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ABSTRACT: Federated learning effectively alleviates privacy and security issues raised by the development of artificial
intelligence through a distributed training architecture. Existing research has shown that attackers can compromise
user privacy and security by stealing model parameters. Therefore, differential privacy is applied in federated learning
to further address malicious issues. However, the addition of noise and the update clipping mechanism in differential
privacy jointly limit the further development of federated learning in privacy protection and performance optimization.
Therefore, we propose an adaptive adjusted differential privacy federated learning method. First, a dynamic adaptive
privacy budget allocation strategy is proposed, which flexibly adjusts the privacy budget within a given range based on
the client’s data volume and training requirements, thereby alleviating the loss of privacy budget and the magnitude of
model noise. Second, a longitudinal clipping differential privacy strategy is proposed, which based on the differences in
factors that affect parameter updates, uses sparse methods to trim local updates, thereby reducing the impact of privacy
pruning steps on model accuracy. The two strategies work together to ensure user privacy while the effect of differential
privacy on model accuracy is reduced. To evaluate the effectiveness of our method, we conducted extensive experiments
on benchmark datasets, and the results showed that our proposed method performed well in terms of performance and
privacy protection.
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1 Introduction
The acceleration of digitization has resulted in individuals, companies, and countries generating large

amounts of data daily. To improve the user experience, machine learning technology can be applied to deeply
mine data and gain valuable information. However, it should be noted that in practice, a single data source
contains a relatively limited amount of data. The communication and integration of data are hindered by
many factors, including regulatory requirements, privacy restrictions, and other considerations. This has
led to the creation of siloed data repositories, limiting the potential for data utilization and hindering the
further enhancement of model functionality [1,2]. To break through data silos and protect data security [3,4],
federated learning (FL) has been applied, which essentially reduces the centralized storage and transmission
of data, and thus helps to reduce the risk of data breaches. However, federated learning frameworks still face
privacy and security challenges during the application process. For example, attackers can infer user data by
analyzing model updates or gradient information during the training process, leading to issues such as data
breaches [5,6]. In the increasingly stringent data protection environment, ensuring that federated learning
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can withstand various potential threats while protecting privacy is a necessary condition for promoting the
widespread application of federated learning.

To better ensure user privacy and security, technologies such as statistics, cryptography, and differential
privacy have been applied by researchers to federated learning, with differential privacy (DP) [7] being
a key concern due to its strict privacy guarantee and other advantages [8]. In existing research, the
implementation of differential privacy in the context of federated learning is distinguished by two principal
categories: sample-level DP and user-level DP. This distinction is based on the differing definitions of adjacent
datasets [9]. User-level differential privacy can prevent an attacker from inferring the data contribution of a
single user through model updates, even if the attacker has access to all data except for that user. As a result of
this feature aligning more closely with the requirements of federated learning, it has received more attention.

The procedure for implementing user-level DP in federated learning can be roughly outlined as follows:
(1) In the initialization phase, the server performs the initialization of the global model parameters. Each
client is assigned a privacy budget; (2) Each client receives the global model and the corresponding privacy
budget from the server; (3) In each training round, the client loads their own local dataset to train the global
model and then performs clipping and noise addition operations on the updated model, which is obtained
at the end of the process; (4) The model updates protected by user-level differential privacy are transmitted
from the client to the server; (5) The server receives the model updates provided by all clients in the current
training round and updates the global model in accordance with the received data. In order to mitigate the
impact of differential privacy on the effectiveness of federated models, References [10–13] have proposed
that an adaptive noise mechanism be incorporated into the training process. This would serve to conceal
the actual parameters transmitted by the client and diminish the quantity of noise. References [14,15] use
DP variants for privacy protection in deep neural networks to decrease the effect of privacy noise on the
model. Reference [16] improvements to the gradient clipping process, such as using different clip thresholds
for gradients uploaded by different users, to decrease the negative effect of model update clipping. However,
the above methods only explore measures to reduce the impact of differential privacy on the model from
the perspective of single factors such as noise intensity or gradient clipping. In fact, the performance impact
of differential privacy on models is influenced by several factors, it is therefore necessary to consider the
issues from a comprehensive perspective in order to achieve the best balance between privacy and model
performance. Firstly, the heterogeneity of clients and the fixed and identical privacy budgets during the
training process, which often leads to an overall imbalance in privacy protection, increases the computational
burden of the model and even violates the original update direction of the model. Secondly, although the
commonly used update clipping mechanism in differential privacy effectively suppresses privacy leakage,
It can also be a source of loss of important information, with a consequent impact on the accuracy and
generalizability of the model. Therefore, we propose federated learning based on adaptive adjustment
differential privacy protection (AADP-FL) to address the above issues.

