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ABSTRACT: With the rapid development of Internet of Things technology, the sharp increase in network devices and
their inherent security vulnerabilities present a stark contrast, bringing unprecedented challenges to the field of network
security, especially in identifying malicious attacks. However, due to the uneven distribution of network traffic data,
particularly the imbalance between attack traffic and normal traffic, as well as the imbalance between minority class
attacks and majority class attacks, traditional machine learning detection algorithms have significant limitations when
dealing with sparse network traffic data. To effectively tackle this challenge, we have designed a lightweight intrusion
detection model based on diffusion mechanisms, named Diff-IDS, with the core objective of enhancing the model’s
efficiency in parsing complex network traffic features, thereby significantly improving its detection speed and training
efficiency. The model begins by finely filtering network traffic features and converting them into grayscale images, while
also employing image-flipping techniques for data augmentation. Subsequently, these preprocessed images are fed into
a diffusion model based on the Unet architecture for training. Once the model is trained, we fix the weights of the
Unet network and propose a feature enhancement algorithm based on feature masking to further boost the model’s
expressiveness. Finally, we devise an end-to-end lightweight detection strategy to streamline the model, enabling
efficient lightweight detection of imbalanced samples. Our method has been subjected to multiple experimental tests on
renowned network intrusion detection benchmarks, including CICIDS 2017, KDD 99, and NSL-KDD. The experimental
results indicate that Diff-IDS leads in terms of detection accuracy, training efficiency, and lightweight metrics compared
to the current state-of-the-art models, demonstrating exceptional detection capabilities and robustness.
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1 Introduction
In today’s rapidly evolving digital era, analyzing and processing network traffic is crucial for the stable

operation of network systems, optimizing performance, and securing information [1]. The widespread
adoption of Internet applications and the explosive growth in user numbers have led to an exponential
increase in network traffic, along with its complexity and diversity. Consequently, accurately extracting
valuable information from massive network traffic data and achieving precise classification have become
urgent engineering challenges. Crucial to streamlining network resource management and boosting user
satisfaction, this approach is equally indispensable for defending against network intrusions and upholding
network integrity.
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Recently, a plethora of cutting-edge techniques for intrusion detection have come to the fore [2].
Scholars frequently conceptualize intrusion detection as either a binary classification issue or a multi-
class categorization challenge. Following this line of thinking, conventional machine learning algorithms
including decision trees, support vector machines, neural networks with multiple layers, and random forests
have seen extensive utilization in the realm of intrusion detection [3,4]. However, due to the inherent
limitations of traditional machine learning methods, they often perform poorly when handling large-
scale, high-dimensional, and complex network data. In contrast, deep learning methods have demonstrated
superior performance, particularly in dealing with high-dimensional, complex, and noisy data, thanks
to their exceptional representation learning capabilities. As a result, deep learning techniques have been
extensively studied for network intrusion detection, with common models including convolutional neural
networks (CNNs) [5], recurrent neural networks (RNNs) [6], and autoencoder (AE) [7].

Although deep learning-based methods can automatically extract features, they are limited by the
inherent structure of neural networks. The detection performance of these methods heavily relies on a
large amount of training data and extensive parameter tuning work [8]. However, information about how
hidden layers specifically represent data is relatively scarce, leading to concerns about the quality of feature
representations in these layers. In the case of medium to small problems, the learning process may fail or
may not provide optimal feature representations [9].

As a novel deep generative technology, diffusion models have demonstrated impressive performance
in tasks such as image generation and multimodal generation. We recognize their powerful denoising
capabilities and are the first to apply diffusion models to network intrusion detection, proposing an
innovative lightweight intrusion detection model. This paper is dedicated to crafting a cutting-edge and
high-efficiency technique for the analysis of network traffic data. It proposes the development of a feature
mask representation enhancement algorithm, inspired by the Unet framework, which is intended to isolate
crucial features from the multifaceted nature of network traffic data to ensure precise classification outcomes.
Our main contributions include enhancing sparse data through data augmentation techniques, designing
a feature mask data augmentation algorithm, and building a lightweight model. Experimental results show
that our model method effectively reduces noise interference, extracts critical structural information from
network traffic data, and achieves more accurate classification.

The main academic contributions of this paper can be outlined as follows:
1. We propose an efficient lightweight intrusion detection model based on diffusion models. This model

converts network flow data into grayscale images and applies data augmentation. It utilizes a feature mask
representation enhancement algorithm constructed with a pre-trained frozen Unet model to improve the
model’s ability to extract features from complex network traffic.

2. We present a feature mask representation enhancement algorithm that increases the model’s
robustness when handling noisy and structurally complex feature data, enhancing its adaptability.

3. The model employs a lightweight architecture and utilizes an end-to-end training strategy to improve
response speed and operational efficiency.

4. Utilizing NSL-KDD, CIC IDS2017 and KDD 99 as imbalanced datasets for intrusion detection, we
carried out comprehensive experiments incorporating a range of assessment criteria. Our proposed Diff-IDS
model was compared with several state-of-the-art models, demonstrating superior performance.

