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ABSTRACT: The High-Temperature Biaxial Testing Apparatus (HTBTA) is a critical tool for studying the damage and
failure mechanisms of heat-resistant composite materials under extreme conditions. However, existing methods for
managing and monitoring such apparatus face challenges, including limited real-time modeling capabilities, inadequate
integration of multi-source data, and inefficiencies in human-machine interaction. To address these gaps, this study
proposes a novel digital twin-driven framework for HTBTA, encompassing the design, validation, operation, and
maintenance phases. By integrating advanced modeling techniques, such as finite element analysis and Long Short-
Term Memory (LSTM) networks, the digital twin enables high-fidelity simulation, real-time predictive modeling, and
robust remote monitoring of HTBTA. The research contributes to bridging the knowledge gap in applying digital
twin technology to high-temperature multi-axial testing systems. Unlike existing solutions, the proposed approach
achieves <2% synchronization error, real-time monitoring with <100 ms delay, and predictive accuracy for temperature
distributions under extreme conditions up to 2500○C. The findings highlight the effectiveness of the digital twin
in improving system reliability, enhancing interaction efficiency, and reducing maintenance costs. This study not
only advances the application of digital twin technology in high-temperature material testing but also establishes a
foundation for broader adoption in aerospace, automotive, and other industrial sectors. Future research directions
include exploring non-proportional loading scenarios, expanding multi-environment simulations, and integrating
in-situ observation techniques.
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1 Introduction
Currently, with the rapid development of testing technology, information technology, and decision-

making theory, materials testing apparatus are increasingly incorporating multi-load and multi-physical
field coupling [1–3]. These advancements aim to accurately simulate special environments, which brings
test conditions closer to actual working conditions. These developments create more realistic conditions,
benefiting both theoretical research and performance testing [4,5].

As the core apparatus for testing the mechanical properties of thermal protection composite materials
under extreme conditions, the High-Temperature Biaxial Testing Apparatus (HTBTA) integrates two key
functions: high-temperature environment loading and synchronous biaxial stretching. It performs biaxial
tensile and compressive tests under coupled force and heat, identifying nonlinear damage defects in
composite materials. The HTBTA plays a crucial role in studying the service behavior of thermal protection
composite materials, ensuring their performance throughout their lifecycle [6].

Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2025.060194
https://www.techscience.com/doi/10.32604/cmc.2025.060194
mailto:lmzhou@jlu.edu.cn


4138 Comput Mater Contin. 2025;82(3)

The HTBTA can reach a loading temperature of 2500○C and a force of 80 KN during testing. Therefore,
stringent performance standards are required during the design and verification process. During operation
and maintenance, issues such as unclear observations, ambiguous mechanisms, and uncertain states may
arise. Constraints related to time, space, and execution costs make it challenging for conventional manage-
ment methods to accurately monitor the current status and precisely reproduce the testing process. Solely
relying on physical methods makes it difficult to visually monitor the apparatus. It is urgent to explore the
operating status and changes of various modules using advanced digital technology [7].

In recent years, as complex electromechanical apparatus has become increasingly digitalized, the
concept of the digital twin has gained attention [8]. Driven by data and models, digital twins offer high
fidelity and virtual-real integration, making them widely used in simulating mechanical apparatus [9,10].
Digital twin enables the mapping of physical apparatus operations in virtual space across multiple scales and
physical quantities [11]. Digital twin-driven design and manufacturing of high-end apparatus with intelligent
monitoring is gradually becoming the focus of researchers’ attention [12].