Firstly, considering the differences in data volume between each client in the real world and the
decreasing trend of model updates in the later stages of training, we dynamically adjust the privacy budget
during the training process based on the client’s data volume and model convergence speed. A dynamic
adaptive privacy budget allocation strategy is proposed to satisfy the differential privacy requirements of the
client during training. Secondly, considering the limitation of all factors in the model update, discarding
factors with less impact on the model may reduce its impact. Therefore, we propose a longitudinal clipping
differential privacy strategy. In addition, we have introduced adaptive optimization techniques to promote
the convergence of the federated model to address the situation where the sparsity of model updates leads to
a decrease in the convergence speed of the algorithm and an increase in the total number of communication
rounds. The main contributions of this paper are summarized as follows:
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• We propose a dynamic adaptive privacy budget allocation strategy, this strategy appropriately allocates
the privacy budget for each client in each round, and appropriately adjusts the privacy budget in the later
stages of training to reduce the increase of noise in the later stages, thus improving the accuracy of the
model;

• We propose a longitudinal clipping differential privacy strategy that transforms model updates from
horizontal clipping to longitudinal clipping. When determining the clipping threshold, sparse methods
are used to reduce the relatively small model update ratio, thereby reducing the impact of clipping on
model performance and convergence;

• Extensive experimentations evaluate our scheme on the MNIST, the FMNIST, and the Cifar-10 datasets
and provide a privacy analysis of our method. The experimental results show that under the same
conditions, our method significantly improves the accuracy of the federated model.

2 Related Work
Federated Learning. A machine learning framework called federated learning was first proposed by

Google in 2016 [1], which can effectively support multiple individuals or organizations in data usage and
machine learning models while meeting privacy, data security, and government regulatory requirements.
McMahan et al. [17] proposed a classical algorithm based on FedAvg for federated averaging, which is
widely used in various federated learning scenarios. Because of the characteristics of privacy protection in
federated learning, its application in various fields has gained a significant amount of attention, especially
in application scenarios such as smart devices, healthcare, and finance [6]. With the widespread promotion
of federated learning, privacy breaches have gradually emerged, such as attackers using reverse attacks to
obtain user data [4], researchers have applied various security models and privacy protection techniques to
federated learning frameworks to ensure data privacy and security, such as secure multiparty computation
(MPC) [18,19], homomorphic encryption [20], and differential privacy [21–23]. Among these, differential
privacy has received more focus from researchers for its strong privacy guarantees and flexibility.

Differential Privacy. In 2006, Dwork et al. [24] first proposed differential privacy methods. It is a
method of protecting data privacy by introducing noise to protect individual privacy and has been rigorously
proven mathematically. Due to the inevitable impact of the introduced noise on model performance,
researchers have begun to explore optimization strategies for machine learning frameworks that protect
differential privacy mechanisms [25,26]. In order to reduce the variance of noise, Yu et al. [27] have developed
an algorithm for perturbed low-dimensional gradient embedding and small-norm residual gradient. Their
objective was to address the significant increase in differential privacy caused by the large size of the model.
Phan et al. [28] put forth a mechanism that deliberately introduces additional noise into features with a lower
correlation to the model output. Liu et al. [29] applied differential privacy to multi-agent systems with limited
tolerance for faulty agents. However, federated learning typically depends on a single server to aggregate
model updates uploaded by different client devices. Clients usually cannot communicate directly with each
other, so the above methods may not be directly applicable to federated learning.

Federated Learning with Differential Privacy. The use of user-level differential privacy in federated
learning began with McMahan et al. [30], who implemented differential privacy using Gaussian mechanisms
and ensured privacy through moment accountants. While differential privacy technology offers a robust
security solution in the context of federated learning, it also has the unintended consequence of reducing the
accuracy of federated learning models. In order to mitigate the impact of differential privacy technology on
federated models, researchers have conducted a substantial body of studies on the subject. The comparative
analysis of the existing method is shown in Table 1.
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Table 1: Summary of existing research on federated learning methods with differential privacy protection. (✓ represents
considering this issue, ✗ represents not considering this issue)