The structure of subsequent sections of this paper is organized as follows: Section 2 reviews related
work, encompassing traditional intrusion detection techniques and deep learning-based intrusion detection
methods. Section 3 provides a detailed description of the model’s architecture, including the pre-training of
the network traffic diffusion model, the design of the feature mask representation enhancement algorithm,
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the end-to-end training process, and the introduction of the lightweight model. Section 4 validates our
method through multiple sets of experiments. In conclusion, Section 5 encapsulates the findings of this paper
and delineates potential avenues for subsequent research.

2 Related Work

2.1 Network Intrusion Detection Based on Machine Learning
Machine learning techniques are extensively employed in intrusion detection due to their capability to

autonomously discern intricate patterns within data. These approaches have been demonstrated to augment
the accuracy and rapidity of detection systems, showcase adaptability, and exhibit proficiency in adjusting to
emerging attack strategies.

Farooq et al. [10] introduced an intrusion detection system enhanced by an integrated machine learning
approach, termed IDS-FMLT. This IDS-FMLT model demonstrated a validation accuracy of 95.18% and a
miss rate of 4.82% in its intrusion detection capabilities. Zhang et al. [11] proposed a privacy-preserving
anomaly-based intrusion detection system for future IIoT networks, leveraging federated learning. This
method tackles the critical challenge of training local models with non-independent and identically
distributed (non-IID) data. Sezign et al. [12] crafted an automated machine learning (AutoML) protocol
designed to fortify the efficacy of intrusion detection systems in identifying and neutralizing threats. This
protocol streamlines the machine learning process, thereby ensuring the sanctity, security, and confidentiality
of data traversing IIoT networks. Wang et al. [13] proposed an innovative intrusion detection methodology
for IIoT, christened MTID, which is anchored in the temperature profiles of microcontroller units (MCU).
This method employs an online incremental learning paradigm to ensure the model’s pertinence across
a spectrum of IIoT deployment contexts. Li et al. [14] proposed an intrusion detection system based on
joint learning, called DAFL. This system has been lauded for its prowess in detecting intrusions, concurrent
with a substantial reduction in communication expenditures. Thockchom et al. [15] proposed an intrusion
detection model based on ensemble learning. The proposed ensemble model employs Gaussian Naive
Bayes, logistic regression, and decision trees as its foundational classifiers, while stochastic gradient descent
serves as the meta-classifier. The findings show that employing this ensemble classifier is highly effective
in managing imbalanced datasets within intrusion detection systems. Wu et al. [16] have crafted a compact
machine learning-based intrusion detection system that utilizes a feature selection technique to pinpoint
the most effective features, thereby diminishing the computational burden of the IDS. This proposed
approach is equipped to tackle intrusion detection challenges even in situations where there is incomplete
data availability. Hu et al. [8] proposed an early and accurate network intrusion detection method called
Graph2vec+RF, which is based on graph embedding technology. This approach autonomously extracts
flow graph features by leveraging subgraph structures and operates with just a minimal number of initial
interactive packets for each bidirectional network flow, thereby obviating the requirement for an extensive
array of training samples to facilitate prompt and precise network intrusion detection.

However, the majority of machine learning algorithms are founded on shallow learning, which
encounters difficulties when tasked with classifying vast and high-dimensional data sets [17]. As the volume
and intricacy of data escalate, conventional machine learning tactics have unveiled their shortcomings in
managing high-dimensional and non-linear data. For instance, methodologies predicated on the Incremental
Support Vector Machine (ISVM) algorithm endeavor to retain non-support vectors during the incremental
classification process through selective preservation [18]. While these methodologies have provided valuable
insights for bolstering detection efficacy, they remain susceptible to the challenges inherent in data imbal-
ance, frequently neglecting instances from minority classes, which consequently leads to reduced detection
rates for these classes.
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2.2 Network Intrusion Detection Based on Deep Learning
As computational power and computer hardware have evolved, deep learning methods have gained

extensive application in the field of network intrusion detection. Recently, a growing number of scholars
have turned to deep learning algorithms to tackle the challenges posed by intrusion detection. Sun et al. [19]
introduced a Logic Understanding Intrusion Detection System, a rule-based IDS that deeply comprehends
industrial control logic. This system employs custom deep learning models to autonomously extract features
and categorize attacks. Wang et al. [20] Experiments on the CIC-IDS-2017 and UNSW-NB15 datasets indicate
that K-GetNID performs comparably to deep learning methods in terms of adjustable early intrusion
detection and transferability. Chen et al. [21] put forward an Information-Aware Adversarial Domain
Adaptation approach, capable of training cross-domain industrial intrusion detection deep models in the
face of imbalanced data, yet still preserving high detection precision. Gong et al. [22] introduced a two-stage
deep learning model that utilizes a multi-agent reinforcement learning framework to decrease detection
time and enhance accuracy. Li et. al [23] developed an adversarial environment learning-based model, AE-
SAC, aimed at enhancing the detection rate of infrequent network attacks. When pitted against current
sophisticated intrusion detection algorithms on the NSL-KDD dataset, AE-SAC garnered an accuracy of
84.15% and an F1-measure of 83.97%. Wu et al. [24] introduced an innovative active learning framework
based on Deep Q-Networks, highlighting its broad applicability and versatility. This framework plays a
crucial role in accurately pinpointing and detecting network intrusion activities. Thakkar et al. [25] employed
a Bagging classifier, using Deep Neural Networks as the base estimator, to tackle the issue of class imbalance in
intrusion detection datasets. Ye et al. [26] put forth a deep reinforcement learning-based intrusion detection
approach, capitalizing on the adaptive nature of reinforcement learning agents in interaction with their
environment. This method has shown robust adaptability to environmental noise and effectively tackles
intrusion detection challenges in IoT boundaries. Shahriar et al. [27] introduced CAN Shield, a deep learning
framework designed for intrusion detection at the CAN bus signal level. Assessments conducted on two CAN
attack datasets demonstrate that CANShield possesses a high level of accuracy and promptness in identifying
sophisticated intrusion attacks.