Digital twin is a simulation process that integrates multiple physical quantities, disciplines, scales, and
probabilities. It leverages physical entities, sensor data, operational status, and other data to model the
characteristics, behaviors, and performance of these entities, reflecting their full lifecycle [13,14]. Scholars
around the world have proposed their own digital twin modeling theories. Tao et al. [15–17] proposed a
five-dimensional model: ‘physical entity, virtual entity, service, twin data, and connection.’ They further
decomposed the virtual entity into geometric, physical, behavioral, and rule models. It was applied to
the implementation architecture of complex electromechanical apparatus, improving the accuracy and
effectiveness of health management and fault prediction of complex electromechanical apparatus. Aheleroff
et al. [18] developed a digital twin reference architecture that includes intelligent scheduled maintenance,
real-time monitoring, remote control, and predictive capabilities. Wu et al. [19] proposed an MCD archi-
tecture for digital twin-based systems that includes three phases: conceptual design, detailed design, and
virtual verification. Zhidchenko et al. [20] proposed a microservices-based architecture that connects digital
twins to actual devices through a data model that supports the creation and maintenance of digital twins
by different constituents. Schleich et al. [21] proposed a comprehensive reference model based on the
concept of Skin Model Shapes, which can be used for the implementation of digital twins in the design and
manufacturing of physical products. Wang et al. [22] proposed a dynamic evolution architecture for black box
device digital twins and designed an incremental external attention time convolutional network IExATCN
for 3D device pose estimation. These studies demonstrate the wide-ranging applications of digital twin in
mechanical engineering, providing strong theoretical support for its implementation.

In the research of digital twin modeling method for single apparatus, Luo et al. [23] established a digital
twin model for CNC machine tools, including a multi-domain unified modeling method, a mapping strategy
between the physical space and the digital space, and constructed a multi-domain unified DT descriptive
model using Modelica modeling language. Lai et al. [24] proposed an enabling technique for Shape.

Performance Integrated Digital Twin (SPI-DT) and analyzes the structural performance of complex
heavy apparatus using a cantilever crane as an example. Stegmaier et al. [25] proposed a digital twin sim-
ulation model for pneumatic vacuum injectors, using the Matlab Simscape system simulation environment
to implement a simplified model concept and validate it in experimental test setups and typical industrial
applications. Venturini et al. [26] proposed a digital twinning method for automotive steel wheels based
on the FE model to simulate the dynamic behavior of tires and rims by means of finite element analysis
techniques. In addition, in terms of interactive applications after digital twin modeling, Zhu et al. [27] used
the Unity3D platform to construct the digital twin of the robot, achieving synchronization and interaction
between physical and virtual entities. Cichon et al. [28] proposed surveillance and control robotic systems
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through digital twins and applies them to scenarios such as remote disaster relief assistance. Fonseca et al. [29]
used web technology to build a twin model of an equal-scaled ship and maps the data in real time.

The above literature provides the theoretical foundation and technical experience for applying digital
twin technology to apparatus. However, current efforts primarily focus on geometric modeling combined
with data acquisition for remote monitoring, and research on applying digital twin technology to materials
testing apparatus remains limited. Thus, implementing digital twin modeling and remote monitoring for
the entire lifecycle of HTBTA is an urgent challenge. To address these issues, this study proposes a digital
twin architecture for HTBTA. It establishes a digital twin model for the design, validation, operation, and
maintenance phases of the apparatus. This model fully transfers the physical apparatus into the digital world
and enables the construction of a remote monitoring platform based on data acquisition and transmission
technology. The main contributions of this paper as follows:

(1) The digital twin architecture for HTBTA is designed, comprising physical apparatus, digital
apparatus, software services, twin data, and connectivity interactions.

(2) The digital twin for HTBTA is constructed, integrating spatial-temporal relationships, physical
properties, behavioral logic, and implicit rules of the apparatus data model.

(3) The remote monitoring platform for HTBTA was developed and experimentally verified, demon-
strating the effectiveness of this study.

The remainder of this paper is organized as follows. Section 2 describes the digital twin architecture for
HTBTA. Section 3 describes the digital twin modeling process. Section 4 carries out the construction for the
remote monitoring platform. Finally, Section 5 concludes the paper.