Existing
methods

Data
heterogeneity

Privacy budget Parameter
update clipping

Adaptive noise
adjustment

Accelerate
convergence

GFDPFL [14] ✓ ✓ ✗ ✗ ✗

DP-SCAFFOLD [31] ✓ ✗ ✗ ✗ ✗

PPeFL [32] ✓ ✓ ✗ ✗ ✗

Fed-SPA [21] ✓ ✗ ✓ ✗ ✓

PPFL [33] ✓ ✗ ✓ ✗ ✓

PLDP-FL [34] ✓ ✓ ✗ ✗ ✗

CLFLDP [22] ✓ ✓ ✓ ✗ ✗

DPFL-AGN [23] ✓ ✗ ✗ ✓ ✓

Robust-HDP [35] ✓ ✓ ✗ ✓ ✗

Ours ✓ ✓ ✓ ✓ ✓

Guo et al. [14] adopted privacy loss distribution (PLD) and privacy curve instead of directly analyzing
privacy budget epsilon through various methods, which reduced the errors caused by PLD truncation and
discretization, and expanded the discretization interval to reduce computational workload. Wang et al. [32]
proposed three local DP mechanisms to address privacy issues in the federated learning process, among
which the Exponential Mechanism Filtering and Screening (FS-EM) was proposed based on the contribution
of weight parameters to the neural network, filtering out better global aggregation parameters. This method
not only solves the problem of rapidly increasing privacy budget when perturbation mechanisms are applied
locally but furthermore, it significantly cuts down on communication costs. Noble et al. [31] used the DP-
SCAFFOLD framework to address the issue of data heterogeneity under DP constraints, applying user-level
differential privacy to each client. Hu et al. [21] proposed a method that integrates the sparsification of
randomness and gradient disturbance for each agent to enhance privacy protection in response to the
problem of the DP mechanism introducing random noise proportional to the model size. In addition,
acceleration technology was introduced to reduce privacy costs. Weng et al. [33] strengthened the privacy
protection of participants by applying DP locally and centrally, and to improve the accuracy and performance
of the model, sparsification gradients were implemented on both the server and client sides. Shen et al. [34]
put forward a perturbation algorithm that addresses the issue of insufficient or excessive privacy protection
for certain participants due to the application of the exact same privacy budget settings for all clients. In doing
so, the algorithm takes into account the differences in privacy requirements among different clients. The
algorithm permits customers to modify privacy parameters in accordance with the sensitivity of their data,
thereby enabling the system to provide personalized privacy protection. Chen et al. [22] allocated privacy
budgets based on client similarity and employed a layer-pruning method based on gradient correlation to
reduce communication overhead. This approach resulted in a reduction in both the loss of privacy budgets
and the size of model noise. Jiao et al. [23] put forth the concept of an adaptive Gaussian noise. This scheme
protects the data privacy and security of the federated learning training process by adding adaptive Gaussian
noise during the training process, which hides the real parameters uploaded by the client. Malekmohammadi
et al. [35] proposed a noise-aware robust algorithm for heterogeneous DP-FL by analyzing the privacy
requirements of the client and the heterogeneity of batch or dataset sizes, which improved the utility and
convergence speed of the model.
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Most of the above methods explore ways to reduce the impact of differential privacy on the model from
the perspective of privacy budget allocation, adaptive noise adjustment, and threshold clipping. The effect
of differential privacy on the performance of the model is influenced by multiple factors, so it is necessary
to consider these issues from a comprehensive perspective in order to achieve privacy protection while
maximizing the practicality of the model.

3 Preliminary

3.1 Federated Learning
Federated Learning [1] is a distributed machine learning method where data is maintained by each

participant locally and model training is also performed locally for distributed computing. Because the data
used in federated learning comes from a variety of end-user devices, these data are usually not independent of
each other or evenly distributed. In this setting, FL normally considers the following optimization problem:

min [F(x) = 1
N

N
∑
i=1

fi(x)]

where fi(x) = Ez∼pi [ f (x; z)]
(1)

where N is the number of participating clients; fi(x) is the loss function of the i-th client; f (x; z) is the loss
of a model x at an example z; each of N clients has a local data distribution pi .

The widely used federated learning algorithm currently available is FedAvg [36]. The general process of
the algorithm is shown in Fig. 1, and the training process of the algorithm includes:

Figure 1: Federated learning framework

Firstly, the server randomly selects the client and distributes the federated model parameters (or initial
model parameters) w to the client;

Secondly, the client uses local data for a determined amount of training rounds and updates the local
model parameters; Then, the client transfers the locally trained model parameters to the server;

Finally, the server receives the model parameter gradient loaded by the local client and aggregates them
to form a new federated model.
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Repeat this process until the federated model has converged, or until it has completed the specified
number of training rounds.

3.2 Threat Model

In the context of federated learning, as described in this paper, the server does not directly access data,
is only responsible for model aggregation and coordination, and is considered “honest but curious,” i.e., it
follows the algorithm requirements to correctly perform model updates, aggregation, and other operations
without tampering with data or algorithms. Each client independently owns and stores its private data and
does not directly share information with other clients, making it impossible for external attackers to steal
private information directly from the client. All clients can upload local models in a timely and normal
manner, without allowing malicious parameters to be uploaded to the server, and without client failures or
other situations. Therefore, it can be concluded that the following situations may lead to privacy leakage:

(1) The server has a strong interest in the privacy data or information it can obtain due to its “curiosity”.
It may attempt to infer raw data or obtain other potentially sensitive items of information from the model
parameters received from the client.

(2) External attackers can obtain model parameter updates loaded by the client by intercepting
communication between the clients and the server. Then, using attack methods such as gradient flipping,
they can infer privacy information from the model updates.