However, current methods often lead to a high rate of missed detections and low recognition rates
for minority class attacks when handling imbalanced data. In such cases, the performance of deep learning
models is limited, preventing them from fully extracting critical information. In contrast, diffusion models
demonstrate unique advantages in handling complex data structures and noise. By effectively modeling the
distribution of data and the relationships between features, they can better capture the subtle differences of
rare-class samples. Furthermore, diffusion models possess adaptive learning capabilities, allowing them to
dynamically adjust parameters in imbalanced data environments to enhance the accuracy and robustness
of detection.

Therefore, the introduction of diffusion models in the latest intrusion detection technologies provides
new insights for handling imbalanced data. Greidanus et al. [28] proposed an intrusion detection strategy
utilizing diffusion models that can quickly respond to attacks. Wang et al. [29] introduced a network intrusion
detection method based on DDPM, which reduces the need for extensive annotations by using an unsu-
pervised reconstruction error approach. Krishnasamy et al. [30] proposed a dual-interaction Wasserstein
generative adversarial network that incorporates anisotropic diffusion Kuwahara filtering techniques in the
preprocessing unit to consider time series. However, despite the potential of diffusion models to become
the preferred choice in intrusion detection, existing methods still face some common issues. First, there is
insufficient modeling capability for complex data structures, and second, learning efficiency is low in high
noise and imbalanced data environments. These issues limit the effectiveness of diffusion models in practical
intrusion detection scenarios. Based on this consideration, we propose the Diff-IDS model to address the
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shortcomings of existing methods in extracting features from rare classes. This model introduces a Unet-
based feature mask representation enhancement algorithm that effectively processes noise and complex
feature structures in network traffic data. By efficiently leveraging the information provided by noise during
the denoising process, our model can more accurately capture the features of rare-class samples, thereby
significantly improving the overall performance of network intrusion detection.

3 Method

3.1 Enhanced Data Representation for Intrusion Detection
In real network environments, there is a significant imbalance between attack traffic and normal traffic,

which can easily lead to model bias, poor generalization, and other issues. Therefore, before inputting data
into the model for learning, we first perform data augmentation to reduce the distortion of evaluation
metrics caused by extreme data imbalance. We use the CI CIDS2017 dataset for representation processing
and provide examples. First, we calculated the correlation matrix between features to identify and remove
highly correlated feature columns. Specifically, we used the Pearson correlation coefficient to quantify the
correlation between features. For features with an absolute correlation coefficient of 1, we retained one and
removed the others to reduce the negative impact of multicollinearity on model performance. By removing
these highly correlated features, we selected a more independent feature set from the original features,
reduced the dimensionality of the model input, and improved training efficiency. To use these datasets in
image-based deep learning models, we converted the selected feature sets into grayscale image format. The
values are arranged in a two-dimensional matrix to represent the grayscale image. An example of these
images is shown in Fig. 1.

Figure 1: Grayscale representation of network traffic

Given that we have converted network traffic data into grayscale images, we further employed image-
flipping augmentation techniques, especially for grayscale images of minority classes, including horizontal
and vertical flipping. Flipping techniques have spatial significance in image processing, but in network traffic
data, they simulate the reordering of features. This reordering enhances the model’s robustness, allowing it to
better handle and recognize features in the data. It not only improves the model’s ability to recognize minority
classes but also enhances its overall sensitivity to data features. Finally, we integrate these augmented data
into the original dataset, providing richer and more balanced data support for subsequent model training.

3.2 Generative Diffusion Model for Unet Pre-Training
The diffusion model is a type of probabilistic generative model, primarily consisting of a forward

diffusion phase and a reverse diffusion phase. During the forward diffusion phase, the model gradually
introduces Gaussian noise, transforming the original data samples into a noise distribution. Specifically, the
change in data at each time step is described by the following equation:

q(xt ∣xt−1) =N (xt ;
√

1 − βt xt−1 , βt I), (1)
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In the reverse diffusion phase, the model learns how to reverse this process and recover the original data
from the noise. The reverse diffusion process is described by the following equation:

pθ(xt−1∣xt) =N (xt−1; μθ(xt , t), Σθ(xt , t)), (2)

where μθ(xt , t) and Σθ(xt , t) are the mean and covariance functions learned by the model. During the
sampling process, we use the U-Net network as a denoising model. The U-Net network, a deep learning
architecture widely applied in diffusion models, has demonstrated exceptional performance in image
segmentation and reconstruction tasks. This network is known for its unique symmetric U-shaped structure,
where the contracting path is responsible for capturing contextual information, and the expansive path
focuses on precise localization, enabling U-Net to effectively extract and fuse features at multiple scales.
Additionally, U-Net combines low-level features from the encoder with high-level features from the decoder
through skip connections, a design that enhances the network’s ability to preserve details and textures during
the denoising process, providing insights for us to extract structural information of network data from
noisy data.

