tables 6 and 7, respectively. Overall, the performance of our method is
superior to that of six comparative algorithms. For instance, on the Test-1 dataset, our method achieves
a mAP50 of 96.5%, which exceeds the second-best algorithm, YOLOv10, by 1.5%. Other metrics, such as
Precision and Recall, also outperform those of the comparative algorithms. The specialized sonar target
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detector, FLSD-Net, only attains a mAP50 of 52.0%, whereas our method achieves 57.0% on the same metric,
surpassing it by a significant margin of 5%. Furthermore, we can draw similar conclusions from the results
on Test-2. Although our method does not always achieve the optimal performance in certain metrics—
specifically, the mAP50 is 0.4% lower than that of the best-performing FLSD-Net–our approach consistently
demonstrates satisfactory detection performance overall. These results further validate the advancement of
our method.

Table 6: Performance comparison on UATD (TEST-1)

Method mAP50(%) mAP75(%) mAP50∶95(%) P(%) R(%) F1(%)
MBSNN 72.1 35.9 29.8 54.1 58.8 56.4
UFIDNet 90.7 62.8 57.1 91.8 44.6 93.2
FLSD-Net 80.3 49.5 52.0 86.7 81.9 84.2

Faster RCNN 79.1 57.6 51.8 83.5 88.7 86.0
YOLOv10s 95.0 62.4 56.2 95.1 93.6 94.3
RT-DETR 94.9 63.2 55.8 94.8 95.7 95.2

ProNet 96.5 63.3 57.0 95.6 94.5 95.0

Note: The underlined font in the table indicates suboptimal, while bold indicates optimal.

Table 7: Performance comparison on UATD (TEST-2)

Method mAP50(%) mAP75(%) mAP50∶95(%) P(%) R(%) F1(%)
MBSNN 65.6 24.1 31.5 58.7 55.2 56.9
UFIDNet 80.3 28.8 36.4 85.7 83.7 84.7
FLSD-Net 83.7 30.1 37.8 86.1 84.1 85.1

Faster RCNN 80.5 27.8 35.6 79.2 76.9 78.0
YOLOv10s 80.4 30.3 36.3 86.6 80.0 83.2
RT-DETR 82.5 28.4 37.3 85.8 79.2 82.4

ProNet 83.3 30.9 37.9 86.1 85.5 85.8

Note: The underlined font in the table indicates suboptimal, while bold indicates optimal.

4.5.4 Experiment on Computational Complexity and Inference Speed
In this section, we embark on a comprehensive discussion regarding the computational complexity and

inference speed of the target detection model. These factors play a pivotal role in determining the model’s
viability for practical applications, especially in real-time scenarios where timely responses are essential. By
thoroughly examining these aspects, we aim to provide insights into how our model can be effectively utilized
in practical settings while maintaining optimal performance levels. The experimental results are shown
in Table 8. It is evident that our algorithm is not optimal in terms of computational complexity and model
parameter count, but we can still achieve 24.1 FPS, which meets certain real-time detection requirements.
In terms of parameter count, our model has 40.7 M parameters and can also be deployed on most existing
mainstream edge computing devices, thus satisfying the requirements for lightweight deployment.
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Table 8: The comparison of model computational overhead

Method Input size Params (M) GFLOPs Speed (FPS)
MBSNN 640 × 640 8.2 10.0 20.9
UFIDNet 600 × 600 37.2 75.9 3.9
FLSD-Net 640 × 640 1.76 5.4 90.8

Faster RCNN 600 × 600 28.3 92.5 9.9
YOLOv10s 640 × 640 8.1 24.8 56.7
RT-DETR 640 × 640 42.7 67.9 15.2

ProNet 640 × 640 40.7 87.0 24.1

Note: The underlined font in the table indicates suboptimal, while bold indicates optimal.

4.5.5 Ablation Study
In this part, we investigated the hyper-parameters selection of the extracted method ProNet and the

effectiveness of the introduced feature reconstruction module. For the choice of N and M, we conducted
a series of grid search experiments. Due to space limitations, we only present the two best sets of choices
in Table 9: N = 3, M = 4 and N = 6, M = 8. It is evident that the experimental results for other parameter
combinations are inferior to those chosen in this paper. Additionally, we replaced the introduced feature
reconstruction module with the SW-MSA module to evaluate the contribution of the feature reconstruction
module. As observed, the introduction of feature reconstruction led to varying degrees of improvement
across all metrics. Specifically, mAP50, mAP75 and mAP50∶95 improved by 2.9%, 1.7%, and 0.7%, respectively.
Although there was a slight decrease in the p value, both the R value and F1 score achieved optimal results.

Table 9: Detection accuracy in different model variants

Model variants mAP50 (%) mAP75 (%) mAP50∶95 (%) p (%) R (%) F1 (%)
N = 3, M = 4, kernel sizes

are 1, 3, 5
90.4 85.7 75.7 78.2 90.1 83.7

N = 3, M = 4, kernel sizes
are 3, 5, 7

87.5 86.3 74.4 78.6 89.0 83.5

N = 3, M = 4, kernel sizes
are 5, 7, 9

86.0 84.2 73.9 79.8 85.2 82.4

N = 6, M = 8, kernel sizes
are 1, 3, 5, 7, 9, 11

90.4 86.6 75.5 80.2 90.5 85.0

N = 6, M = 8, kernel sizes
are 3, 5, 7, 9, 11, 13

89.6 86.8 75.4 79.0 91.3 84.7

N = 6, M = 8, kernel sizes
are 3, 5, 9, 11, 13, 15

88.2 84.7 74.5 77.8 90.2 83.5

Replace the feature
reconstruction module

with the SW-MSA
module

87.9 85.2 75.4 80.8 89.3 84.8

(Continued)
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Table 9 (continued)

Model variants mAP50 (%) mAP75 (%) mAP50∶95 (%) p (%) R (%) F1 (%)
N = 4, M = 8, kernel sizes

are 1, 3, 5, 7
90.8 86.9 76.1 80.4 91.9 85.8

Note: The underlined font in the table indicates suboptimal, while bold indicates optimal.

5 Conclusion

In this paper, we present a novel basic block and construct a backbone network around it. By integrating
this backbone network with the YOLOv10 framework, we introduce ProNet for FLS image object detection.
Our evaluation of ProNet involved experiments conducted on two FLS datasets that pose distinct challenges.
The results demonstrate that ProNet outperforms existing sonar image detectors as well as general detectors,
highlighting its robust adaptability to diverse real-world scenarios and strong generalization capabilities.

We identify two possible directions for future research in sonar image target detection. First, there is an
urgent need to enhance the robustness of detection algorithms against variations in underwater conditions,
including differing water qualities, depths, and temperatures. Second, it is crucial to reduce both the model
complexity and computational complexity of target detection algorithms while striving to maintain high
detection accuracy. Such reductions in computational overhead will facilitate improved deployment on
various edge embedded devices.
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