3.3 Differential Privacy for Federated Learning

Due to the requirement that servers cannot identify a client’s participation by observing the output of
local updates, user-level DP has received much attention in research on the integration of federated learning
and differential privacy. The difference between user-adjacent datasets and adjacent datasets is that the units
faced change from a single sample to all samples of a certain user.

The Gaussian mechanism is often used to ensure user-level DP in FL.
Definition 1. (The Gaussian mechanism of (ε, δ) − DP). To satisfy (ε, δ) − DP, the Gaussian noise

mechanism M ∶ D ∈ N∣X ∣ is defined as GσM (D) =M (D) + N(0, σ 2I), where σ > ΔM
√

2 log 1.25
σ

ε , I is an
identity matrix.

4 Our Approach
The application of traditional user-level DP in federated learning frameworks can result in high

information loss and excessive noise addition, leading to low model accuracy and slow convergence
speed. To address such issues, we propose AADP-FL, which is a federated learning method with user-
level DP, as shown in Algorithm 1.

First, each client has a different amount of data, so it is necessary to allocate privacy budgets of different
sizes to each client, thereby ensuring that their information is more effectively safeguarded. In subsequent
training stages, as the model converges to a certain degree, the privacy budget is changed to mitigate the
impact of noise on the model.

Secondly, the information discarded during the differential privacy clipping process has a substantial
effect on the efficiency and convergence speed of the federated model. Therefore, we propose a longitudinal
clipping differential privacy strategy. This strategy uses sparsity methods to minimize the less influential parts
in model updates to reduce the L2 norm of model updates.
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Algorithm 1: AADP-FL
Input: number of rounds T, number of clients n, number of local iterations τ, client sampling prob-
ability p ∈ (0, 1], batch size B, clipping threshold S, privacy budget ε, privacy budget threshold εmax ,
momentum parameters u, v, learning rates ηc , ηs, noise reduction rate ρ (0 < ρ < 1), convergence
threshold l.
Output: Trained model wT .
Sever:

1: Initial global model w0
2: all clients i, di in parallel do

3: εi = ( di
∑ di

n

) ε

4: if t = 1 do
5: Selecting client set W with a probability of p;
6: for i ∈W in parallel do
7: θ̂ t

i = Users(wt−1 , i, εt
i);

8: end for
9: else if

10: for t = 2 to T do
11: Selecting client set W with a probability of p;
12: if ∣mt −mt−1∣ < l and ∣nt − nt−1∣ < l do
13: if εt−1

i < εmax do
14: εt

i = εt−1
i

1
ρ

15: for i ∈W in parallel do
16: θ̂ t

i = Users(wt−1 , i, εt
i);

17: end for

18: g = ∑
∣W ∣
i=1 θ̂ t

i
∣W ∣ , ĝ = g

1 − ut ;
19: mt = umt−1 + (1 − u)g, m̂t = mt

1 − ut m̄t = (1 − u)ĝ + um̂t ;
20: nt = vnt−1 + (1 − v)g2, n̂t = nt

1 − vt
;

21: wt = wt−1 + ηs
m̄t√
n̂t + γ

;
22: end for
23: return wT

Users:
1: wt ,0

i = wt−1;
2: for j = 1 to τ do
3: wt , j

i = wt , j−1
i − ηc

∑∇ f i
∣B∣

4: end for
5: θ t

i = wt ,τ
i −wt ,0

i ;
6: θ̃ t

i = long itudinal − cl ip(θ t
i , S);

7: return θ̃ t
i + N (0, S4 I

∣w∣ε2 )
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4.1 Framework of AADP-FL
Similarly, AADP-FL is a server-client architecture, as illustrated in Fig. 2. The framework in this paper

is divided into the following steps:

Figure 2: Overall framework of AADP-FL

Initialization: The server initializes the federated model w and the clipping threshold C.
Step 1: On the server side, calculate the privacy budget εi that client i should allocate based on the

amount of data it owns.
Step 2: The server sends the federated model w and the privacy budget εi of the selected client.
Step 3: After receiving the federated model, the client updates the model with local data to obtain the

updated θ of the model.
Step 4: The client performs a longitudinal clipping differential privacy strategy on the updated θt

i of the
model, and adds an appropriate proportion of noise.

Step 5: The client sends the resulting θ̂ t
i to the server.

Step 6: The server runs an aggregation operation on the received θ̂ t
i , and then uses the optimization

mechanism to update the federated model and obtain a new federated model w.
Step 7: The server uses the changes in the first-order and second-order moment estimates in the

optimization mechanism to determine the convergence of the federated model. If it is deemed to be close to
convergence, check whether the privacy budget is higher than expected. If not, decrease the volume of the
noise to be added, otherwise the noise level remains unchanged.

Step 8: Repeat steps 2–7 until the FL aggregation number reaches the specified value.