To achieve better training results, we utilized a U-Net architecture autoencoder to predict the noise at
each time step during the diffusion process. The training objective of the model is to optimize parameters by
minimizing the following loss function:

Lsimple = Ex0 ,ε ,t [∥ε − εθ(xt , t)∥2] , (3)

where ε represents the noise added to the data, and εθ(xt , t) is the noise predicted by the model. By
minimizing this loss function, the model can effectively reverse the forward diffusion process and generate
new samples that closely resemble the original data.

3.3 Feature Masking Enhancement Algorithm
The overall framework of Diff-IDS is shown in Fig. 2. Data is input into the model, and we consider the

data as the noise data to be denoised at the t-th step (where t is a random time step from 0 to 20), denoted
as xt . xt is input into the U-Net network with frozen parameters, and the predicted noise εθ(xt , t) is output.

To effectively process the noise data output by U-Net and facilitate subsequent classification, we
designed a feature mask data augmentation algorithm, with the specific details shown as Algorithm 1. First,
we enhance the noise features using a masking method. Specifically, the sigmoid function is used to map the
noise features to a probability distribution, making the differences in the data more distinct. The sigmoid
function is defined as follows:

σ(xt , t) = 1
1 + e−εθ(xt ,t) . (4)

By applying the sigmoid function, each noise feature value εθ(xt , t) is converted into σ(xt , t), a
probability value between 0 and 1. This process effectively transforms and highlights the complex, noisy
features, making the data features more prominent.

After completing the masking process, we use the masked information to weight the original data. The
specific steps are as follows:

The original noise data εθ(xt , t) is element-wise multiplied by the mask feature obtained through the
sigmoid function σ(xt , t), forming the weighted data:

x′ = εθ(xt , t) ⊙ σ(xt , t), (5)
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where x′ represents the weighted data. This operation ensures that the original data corresponding to larger
values in the masked features has a greater impact on the weighted result, while smaller values reduce their
influence accordingly.

Figure 2: Diff-IDS model architecture diagram

Algorithm 1: Feature masking representation enhancement
1: Input: Training sample set X, number of classes N, number of training steps for the classification model

Epoch, total training iterations T
2: Output: Enhanced features x′′
3: Initialize model parameters θUnet , θMask , θC l s
4: while iteration count t < T do
5: for i = 1 to t do
6: Draw a batch of input samples from the training set: Xi ∼ P(X)
7: Randomly select a time step ts ∼ {0, 1, . . . , 20}
8: Extract features using the frozen U-Net: F = Unet(Xi , t)
9: Apply the sigmoid function to the features to generate a mask: M = Sigmoid(F)
10: Multiply original input and masked correspondence: x′′ = Xi ⋅M
11: end for
12: end while
13: Return x′′
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Further enhancement of the features can be computed as follows:

x′′ = x′

max(x′) . (6)

Here x′′ is the final enhanced feature, and max(x′) denotes the maximum value in the weighted data,
used for normalization to make the data features more distinct.

Ultimately, the features extracted are fed into the final one-dimensional convolutional network for
classification, yielding the ultimate classification outcomes. The results demonstrate that our approach
exhibits superior performance and accuracy.

3.4 End-to-End Optimized Model Training
To ensure the generalization capability of the model and to prevent overfitting, we adopted an end-

to-end training strategy. This approach allows the model to automatically adjust its parameters during the
training process to minimize prediction errors. During the classification training phase, as the goal is to
create a multi-class classification model, we employ one-hot encoding for categorical labeling. This method of
labeling signifies the most desirable output for the model. The loss function can be mathematically expressed
as follows:

L = −
N
∑
i=1

K
∑
c=1

yic log(pic) (7)

where L is the loss value, N is the number of samples, K is the number of categories, yic is the true label of
whether the i-th sample belongs to category c (one-hot encoded), and pic is the probability that the model
predicts the i-th sample belongs to category c. This loss function measures the difference between the model’s
predicted probability distribution and the true labels. The complete end-to-end optimized model training
process is shown in Algorithm 2.