2 Digital Twin Architecture Design for HTBTA

2.1 Five-Dimensional Modeling Architecture for HTBTA
This study used the five dimensional modeling architecture of digital twins to construct HTBTA digital

twins. The digital twin application is divided into five dimensions [16], including the physical entity of the test
apparatus, the virtual entity built, the realized software services, the twin data, and the interactive connection,
as shown in Fig. 1.

The physical apparatus, located in physical space, serves as the foundation for building a digital twin. The
digital apparatus is the core of digital twin technology. It must fully replicate the physical apparatus’s working
conditions, functions, and human interactions in digital space. Twin data drives the digital apparatus,
with all behaviors relying on data to evolve. Software services act as the module for human-computer
interaction and function realization, embodying the essence of digital twin technology. They integrate the
four dimensions—physical apparatus, digital apparatus, twin data, and connection interaction—to meet the
apparatus’s personalized functional requirements. Connection interaction acts as a communication bridge,
transmitting twin data across dimensions. It encompasses protocols, interfaces, network environments, data
acquisition tools, storage, and other transmission technologies.
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Figure 1: Five-dimensional modeling architecture of HTBTA

2.2 Digital Twin Architecture Design for HTBTA
2.2.1 Physical Apparatus of HTBTA

The physical apparatus used in this study is the high-temperature biaxial test apparatus shown
in Fig. 2. The design specifications require high-temperature loading in a vacuum state above 2500○C. It can
support complex static and dynamic mechanical loading modes, including stretching–stretching, stretching–
compression, and compression–compression. These loads operate at 0–10 Hz with a maximum force of 80 kN.
The load synchronization error across multiple axes must be less than 2%, and all components must maintain
structural safety and reliability.

2.2.2 Digital Apparatus of HTBTA
The digital apparatus of HTBTA comprises four types of models: geometric, physical, behavioral, and

rule models. These high-fidelity, fully mapped digital representations correspond to the physical apparatus.
These four types of models are applied at different phases: design, validation, operation, and mainte-

nance. Each model plays a specific role in enabling real-time linkage and dynamic evolution between the
physical apparatus and its twin model, as shown in Fig. 3. The geometric model forms the basis of three-
dimensional real-time monitoring of HTBTA and is primarily used in the design phase. It portrays the
spatial and temporal geometric relationships of the physical apparatus. The fidelity and accuracy of the
geometric model directly impact the immersion and precision of real-time monitoring, ensuring spatial
and temporal consistency with the physical apparatus. The physical model accurately describes the physical
properties of the apparatus and simulates corresponding physical effects. It is mainly used in the design and
validation stages. This model is often expressed mathematically, such as stress distribution, electromagnetic
field coupling strength, or temperature fields. These properties can be verified using finite element analysis.
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The behavioral model describes the apparatus’s behavioral logic and response mechanisms during operation,
accounting for external disturbances and internal signal inputs. It ensures the functional operation of the
apparatus and is mainly applied in the design and operation phases. The rule model is used in the operation
and maintenance phases by mining data generated during operation to uncover implicit rules and patterns,
which helps users better understand and monitor the apparatus’s behavior.

Figure 2: Overall view of HTBTA

Figure 3: Digital apparatus four-dimensional model of HTBTA
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2.2.3 Twin Data of HTBTA
HTBTA has two main sources of data: operational state data generated during testing and recorded

material testing data. To support the evolution of the digital twin model, it is essential to fuse and utilize
the heterogeneous data generated. This integration enables the digital twin apparatus to perform its service
functions through various connection and interaction tools. The twin data of HTBTA as shown in Fig. 4.

Figure 4: Twin data of HTBTA

2.2.4 Connection of HTBTA
This includes data collection and transmission apparatus, communication protocols, transmission

interfaces, and the network environment, as shown in Fig. 5. Once HTBTA generates real-time data, it
must be connected to the digital apparatus to provide real-time data support. This connection enhances
the efficiency of the service layer, improves human-machine interaction capabilities, and elevates remote
monitoring levels.