4.2 Dynamically Adaptive Privacy Budget Allocation Strategy
The dynamically adaptive privacy budget allocation strategy primarily modifies the privacy budget on

two nodes. First, as the amount of data contained by the clients varies, the server allocates different sizes
of privacy budgets to each client based on the amount of data before training begins. Ensure that clients
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with different amounts of data obtain reasonable trade-offs in the allocation of privacy budgets. The privacy
budget allocated to the i-th client is:

εi = (
n ∗ di

∑ di
) ε, (2)

Among them, ε is the overall privacy budget, and di is the amount of data contained in the i-th client, n
is the total number of clients. This allocation method distributes the privacy budget more equitably and can
better balance privacy and model performance.

Second, in the early stages of the training phase of federated learning, when the model updates
significantly, the added noise has a relatively small impact on the overall model. As the number of training
epochs increases, the model updates become smaller, and the same amount of noise as in the early training
stage can have a significant impact on the overall model. Even in the later stages of training, excessive
noise can prevent the model from converging to the optimal state. Therefore, we choose to reduce the noise
appropriately after the model has converged to a certain degree to ensure model performance. To accelerate
model convergence, we used the Nadam optimizer.

The Nadam optimizer includes mechanisms for traditional momentum and prediction of future
gradient updates, including first and second-order moment estimates. The first-order moment estimate is the
mean of the gradient and is used to guide the main direction of parameter updates; the second-order moment
estimate is the mean of the squared gradient and is used to adaptively adjust the learning rate. When both the
first and second-order moment estimates become stable, it usually indicates that the direction and variance
of the gradient are no longer changing significantly. At this point, the model is approaching convergence,
thus reducing the amount of noise. The reduction of noise is determined by the following formula:

εt
i ∶= {

εt−1
i

1
ρ , if ∣mt −mt−1∣ < l and ∣nt − nt−1∣ < l and εt−1

i < εmax

εt−1
i otherwise.

(3)

Among them, l is the decay threshold and ρ is the decay parameter. If ∣mt −mt−1∣ < l and ∣nt − nt−1∣ < l ,
check whether the privacy budget exceeds the expected threshold. If it does not, the privacy budget of all
clients in round t increases uniformly, Otherwise, keep the privacy budget from the previous round and
continue to train.

4.3 Longitudinal-Clipping Differential Privacy Strategy
The longitudinal-clipping differential privacy strategy refers to performing clipping operations on a

single parameter dimension. Specifically, this method uses the sparsity method to clip user parameters, as
shown in Algorithm 2. In previous DP-FL studies, the main role of sparsity methods was to expand the
effectiveness of privacy protection. This method can also play a role in reducing the impact of clipping
updates on the model; this method takes the clipping threshold as the boundary and utilizes the method of
sparsification of specific parameters to update and reset updates, to reduce the effect of clipping operations on
the global model and better preserve user information in local updates. The definition of sparser is as follows:

Definition. (Sparser) For parameter k ∈ [d], the operator is defined for a vector x ∈ Rd as

Sparse(x , k) = { 0 if id = k
xid otherwise

The mechanism of the sparse clipping method works as follows:
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Before threshold clipping begins, the client marks the position ID of each element xid of θt
i .

(1) The client sorts the elements in θt
i from smallest to largest based on their absolute values and records

their position ID.
(2) The client calculates the second normal form of the current θt

i and compares it with the clipping
threshold S.

(3) If ∥θt
i∥2 is larger than S, the client sets the first non-zero element in the absolute value sequence to

zero and repeats steps (2)–(3).

Algorithm 2: Longitudinal-Clip
Input: parameters updates θ t

i , clipping threshold S.
Output: clipped parameters updates θ̃ t

i .
1: label the position id of each element wid of θ t

i
2: while ∥θ t

i∥2 > S do
3: k = id where min(∣wid ∣)
4: Clip based on sparsifier θ t

i = Sparset
i(θ

t
i , k)

5: return θ̃ t
i

5 Privacy Analysis

In this method, each client incorporates a specific quantity of Gaussian noise into the local training
model, without rounds, in order to mitigate the attacks outlined in the threat model. Therefore, we only
evaluate privacy loss from the perspective of the individual customer. Next, we will analyze the privacy loss
of the k-th client.

Theorem 1. (Privacy Loss of Algorithm 1) After T rounds, the i-th client DP Privacy budget of Algorithm
1 satisfies (εi , δ) − DP if σ satisfies:

εi ≤
T
∑
t=0

1
α − 1

α
∑
j=0
(α

j) q j(1 − q)α− j ex p( j ( j − 1)
2σ 2 ) +

log 1
δ

α − 1

where (⋅) denotes the binomial coefficient, q = batchsize
di

and any integer α ≥ 2.
We use RDP to calculate the loss of privacy. Firstly, the privacy cost of each round is calculated using

the subsampling Gaussian theorem of RDP. Subsequently, an advanced combination of RDP is employed,
accompanied by the associated cost of multiple rounds. Ultimately, the RDP privacy is transformed into DP.

Definition 1. (Subsampled Gaussian Mechanism [37]) Let f be a function mapping subsets of C to R
d .