Algorithm 2: End-to-end optimized model training
1: Input: Training sample set X, Labels Y, number of classes N, number of training epochs E, batch size B,

learning rate α, Feature Masking Representation Enhancement Algorithm M, One-dimensional
convolutional classifier C, total training iterations T

2: Output: Predicted Labels y
3: Load Algorithm M
4: Initialize Classifier C and optimizer Adam with learning rate α
5: for epoch = 1 to E do
6: for each batch (XB , YB) in X do
7: Output enhancement features (grayscale images): x′′ = M(XB , T)
8: Forward pass: Compute predictions yB = C(x′′)
9: Compute loss L = Loss(yB , YB)
10: Backward pass: Compute gradients ∇θL
11: Update model parameters using the optimizer: θ = θ − α ⋅ ∇θL
12: end for

(Continued)
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Algorithm 2 (continued)
13: end for
14: Return y

During the training phase, the U-Net model is designed to output grayscale images of network traffic,
which capture the structural features of the network traffic. These features are significantly different from
other types of network traffic images in high-dimensional space. To enhance the model’s ability to recognize
minority classes, we employed a feature masking enhancement algorithm, which combines blurred features
with original features to increase the discriminability of minority class features. In the final stage, we
abandoned traditional activation and classification functions, instead using one-dimensional convolution
and a single linear layer to classify the enhanced features directly, thus forming an efficient end-to-end
training method.

3.5 Lightweight Two-Stage Classification Model
In the field of cyberspace security, faced with the vast and complex network traffic data, the development

of a lightweight detection model is particularly urgent. Such a model can quickly process large amounts
of data, enabling efficient monitoring and analysis of network traffic. Therefore, we have designed a staged
model architecture aimed at achieving efficient and accurate network traffic detection.

Our model development is divided into two stages. In the first stage, we perform only the pretraining
of the diffusion model, which aims to initialize the U-Net network and freeze its parameters, laying the
foundation for subsequent feature extraction and the construction of the lightweight model. The lightweight
design is primarily focused on the second stage, with the goal of optimizing the model structure, reducing
the number of parameters, and computational complexity.

During the data processing phase, we convert network traffic data into an 8 × 8 × 1 grayscale image
format. For data that is insufficient to fill this format, we process it with zero padding to ensure data
consistency. In the second stage, we adopt an innovative training strategy: during training, the weights of the
U-Net network remain unchanged, significantly shortening the training time. Moreover, the entire model
contains only two components with parameters: the U-Net network and a one-dimensional convolutional
neural network (1D CNN). This design not only diminishes the count of model parameters but also
lessens the requirement for computational resources, thereby rendering the model more appropriate for
implementation in practical network intrusion detection environments.

4 Experimental

4.1 Experimental Setup
4.1.1 Datasets

To address the issue of imbalanced data samples encountered during intrusion detection, which can
lead to a decline in model performance across various metrics, this paper selects two datasets to validate
the effectiveness and performance of our proposed method. The chosen datasets include real-time network
traffic data and exhibit significant imbalances in data sample quantities across multiple aspects.

The CIC-IDS 2017 is a dataset developed in collaboration between the Canadian Communication
Security Establishment and the Canadian Institute for Cybersecurity, primarily used for network traffic
analysis and intrusion detection research. It encompasses five days of network traffic data, including normal
traffic and various common network attacks such as brute force, DoS attacks, and Heartbleed vulnerability
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exploitation, providing a rich and real-world experimental sample for the field of network security, aiding
researchers and developers in better understanding and defending against network threats.

The KDD 99 dataset is a dataset used in the 1999 KDD Cup organized by DARPA of the United States.
The dataset comprises approximately 4.9 million network connection records, including normal connections
and various types of attacks. It features 41 attributes, which include basic features, traffic features, time-
based features and host-based features. The KDD 99 dataset is a crucial benchmark in the field of network
security for anomaly detection and intrusion detection, and it is widely used in machine learning and data
mining research.

NSL-KDD is a dataset used for network security research and the evaluation of Intrusion Detection
Systems (IDS). It is an improved version of the original KDD Cup 99 dataset. NSL-KDD addresses some
issues present in the KDD Cup 99 dataset, such as data redundancy and uneven distribution of attack samples,
by providing more balanced training and testing datasets. It includes normal network traffic as well as various
types of network attacks, such as Denial of Service, Probe, and Privilege Escalation, allowing researchers to
develop and evaluate IDS models in a more realistic environment. The distribution of training and test sets
for the two representative datasets is shown in Tables 1–3.

Table 1: CIC IDS 2017 data distribution

Category Training set Test set
Benign 329,959 109,724

DoS hulk 172,318 57,806
DoS goldeneye 7739 2554
DoS slowloris 4358 1438

DoS slowhttptest 4170 1329
Heartbleed 10 1

Total 518,554 172,852

Table 2: KDD 99 data distribution

Category Training set Test set
Normal 97,277 60,592

DoS 391,438 229,825
Probe 4107 4166
R2L 1126 16,189
U2R 52 228
Total 494,000 311,000

Table 3: NSL-KDD data distribution

Category Training set Test set
Normal 67,343 9711

DoS 45,927 7460
Probe 11,656 2421

(Continued)
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Table 3 (continued)

Category Training set Test set
R2L 995 2885
U2R 52 67
Total 125,973 22,544

4.1.2 SOTA Models
We comprehensively assess our proposed model by comparing it with various state-of-the-art mod-

els, each model utilizing different techniques such as feature selection, SVM, self-supervised learning,
semi-supervised learning, neural networks, and knowledge distillation for efficient and effective intrusion
detection with a focus on reducing complexity and enhancing performance in IoT networks. The aforemen-
tioned methods can be categorized into network intrusion detection models based on machine learning and
deep learning. A comparison of the parameters of these models with those of the model proposed in this
paper is shown in Table 4.