Figure 5: Connection of HTBTA

2.2.5 Service of HTBTA
In response to the requirements of HTBTA, after constructing the digital twin model of the experimental

apparatus, it is necessary to build a monitoring platform to remote monitor its operating status, create a
three-dimensional visualization model, and achieve real-time mapping with the physical apparatus, so that
the digital twin apparatus has a high real-time, high availability, and high interactivity service platform.
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2.3 Design of Remote Monitoring Platform
The remote monitoring platform of HTBTA is designed with a three-layer architecture. The bottom-up

sequence is as follows: the physical layer consists of various types of underlying data acquisition apparatus;
the network layer, represented by the server, is responsible for data storage; and the application layer is the
remote monitoring platform that provides functional displays, as shown in Fig. 6.

Figure 6: Remote monitoring platform of HTBTA

2.3.1 Physical Layer
The physical layer serves as the foundational data provision layer, enabling interoperability and inter-

connection between the test apparatus and the intelligent monitoring platform. The physical layer includes
several entities: the body of the test apparatus for real-time monitoring, various sensors, control devices,
and data acquisition terminals. Through hardware connections and software debugging, these components
extract and transmit necessary operational status data and material testing data. The collected data signals
are compiled and converted into a unified format to facilitate storage and access in the next layer.

2.3.2 Network Layer
The network layer acts as an intermediary, connecting the physical layer below and the application layer

above. It encompasses methods for data transmission and storage, and is also tailored to meet the actual needs
for data analysis and processing. Data transmission is primarily conducted through a Data Transfer Unit
(DTU) configured with the industrial control machine. This setup allows for remote uploading of data to the
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cloud, where it is stored on a cloud server. Subsequently, the browser connects to the server via WebSocket,
enabling real-time access to data on the monitoring platform, thereby facilitating processing in the next layer.

2.3.3 Application Layer
The application layer directly interfaces with users, providing essential services. It is primarily respon-

sible for the realization and interaction of platform functions, including the visualization of real-time
monitoring status of test apparatus. This is achieved through the integration of various functional modules
within the application layer, enhancing both informatization and visualization.

3 Digital Apparatus of HTBTA

3.1 Geometric Models
After optimizing the component selection and size of HTBTA during the design phase, the following

modules were identified:

3.1.1 Biaxial Mechanical Loading Module
This module is responsible for applying tensile force and measuring the displacement of the tested

specimen to calculate its mechanical performance parameters and failure information. It consists of two
loading spindles positioned opposite each other in the transverse and longitudinal directions, arranged in a
cross shape. The cross-shaped specimen is fixed at the center for testing.

3.1.2 High-Temperature Loading Module
This module applies high-temperature loading to the center of the tested part, simulating the operational

environment of heat-resistant composites. The module comprises an induction heating coil, graphite heating
element, thermostat, high-temperature colorimeter, thermocouple sensor, and temperature acquisition card,
which facilitate temperature loading and control within the high-temperature furnace.

3.1.3 Biaxial Loading Support Module
This module provides support and stability for the entire test apparatus. It features support legs fixed to

the ground, support blocks, and a spindle support frame to stabilize the biaxial loading module, preventing
radial jitter during loading that could interfere with test results. The support plate, eight support frames,
and four outer shells collectively ensure structural integrity and external protection for the biaxial loading
module. The three modules of HTBTA were assembled and rendered to obtain the geometric models shown
in Fig. 7.

3.2 Physical Models
3.2.1 Stress Analyses

To ensure the reliability of the fixture, a static analysis of the mechanical loading spindle was conducted
using ANSYS software.

The mechanical loading spindle is meshed with 40Cr structural steel, which has a tensile strength of 810
MPa, a yield strength of 785 MPa and an elongation of 9%. Based on the maximum force value of 80 kN under
test conditions as the input, and using the servo motor and electric cylinder end as constraint boundaries for
calculation, the stress and displacement cloud maps of the mechanical loading spindle are obtained as shown
in Fig. 8. The stress distribution of the loading spindle is primarily concentrated at the fixture end, with a
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maximum stress of 100.79 MPa. This value is lower than both the tensile and yield strengths of the material.
The maximum deformation measured is 0.11 mm, which exerts minimal influence on the testing process.