We define the Subsampled Gaussian Mechanism parameterized with the sampling rate 0 < q ≤ 1 and the
σ > 0 as:

SGq ,σ ≜ f ({x ∶ x ∈ C is subsampl ed with probabil it y q}) +N (0, σ 2
I

d)

f is the clipped gradient evaluation in subsampled data points f ({xi}i∈B) = ∑i∈B ḡt (xi). In the event
that ḡt is obtained by clipping gt with a gradient norm bound S, it can be demonstrated that the sensitivity
of f equals S.
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Definition 2. (RDP privacy budget of Subsampled Gaussian Mechanism [37]) A Gaussian mechanism
function f l2-sensitivity is 1 and satisfies (α, ε) − RDP if:

ε ≤ 1
α − 1

log max (Aα (q, σ) , Bα (q, σ))

Due to the explanation in Reference [37]:

{Aα (q, σ) ≜ Ez∼μ0 [(μ (z)/μ0 (z))α]
Bα (q, σ) ≜ Ez∼μ [(μ0 (z)/μ (z))α]

With μ0 ≜N (0, σ 2), μ1 ≜N (1, σ 2) and μ ≜ (1 − q) μ0 + qμ1.
The two Gaussian distributions μ0 and μ1 are used in the RDP, and they satisfy

Aα(q, σ) ≥ Bα (q, σ).

From this, f satisfies (α, 1
α − 1 log Aα (q, σ))-RDP.

After that, We obtained the compute method of Aα(q, σ) on integer α from Reference [38].

Aα =
α
∑
j=0
(α

j) q j(1 − q)α− j ex p( j ( j − 1)
2σ 2 )

Based on Definition 2 and the calculation method of Aα(q, σ), we can conclude that the prerequisite
for f to satisfy (α, 1

α − 1 log Aα(q, σ))-RDP is

ε ≤ 1
α − 1

α
∑
j=0
(α

j) q j(1 − q)α− j ex p( j ( j − 1)
2σ 2 )

Definition 3. (Composition of RDP [38]). For two randomized mechanisms f, g such that f is (α, ε1)-
RDP and g is (α, ε2)-RDP the composition of f and g which is defined as (X , Y) (a sequence of results),
where x ∼ f and Y ∼ g, satisfies (α, ε1 + ε2)-RDP.

We assume that the privacy budget undergoes adaptive changes when the model approaches conver-
gence in this method, so the changes can be ignored. From the above, Lemma 1 can be derived.

Lemma 1. Given the sampling rate q = batchsize/di for each round of the local dataset and σ as the
noise factor for round t, the total RDP privacy loss of the i-th client for round T loss for any integer α ≥ 2 is:

εi ≤
T
∑
t=0

1
α − 1

α
∑
j=0
(α

j) q j(1 − q)α− j ex p( j ( j − 1)
2σ 2 )

Definition 4. (Translation from RDP to DP [39]) If a randomized mechanism f : D �→ R satisfies
(α, ε)-RDP, then it satisfies (ε + log 1/δ

α−1 , δ)-DP where 0 < δ < 1.
With Lemma 1 and Definition 4, Theorem 1 is proved. We use the result of Theorem 1 to calculate the

privacy cost.

6 Experiment Settings
In this section, we conducted comparative experiments between the MNIST dataset [40], the Fashion-

MNIST [41], and the CIFAR-10 dataset [42].
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Datasets: The MNIST dataset comprises an image dataset of 10 types of handwritten digits, consisting of
70k monochrome images of the digits, including 60k training samples and 10k test samples. Each image is 28
by 28 pixels and contains a number between 0 and 9. The Fashion-MNIST (FMNIST) is a dataset containing
10 categories of fashion clothing images, with 6000 training images and 1000 test images for each category,
making a total of 70,000 images. Each image is a 28 × 28 pixel monochrome image with pixel values ranging
from 0 to 255. The CIFAR-10 dataset is a collection of images used for identifying common items. It contains
50k training samples and 10k test samples, including 10 types of RGB color images.

In the experiment, we segment the dataset in two distinct ways: (1) IID Data setting, whereby samples
are distributed evenly across each client; (2) Non-IID Data settings, whereby the client exhibited imbalanced
samples [43].

Models and Environment: We conducted experiments on models with different structures, using three
different models for the MNIST, FMNIST, and CIFAR-10 datasets, including the MLP model with two fully
connected layers, the CNN used for the MNIST and FMNIST datasets with two convolutional layers and two
fully connected layers (each filter size is 5 × 5), and the CNN used for the CIFAR-10 dataset with three fully
connected layers. The AlexNet model consists of 5 convolutional layers and 2 fully connected layers, with a
ReLU activation function and a pooling layer after each convolutional layer. All methods were implemented
using PyTorch and all experiments were conducted with an NVIDIA GeForce RTX 4090 GPU.