Table 4: Comparison of implementation parameters between deep learning models and the Diff-IDS

Model Optimizer Parameters Batch size Lr Epoch
LOGNN [31] Adam 12,333 512 1e-4 20

SDAE-ELM [32] Adam 44,293 100 1e-4 100
LSTM-FCNN [33] Adam 4624 10 1e-4 40
IBYOL-IDS [34] Adam 1,578,145 512 1e-4 20
KD-TCNN [35] Adam 12,333 512 1e-4 40

CL-SKD [17] AdamW 14,494 1024 1e-3 20
SS-Deep-ID [36] Adam 663,434 512 3e-4 20

Diff-IDS Adam 778 128 2e-4 30

4.1.3 Evaluation Metrics
We used the following four metrics to evaluate model performance: True Positive (TP), False Positive

(FP), True Negative (TN), and False Negative (FN). Using these four metrics, we derived four performance
indicators for evaluating the model: Accuracy, Precision, Recall, F1-measure, FPR (False Positive Rate) and
FNR (False Negative Rate). The calculation formulas are as follows:

Accuracy = TN + TP
TN + FN + TP + FP

(8)

Precision = TP
TP + FP

(9)

Recall = TP
TP + FN

(10)

F1-measure = 2
1

Recall
+ 1

Precision

(11)

FPR = FP
FP + TN

(12)



4400 Comput Mater Contin. 2025;82(3)

FNR = FN
TP + FN

(13)

These metrics help us comprehensively assess the model’s performance in handling imbalanced datasets,
ensuring that the model can effectively detect various types of network attacks in real-world applications.

4.2 Model Training
The changes in loss during each phase of model training are shown in Fig. 3. It can be observed that

as the number of training epochs increases, the model’s performance improves steadily without any signs
of overfitting. Additionally, since we have completely separated the test set from the training set, there is no
issue of data leakage.

Figure 3: Training and testing loss performance

4.3 Effectiveness of Data Augmentation
In the methods section, we convert the data to grayscale images to enable the model to better

extract key features from different types of data. Due to the imbalance of samples in network intrusion
behaviors, it is necessary to perform data augmentation on the samples. In this section, we will compare the
detection efficiency of our model in binary and multi-class classification before and after applying the data
augmentation algorithm to validate the effectiveness of our data augmentation. The specific classification
outcomes are illustrated in Fig. 4.

The comparison result diagram is shown in Fig. 4. The figure on the left illustrates the binary
classification results of our model before and after enhancement, while the figure on the right displays
the multi-class classification outcomes. By transforming the data into grayscale images and employing
image data augmentation techniques to enrich the network traffic data, we have successfully mitigated the
discrepancies in the number of different attack types. This approach has bolstered the model’s learning
capacity, leading to an improvement across all performance metrics.

It can be observed from Table 5 that Diff-IDS-E is a model trained with data augmentation. Due to
the expansion of the training set through data augmentation, the training time of the model has increased.
However, we have achieved better accuracy at the cost of a slight increase in training time, which is an
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acceptable trade-off. Moving forward, we will use the Diff-IDS-E model trained with data augmentation as
our benchmark model.

Figure 4: Comparison results of the model before and after data augmentation in the CIC IDS2017

Table 5: Detection metrics for different classification tasks before and after data augmentation

Model Acc Pre Recall F1 Training time
Diff-IDS_binary 99.93 99.93 99.93 99.93 15.93

Diff-IDS-E_binary 99.94 99.94 99.94 99.94 16.07
Diff-IDS_multi 99.89 99.89 99.89 99.89 15.96

Diff-IDS-E_multi 99.93 99.93 99.93 99.93 16.34

4.4 Comparison of Lightweight Models
To verify the lightweight effect of the Diff-IDS model, we have employed traditional deep learning

models such as DNN, CNN, and RNN to perform multi-classification tasks on the CIC IDS2017 dataset. In
addition to accuracy, F1-measure, FNR, FPR, the number of model parameters, model size, and flops are also
used as indicators for model lightweightness.

The classification results are shown in Table 6. The Diff-IDS model excels in both classification precision
and lightweight model metrics. At a similar level of accuracy, our model boasts a reduced number of
parameters and floating-point calculations compared to DNN and RNN, resulting in a 76-fold decrease in
model size. In the context of comparable F1-measure, our model outperforms CNN across all lightweight
criteria. Although the distribution of the CIC IDS2017 dataset is imbalanced, the number of attack types is
not extensive, which allows all methods to achieve relatively good detection effects. However, in terms of
model size and other metrics, it is evident that our model, which employs one-dimensional convolution as
a lightweight classifier, demonstrates superior detection efficiency and lighter metrics standards.