Figure 7: Geometric models of HTBTA

Figure 8: (a) Stress distribution cloud map (b) Displacement cloud map

3.2.2 Modal Analysis
Modal analysis was conducted on the biaxial loading support module using ANSYS, with the corre-

sponding vibration mode diagrams for the first six modes presented in Fig. 9. The natural frequencies for the
first six modes during operation are summarized in Table 1. The resonance frequencies of the first six modes
exceed the actual working frequency of 15 Hz, indicating that resonance will not occur and the test loading
conditions are satisfied.
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Figure 9: First six modal diagrams of the biaxial loading support module

Table 1: Resonance frequency of the six modes of the biaxial loading support module

Modal 1 2 3 4 5 6
Intrinsic frequency (Hz) 30.817 38.525 50.38 69.255 88.651 99.594

3.2.3 Environmental Field Analysis
Fig. 10 shows the high-temperature loading module, which employs a medium-frequency induction

heating power supply as its primary energy source. This power supply delivers alternating current of varying
frequencies into the induction heating coil, generating an alternating magnetic field. Utilizing the principle
of electromagnetic induction heating, this magnetic field produces induced eddy currents in the graphite
heating body, enabling the induction heating.

Heat transfer during the testing process comprises three main stages. First, the graphite heating body
is inductively heated by medium-frequency induction heating coils positioned on both sides of the test
specimen. The heat received by the graphite body is then uniformly transferred to its interior through
solid heat conduction. Finally, the graphite heating body conducts thermal radiation heat transfer to the
test specimen, ensuring that the central measurement area of the specimen reaches the required high
temperature. The vacuum atmosphere minimizes the influence on temperature distribution and heat loss
during the test.
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Figure 10: High temperature loading module

To achieve accuracy and stability in loading temperature fields, numerical analysis and finite element
simulation verification are required during the induction heating stage. The temperature distribution during
the analysis will be evaluated, utilizing a four-turn induction coil for electromagnetic induction heating of the
graphite heating element. A two-dimensional axisymmetric induction heating model will also be established
for finite element research using COMSOL.

The high-temperature furnace has a diameter of 700 mm and a height of 800 mm. The heating elements
on both sides of the specimen measure 80 mm in radius and 90 mm in height. The induced current is defined
as 40 A, the initial temperature as 293 K, the frequency as 100 kHz, the temperature coefficient as 0.0039,
the resistivity as 1.754, and the mass flow rate of cooling water as 0.0167. Assign corresponding materials
to each component: the induction coil is set as a hollow copper tube with a diameter of 4 mm, the inner
diameter of the tube is 2 mm and water is set, the central heating element and specimen are set as graphite,
the insulation layer is set as FR-4 resin, and other spaces are set as vacuum domain; By establishing a coupling
study of electromagnetic heat and surface to surface radiation heat transfer, the temperature field distribution
of graphite heating can be obtained as shown in Fig. 11. The temperature of graphite heating can reach 2520○C,
the temperature of the central specimen can reach 2500○C, and the temperature of the induction coil is 20○C,
which meets the experimental loading conditions.

3.3 Behavioral Models
3.3.1 Biaxial Control Strategy

In a multi-axis synchronous control system, the control is composed of two components: synchroniza-
tion and tracking. Synchronization control can result in synchronization errors, whereas tracking control
can lead to tracking errors.