Configuration: In this experiment, the number of clients is 20. For MNIST, FMNIST, and CIFAR-10
respectively, we set the number of rounds T to 50, 200, and 300, the batch size to 32, 32, and 50, and the
percentage of non-IID is 0.5. In all experiments, the failure probability δ of differential privacy is set to 1e − 5,
the momentum parameters u, v are set to 0.9, 0.999, the noise reduction rate ρ is set to 0.1, privacy budget
threshold εmax is set to 20, the local and global learning rates are 0.01.

7 Experimental Results
We have examined the behavior of AADP-FL on different datasets and benchmarked it against FedAvg,

DP-FedAvg, DDGauss [44], and DP-SCAFFOLD [31] methods in the case of non-iid. Specifically, we apply
deep learning models such as MLP, CNN, and AlexNet to both the MNIST and CIFAR-10 datasets for
training in the framework. Considering the randomness of the disturbance process, this paper conducted 5
experimental experiments and used the midpoint as the experimental results.

Performance Evaluation. Table 2 presents the exact accuracy data for each algorithm, obtained under
identical experimental conditions. Training on the MNIST dataset is completed after 50 rounds of com-
munication, the training on the FMNIST dataset is completed after 200 rounds of communication, while
training on the CIFAR−10 dataset is concluded after 300 rounds of communication. Among the algorithms
under consideration, FedAvg represents a baseline method that does not include any form of privacy
protection or communication compression. In contrast, alternative algorithms employ differential privacy
protection mechanisms. The parameters utilized in this experiment are consistent with the benchmark
settings delineated in this article, with a privacy budget of 4. The experimental results demonstrate that
in comparison with FedAvg, the deployment of a differential privacy method entails a certain degree of
compromise in model performance, with the objective of achieving varying degrees of privacy protection
across different models. The performance of the DDGauss and DP-SCAFFOLD methods is comparable, with
the latter exhibiting excellent performance. In particular, with regard to the MNIST dataset, the discrepancy
in precision terms between our method and FedAvg is less than one percentage point. For the FMNIST
dataset, the accuracy difference between our method and FedAvg is less than 2 percentage points. In the case
of the CIFAR-10 dataset, the accuracy difference between our method and FedAvg is less than 2 percentage
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points. The discrepancy in the outcomes of the multiple experiments is not substantial, suggesting that the
reliability of each method is largely comparable. Our method is demonstrably more accurate.

Convergence. Fig. 3 displays the evolution of the test set loss for various models in the MNIST data set
as a function of the number of training epochs. Fig. 3a depicts the experimental outcomes of the MLP model.
It is evident from the figure that our methodology involved a comparison of loss values under identical
conditions prior to the model reaching a state of convergence. Fig. 3b illustrates the experimental outcomes
of the AlexNet model. Furthermore, it is evident that during the testing phase, the loss values of this method
reach a state of stability with greater rapidity. A reduction in test loss value and an increase in stability are
indicative of a model with good convergence and generalization abilities during the training process. In light
of these findings, it can be concluded that irrespective of the model employed, this method exhibits superior
convergence and generalization capabilities. This is mainly due to two aspects: first, the dynamic adaptive
privacy budget proposed in this paper automatically adjusts the privacy budget during training, reducing
noise. Second, the longitudinal clipping differential privacy strategy reduces the effects of clipping on model
behavior and minimizes the influence of differential privacy on convergence speed.

Table 2: Performance comparison under different models on different datasets (%)

Dataset Model FedAvg DP-FedAvg DDGauss DP-SCAFFOLD Ours
MLP 92.13 ± 0.34 89.88 ± 0.24 90.37 ± 0.22 90.21 ± 0.23 91.60 ± 0.22

MNIST CNN 93.29 ± 0.21 90.02 ± 0.26 91.25 ± 0.15 91.02 ± 0.17 93.28 ± 0.16
AlexNet 95.98 ± 0.31 93.04 ± 0.19 94.08 ± 0.21 93.05 ± 0.20 94.99 ± 0.20

MLP 78.84 ± 0.41 73.91 ± 0.34 75.17 ± 0.28 75.21 ± 0.24 75.60 ± 0.32
FMNIST CNN 82.79 ± 0.35 78.02 ± 0.25 80.35 ± 0.30 80.62 ± 0.27 81.28 ± 0.22

AlexNet 84.37 ± 0.34 79.44 ± 0.29 82.58 ± 0.33 82.15 ± 0.27 83.09 ± 0.22
MLP 48.55 ± 0.24 41.25 ± 0.21 45.25 ± 0.17 45.66 ± 0.20 47.68 ± 0.18

CIFAR-10 CNN 54.35 ± 0.19 48.33 ± 0.14 53.63 ± 0.15 50.28 ± 0.16 54.87 ± 0.15
AlexNet 70.66 ± 0.22 63.25 ± 0.17 66.27 ± 0.11 65.72 ± 0.13 68.52 ± 0.16