Table 6: Comparison of lightweight NID models based on different deep learning networks

Model Acc F1 FNR FPR Params Size Flops
DNN 99.83 (↓0.10) 90.99 (↓8.94) 0.17 0.03 4758 229 KB 150,528
CNN 99.42 (↓0.51) 99.41 (↓0.52) 0.58 0.20 349,229 1.33 MB 2,295,070,720
RNN 99.83 (↓0.10) 91.52 (↓8.41) 0.17 0.05 58,630 0.22 MB 3,743,744

Diff-IDS 99.93 99.93 0.07 0.01 778 3 KB 40,960



4402 Comput Mater Contin. 2025;82(3)

4.5 The Classification Effect of the Model
4.5.1 Binary Classification

We classify all attack traffic as the anomaly class, thereby transforming intrusion detection into a binary
classification task. We utilize the KDD 99,NSL-KDD and CIC IDS2017 datasets to benchmark the Diff-IDS
model against the most recent cutting-edge models, aiming to substantiate the superiority of the model
proposed in our research.

Table 7 indicates that all models achieve an accuracy of over 96%, largely due to the CIC IDS 2017 dataset
imbalanced distribution, which, although addressed, is not excessively skewed, enabling all models to achieve
sound classification results. In precision, the Diff-IDS model leads with a top score of 99.94%, outperforming
the IBYOL-IDS model by 4.70%. Furthermore, the Diff-IDS model also yields the best outcomes in terms of
recall and F1-measure. From Table 8, we can observe that on the KDD 99 dataset, the metrics of our model
approach a level close to 1, reaching 99.97%. This is because the KDD 99 dataset has a relatively sufficient
sample size, allowing the model to be adequately trained. After in-depth feature mining, our model has
been able to effectively distinguish between attack traffic and normal traffic. In Table 9, although the attack
types are the same as KDD 99, the reduction in the amount of data in the NSL-KDD dataset has led to a
decrease in the accuracy of all models. However, the model we proposed still maintains an exceptionally high
detection capability of 99.84%. All other three metrics significantly outperform the comparative models, with
the recall rate even 35.72% higher than that of the SDAE-ELM model. Due to our use of data augmentation
to bridge the distribution gap between attack traffic and normal traffic in the training set, and the fact that
our network is capable of effectively integrating feature information from different levels while maintaining
precise representation of data details, our results are significantly superior to other methods.

Table 7: The binary classification performance of Diff-IDS and SOTA models on CIC IDS2017

Model Acc Pre Recall F1
IBYOL-IDS [34] 96.70 (↓3.24) 95.24 (↓4.70) 95.76 (↓4.18) 95.50 (↓4.44)

NB-SVM [37] 99.35 (↓0.59) – 99.24 (↓0.70) –
SS-Deep-ID [36] 99.33 (↓0.61) 99.47 (↓0.47) 99.23 (↓0.71) 99.35 (↓0.59)

CL-SKD [17] 99.80 (↓0.14) 99.81 (↓0.13) 99.80 (↓0.14) 99.80 (↓0.14)
Diff-IDS 99.94 99.94 99.94 99.94

Table 8: The binary classification performance of Diff-IDS and SOTA models on KDD 99

Model Acc Pre Recall F1
IBYOL-IDS [34] 99.25 (↓0.72) 99.74 (↓0.23) 99.33 (↓0.64) 99.53 (↓0.44)
SDAE-ELM [32] 93.57 (↓6.40) 98.69 (↓1.28) 93.19 (↓6.78) 95.86 (↓4.11)

CL-SKD [17] 99.95 (↓0.02) 99.95 (↓0.02) 99.95 (↓0.02) 99.95 (↓0.02)
Diff-IDS 99.97 99.97 99.97 99.97

Table 9: The binary classification performance of Diff-IDS and SOTA models on NSL-KDD

Model Acc Pre Recall F1
IBYOL-IDS [34] 92.67 (↓7.17) 92.48 (↓7.36) 92.06 (↓7.78) 92.27 (↓7.57)

NB-SVM [37] 92.35 (↓7.49) – 99.24 (↓0.60) –

(Continued)
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Table 9 (continued)

Model Acc Pre Recall F1
SDAE-ELM [32] 78.04 (↓21.80) 95.99 (↓3.85) 64.12 (↓35.72) 76.87 (↓22.97)

CL-SKD [17] 99.43 (↓0.41) 99.43 (↓0.41) 99.43 (↓0.41) 99.43 (↓0.41)
Diff-IDS 99.84 99.84 99.84 99.84

The ROC curve is not affected by imbalanced class distribution and is a very useful evaluation tool when
dealing with datasets with uneven positive and negative sample ratios. As shown in Fig. 5, our AUC value
reaches 0.9997 on KDD 99. On the NSL-KDD and CIC IDS2017 datasets, due to the addition of some new
attack types, the difficulty in identifying normal traffic and attack traffic increases. The performance metric
of Diff-IDS on these datasets is slightly lower, with an AUC value of 0.9984 and 0.9994, respectively. Overall,
the ROC curves from the three datasets indicate that our model exhibits excellent classification performance.

Figure 5: The ROC curve of Diff-IDS on CIC IDS 2017, KDD 99 and NSL-KDD

4.5.2 Multi Classification
The multi-class performance of the model on imbalanced samples is crucial for the ability to specifically

identify various types of attacks. We will compare the proposed model with state-of-the-art models on each
dataset in the coming year to demonstrate the effectiveness and robustness of our approach.