As shown in Fig. 12, for the synchronization control problem of high-temperature biaxial apparatus,
the difference from traditional multi axis control is that during biaxial stretching, the X and Y axes are
mutually constrained and act as loads, with X1, and Y1 as the main axes and X2, and Y2 as the secondary axes,
making the coupling relationship between the four transmission mechanisms more complex. Due to the
vertical structure of HTBTA, each axis experiences different initial forces and initial servo gains, resulting in
the phenomenon of biaxial asynchrony during biaxial stretching. The essential reason for this phenomenon
is the mismatch of servo gains in the biaxial system and interference in the control process. To address
these two factors, this study designs a servo gain mismatch cross coupling controller, which allocates control
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variables by constructing servo gain coefficients and introducing quantitative relationships between speed
and synchronization errors.

Figure 11: Cloud diagram of temperature field and magnetic field distribution of high temperature furnace

Figure 12: Biaxial specimen force analysis

The control process for the loading spindle motion begins with the industrial computer sending control
instructions to the motion controller. The motion controller then executes closed-loop servo operations
based on these instructions to facilitate spindle movement. During the movement of the electric cylinder,
the grating ruler converts the position of the electric cylinder into pulses and feeds them back to the motion
controller. The motion controller obtains the current position, calculates the pulse frequency to be sent, and
sends it to the driver. Finally, the motion controller updates based on the feedback from the grating ruler and
force sensor, thereby obtaining the real-time displacement and current force value of the spindle motion.

The biaxial experiment uses synchronized main end control for biaxial drive, the position controller
uses fuzzy PID control, and its control block diagram is shown in Fig. 13, where R is the input command for
X1, Y1. e1, e2 are the tracking errors of two axes. u1, u2 are the output commands of the controllers of the two
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axes, respectively. d1, d2 are the load disturbances of the two axes. x1, x2 are the actual displacements of the
two axes. v1, v2 are the actual feed speeds of the two axes.

Figure 13: Block diagram of biaxial axis synchronized drive control system

The steady state tracking error of the system with step signal input is, neglecting mechanical and load
disturbances:

essi =
v

(1 + Ki)
(1)

where v is the reference feed rate and Ki is an open-loop function of the closed-loop system. Use proportional
gain:

Ki = Kpi Kv i (2)

where Kpi is the proportional gain of the motion controller in the axis system, Kv i is the controlled object
model gain coefficient.

Since both axes have the same commanded position, the synchronization error generated during the
motion of both axes can be expressed as

esn (t) = x1 (t) x2 (t) = e2 (t) − e1 (t) = (
1

(K2 + 1) −
1

(K1 + 1)) v (3)

As shown in Eq. (3), when the step signal operates in steady state, if K2 = K1, then esn (t) = 0, if K2 ≠ K1
then esn (t)and v are proportional. From this, it can be concluded that the difference in servo gain of the two
axes produces synchronization error, and the magnitude of the synchronization error is velocity dependent.

Based on the above description, a synchronization error compensation controller is designed, which
adds a synchronization error compensation term part while adding a speed error compensation term, and its
principle can be summarized as follows: the actual synchronization error is differentiated, and then the speed
synchronization error is obtained. Introducing the speed compensation error coefficient Kd c , multiplying it
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with the speed synchronization error, and outputting the product to the compensator, the correction of the
speed control quantity can be realized. The compensation strategy is as follows:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Cp1 (t) = Cp2 (t) = Kpc2 ∣ v1(t) + v2(t)
2 ∣ esn (t)

Cv1 (t) = Cv2 (t) = Kd c2 ėsn (t)
(4)

where Mv1 (t) and Mv2 (t) represents the synchronization error velocity compensation value of Xand Y axes
at the moment t, Mp1 (t) and Mp2 (t) represents the synchronization error position compensation value of
X and Y axes at the moment t, Kpc , Kd c is the compensation coefficient.

From Eq. (4), a synchronization error compensation controller can be designed with the structure
shown in Fig. 14. Through the design of servo gain mismatch cross-coupling controller, the robustness of
the system can be ensured, suppressing the system nonparametric saturation, parameter setup and external
disturbances, and guaranteeing the anti-disturbance capability of the multi-axis system.