Figure 3: Comparison of test losses on the MNIST dataset

The impact of different data distributions. The non-iid setting simulates the situation where data
distributed across different clients in real scenarios is not fully consistent. Fig. 4a shows the experimental
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results of using the MLP model on the MNIST dataset under different iid settings. Due to the relatively simple
nature of the MNIST dataset, the final results presented under different iid settings differ slightly. However, it
can still be observed that the greater the non-iid, the slower the model achieves its optimum results. Fig. 4b
shows the experimental results of using a CNN model on the Cifar-10 dataset under different iid settings.
The Cifar-10 dataset is relatively complex, so it can be directly seen that the larger the non-iid, the greater
the difference in data distribution and the lower the accuracy of the model. This indicates that our method
is still sensitive to non-IID data and does not have the ability to resist non-IID data.

Figure 4: Test the accuracy of different data distributions under different settings

The impact of clipping threshold. Given the fixed L2 norm of the model update, it is imperative to
exercise caution when establishing the clipping threshold. If the threshold is set too high, it will result in non-
clipping and the addition of excessive differential noise, which will have a detrimental effect on the precision
of the model. If the threshold is set too low, a significant amount of user information will be discarded,
potentially leading to a decline in model accuracy. To reduce the influence of other factors, this experiment
only performs threshold clipping and does not add additional noise. Fig. 5a indicates the impact of varying
shear thresholds on model accuracy when utilizing the CIFAR-10 dataset and CNN model in experimental
settings. It is evident that there is a notable discrepancy in the outcomes between the clipping thresholds
of 0.15 and 0.3. However, it is clear that the accuracy is considerably enhanced when the threshold is set
to 0.2 in comparison to the other thresholds. Fig. 5b indicates the impact of varying shear thresholds on
model accuracy when utilizing the MNIST dataset and MLP model in experimental settings. It is evident that
there are considerable discrepancies in the experimental outcomes at varying thresholds. Notably, the model
accuracy at a shear threshold of 0.25 exhibits a marked improvement in comparison to the other thresholds.

The impact of privacy budget. Fig. 6 shows the impact of different privacy budgets on the accuracy of
the tests using MLP and CNN models on the MNIST dataset. Fig. 6a shows the experimental results of the
MLP model on the MNIST dataset, and Fig. 6b depicts the experimental results of the CNN model. Under
different privacy budgets, our method has a smaller difference in accuracy compared to frameworks that do
not use differential privacy. We also observed that the performance of more complex models (CNN) is less
affected when privacy budgets fluctuate compared to simpler models (MLP), which is a favorable advantage
since we tend to use more complex models to obtain better outcomes. Although the complex model is less
affected when the privacy budget fluctuates, the accuracy of the model is still significantly affected when the
privacy budget is set below the general level. Therefore, in practical applications, highly sensitive scenarios
such as medical data and financial data may have a smaller privacy budget range for security settings (e.g.,
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set the range to (0.5−1)); low sensitivity scenarios (such as personal actions, recommendation systems, etc.)
may have a larger privacy budget range (e.g., set the range to (10−100)).

Figure 5: Test the accuracy of different clipping thresholds at different settings

Figure 6: Testing the accuracy of different privacy budgets in the MNIST dataset

The impact of user sampling probability. A comparative experimental analysis was conducted to
evaluate the impact of varying user sampling probabilities on different datasets. The shear boundary is set
to 0.3 for both DP FedAvg and our method. Fig. 7a illustrates the model accuracy of the CIFAR-10 dataset
and AlexNet model at varying user sampling probabilities, whereas Fig. 7b depicts the model accuracy of the
MNIST dataset and MLP model at distinct user sampling probabilities. A higher user sampling probability
signifies an increased number of agents engaged in each communication round. It is evident that disparate
user sampling rates yield disparate model outcomes. At an identical sampling rate, this method yields
superior outcomes. When the user sampling rate is high, the performance comparison between this method
and the comparison method is more pronounced, indicating that this method demonstrates robust stability
in the context of multi-user participation.
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Figure 7: Testing the accuracy of different user sampling probabilities under different settings

8 Conclusion
This paper proposes AADP-FL, which includes a dynamic adaptive privacy budget allocation strategy

and a longitudinal differential privacy clipping strategy. This method mitigates the impact of differential
privacy on model accuracy while maintaining user privacy. We conducted a theoretical analysis of the
privacy of the method and verified it through experiments. The method can be applied to smart applications
on mobile devices, health monitoring on smart wearable devices, and other scenarios. However, due to
the deeper impact of differential privacy on the performance of larger models, further research is needed
on the privacy security of complex models. In addition, there are still uncertainties in the practical
application of federated learning in terms of data complexity, user identity security (possibly malicious users),
and communication. Future research could consider combining differential privacy with meta-learning,
knowledge distillation, and encryption algorithms to facilitate the practical application of federated learning.
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