As shown in Table 10, even as the difficulty of the classification task increases from binary to multi-
class classification, our method maintains an accuracy rate of 99.93% on the CIC IDS2017 dataset. The
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experimental results show that, except for a 0.07% lower precision compared to LSTM-FCNN, Diff-IDS
outperforms all other algorithms in the remaining metrics. Furthermore, in the KDD 99 and NSL-KDD
datasets shown in Tables 11 and 12, our multi-classification metrics all achieve above 99%, far surpassing the
performance of all comparative methods, demonstrating the model’s efficient detection capability for various
types of attacks in multiple imbalanced network intrusion scenarios. Due to our proposed feature mask repre-
sentation enhancement algorithm, which effectively captures the intrinsic characteristics of anomalous traffic
data, even underrepresented minority class attacks can have their internal features extracted, enhancing the
model’s representational capability. This has led to the achievement of such remarkable detection capabilities.

The confusion matrix depicted in Fig. 6 presents a heatmap that illustrates various types of attacks,
utilizing color variations and brightness levels. This visualization aggregates the actual and predicted
outcomes of the dataset, providing insight into the model’s performance strengths. Due to our model’s ability
to effectively extract fine-grained features and deeply mine the underlying information in the data, we have
improved the representation and recognition capabilities of minority class attacks in imbalanced multi-
classification tasks. As can be seen from the confusion matrix, we demonstrate precise detection capabilities
in identifying minority class attacks such as Probe and R2L.

Table 10: The multi-classification performance of Diff-IDS and SOTA models on CIC IDS2017

Model Acc Pre Recall F1
KD-TCNN [35] 99.44 (↓0.49) 99.48 (↓0.45) 99.47 (↓0.46) 99.46 (↓0.47)

LSTM-FCNN [33] 99.49 (↓0.44) 100 (↑0.07) 99.60 (↓0.33) 99.70 (↓0.23)
CCFS-DT [38] 97.91 (↓2.02) 99.42 (↓0.51) 99.07 (↓0.86) 99.24 (↓0.69)
CL-SKD [17] 99.84 (↓0.09) 99.84 (↓0.09) 99.84 (↓0.09) 99.84 (↓0.09)

Diff-IDS 99.93 99.93 99.93 99.93

Table 11: The multi-classification performance of Diff-IDS and SOTA models on KDD 99

Model Acc Pre Recall F1
SVM [39] 98.00 (↓1.09) 98.75 (↓0.32) 97.75 (↓1.34) 98.75 (↓0.28)
DT [39] 98.50 (↓0.59) 95.25 (↓3.82) 96.25 (↓2.84) 95.75 (↓3.28)

LSTM-FCNN [33] 98.52 (↓0.57) 98.90 (↓0.17) 98.70 (↓0.39) 98.70 (↓0.33)
Diff-IDS 99.09 99.07 99.09 99.03

Table 12: The multi-classification performance of Diff-IDS and SOTA models on NSL-KDD

Model Acc Pre Recall F1
LSTM-FCNN [33] 98.94 (↓0.08) 98.90 (↓0.11) 99.10 (↑0.08) 99.00 (↓0.01)

KD-TCNN [35] 98.44 (↓0.58) 98.60 (↓0.41) 98.47 (↓0.55) 98.51 (↓0.50)
LOGNN [31] 98.70 (↓0.32) 98.40 (↓0.61) 98.70 (↓0.32) 98.50 (↓0.51)

Diff-IDS 99.02 99.01 99.02 99.01
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Figure 6: The confusion matrix of Diff-IDS on NSL-KDD (a), KDD 99 (b) and CIC IDS 2017 (c)

5 Summary and Outlook
This paper proposes a novel network intrusion detection model named Diff-IDS, which is based on the

diffusion model. It encompasses the visualization and augmentation of network flow data, feature masking
techniques based on Unet, and an end-to-end lightweight intrusion detection strategy, effectively addressing
the issues of poor training and detection accuracy caused by imbalanced network intrusion datasets, while
also achieving lightweight processing. Our model has been tested across multiple datasets including CIC
IDS2017, KDD 99, and NSL-KDD, and its high detection efficiency and robustness have been verified through
comparisons with state-of-the-art methods.

In future work, we plan to further research more advanced deep learning models and algorithms to
optimize the structure and parameters of our diffusion model, thereby improving the accuracy and efficiency
of detection. Additionally, we aim to explore the integration of network traffic data with other types of
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security data, such as log files and user behavior data, to develop a more comprehensive and precise intrusion
detection system. Although Diff-IDS has achieved outstanding results in network traffic classification,
there is still room for improvement in terms of hyperparameter selection and model lightweight. We plan
to refine the parameters using hyperparameter optimization techniques, aiming to decrease the model’s
complexity and computational expense through methods such as model quantization, network pruning, and
feature selection. Moreover, we acknowledge the challenge in determining the statistical significance of the
performance variations among classifiers, given the constraints of the current research environment and
experimental design. This issue is on our agenda to be tackled in subsequent research. We firmly believe that
with the continuous deepening of research and the expansion of exploration, network intrusion detection
technology based on diffusion models will play an increasingly critical role in strengthening cybersecurity
defenses, optimizing detection processes, and enhancing recognition accuracy.
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