Figure 14: Synchronization error compensation

3.3.2 Experimental Validation
This study aims to verify the effect of the servo gain mismatch cross-coupling control strategy on the

synchronized control of a biaxial system design test, utilizing a cross-shaped specimen. The specimen is made
from C-C composites, which are commonly used heat-resistant materials in aerospace vehicles, for tensile
experiments at room temperature and ultra-high temperatures. The installation method of the specimen is
illustrated in Fig. 15. The biaxial tensile test is carried out according to the synchronous loading strategy, with
a load ratio of 1:1, and the strain of the specimen is measured using Digital Image Correlation(DIC). The
accuracy of the test specification is required to be less than 2% of the allowable value of the relative error of
the force load in the four axes, i.e., the X1 and Y1 axes, the X1 and X2 axes, and the Y1 and Y2 axes.

Fig. 16a shows that fracture occurred when the force was stretched to approximately 51,000 N. According
to the allowable error value of 2%, the error between the two axes must be within 1000 N. The force
values of the four axes were synchronized throughout the test, with no overshoot or undershoot at the
endpoint. Fig. 16b indicates that the difference between X1 and Y1 axes remains within ±600 N, the difference
between X1 and X2 axes ranges from −200 to 0 N, and the difference between Y1 and Y2 axes is between −600
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and 0 N. The relative error of force load between X1 and Y1 axes is below 1.19%, between X1 and X2 axes is
below 0.39%, and the relative error of force load between Y1 and Y2 axes is below 1.17%. The overall relative
error meets the accuracy requirements. During this process, the following performance from secondary axis
X2 to main axis X1 and from secondary axis Y2 to main axis Y1 is excellent, with strong robustness, fast system
response speed, and no significant deviation from the main axis.

Figure 15: Cross specimen installation

Figure 16: Force variation at room temperature

Test the force variation of biaxial tension at 1700○C under the condition of auxiliary algorithm.
From Fig. 17a, it can be seen that the force values of the four axes were basically synchronized from
the beginning to the end of the experiment, and there was no overshoot or undershoot at the endpoint.
In Fig. 17b, it can be seen that the difference between X1 and Y1 remains within −400 to 300 N, which meets
the accuracy requirements. In Fig. 17c, it can be seen that the difference between X1 and X2 is between −200
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and 300 N, which meets the accuracy requirements. From Fig. 17d, it can be seen that the difference between
Y1 and Y2 is between −200 and 100 N, which meets the accuracy requirements.

Figure 17: Force variation at 1700○C

3.4 Rule Models
Accurate construction of high-temperature conditions is crucial for the success of tensile tests. Unstable

loading during operation can negatively affect the experiment and lead to safety issues. Thus, obtaining the
temperature distribution of the surrounding components and predicting future changes is essential.

Long Short-Term Memory (LSTM) neural networks are well-suited for predicting significant events
with long time intervals due to their unique gating mechanisms. This study inputs temperature time series
data from different operating conditions into the LSTM network to establish a data-driven prediction
model [30].Therefore, this study utilizes the advantages of LSTM and the collected time series data to reflect
the operational status of HTBTA and construct a rule model. Thermocouple sensors were arranged at four
key positions for measurement, as shown in Fig. 18. Two heating experiments were conducted under different



Comput Mater Contin. 2025;82(3) 4153

operating conditions, where (a) was the heating, insulation, and cooling stage at 1400○C, and (b) was the
heating and insulation stage at 1000○C, as shown in Fig. 19. The attributes of the collected data are temperature
values at four locations. Standardize the collected data before training the model, and divide the training set,
test set, and validation set in a 6:2:2 ratio. The parameter settings of LSTM are shown in Table 2.

Figure 18: Thermocouple temperature measurement at four points

Figure 19: Heating curves of two operating conditions
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Table 2: LSTM parameters and its description

Parameter Value
Optimizer Adam
Learn rate 0.001
Batch size 256

LSTM input layer 4
LSTM hidden layers 8

LSTM stacked layers 8 8
Fully connected layer architecture 24→128→128→128→4

Gaussian noise (0, 0.001)

Fig. 20 illustrates the MSE convergence curves of the model training process for both the training and
test sets. After 20,000 iterations, the loss values approach 0, becoming negligible after 100,000 iterations.
The model training process demonstrates that a high-performance temperature prediction model can be
developed using standardized data. The prediction accuracy of the trained model is evaluated using R2, Mean
Squared Error (MSE), and Mean Absolute Error (MAE).

Figure 20: Process of model training

Fig. 21 presents the performance of the trained model on the validation set. The R2, MSE, and
MAE values for the predicted and actual temperatures at four points achieve high and acceptable levels.
Thus, Fig. 20 confirms that the trained temperature model can accurately predict temperatures for the next
10 s.
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Figure 21: Performance of the temperature prediction model

4 Remote Monitoring Platform Construction
HTBTA requires the collection of the following two types of data during the experiments shown

as Fig. 22.

Figure 22: Material test data collection program

(1) Operational status data
The operational status data of the test apparatus indicates the stability of the entire test process. Key data

points include the vacuum level measured by the vacuum module, the center loading temperature of the
specimen recorded by the colorimeter in the temperature control module, temperature readings from eight
thermocouple sensors positioned around the fixture and specimen, and the water pressure measured by the
water-cooling module’s pressure gauge. The resistance vacuum gauge, temperature control meter, and water
pressure measurement instruments are connected to the industrial control machine via an RS485 serial port.
The thermocouple sensors collect data through a temperature acquisition card.
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(2) Material test data
The material test data are the target parameters of the test and must be recorded and saved in real

time. The mechanical properties of the tested specimen are calculated based on this data. This data primarily
includes the force value measured by the pressure transducer during tensile testing and the displacement
value of the spindle recorded by the scale.

The acquisition and feedback of test data are managed by the PMAC controller, which is integrated with
and connected to the industrial computer’s serial port for data acquisition and command interaction.

To enable remote monitoring of the test apparatus, collected data must be transmitted to a cloud server
for storage and then sent to a browser for presentation. This requires using electromagnetic waves for long-
distance wireless communication instead of physical cables.

Data transmission is facilitated by a Data Transfer Unit (DTU), which converts data from RS232/RS485
and other serial communication protocols to TCP/IP format. The WebSocket protocol is used for data inter-
action, involving a handshake request, response to the request, establishment of a connection, and full-duplex
communication. Once the WebSocket connection is successfully established, remote data transmission can
occur. The on-message function is used to obtain the JSON format data sent by the server for further
processing. At the start of the test load, the operational status data of the apparatus updates by collecting
corresponding data through various sensors. This data is then encapsulated into JSON format packets and
sent to the cloud server by the industrial control machine. When the server requests updated data, it initiates
WebSocket communication with the browser, extracts the data according to the WebSocket frame format,
and sends the corresponding data frame for parsing in the browser.

To enable real-time display of the virtual model and operation status of the test apparatus, a three-
dimensional visualization is constructed using WebGL technology. Users can interact with the model by
rotating, zooming, and panning to observe the components and operation mode in detail. They can also click
on the components of the apparatus to view detailed information, including the name, number, function,
and maintenance cycle.

The data displayed are the real-time operating parameters of the material testing apparatus. This data is
continuously collected by various sensors on the apparatus, transmitted to the server, and then retrieved and
displayed in real-time charts in the browser via WebSocket. The browser utilizes the WebGL architecture and
ECharts visualization plugin to update and render the page based on real-time data, displaying the real-time
3D scene interface as depicted in Fig. 23.

The visualization interface of this digital system displays key process parameters in real-time. These
parameters include the temperature curve of the cross specimen center, the current force and displacement
values of the four main axes, the force and displacement values of the loading target, and the temperature
readings from eight thermocouples distributed across different components. Additionally, it shows the target
and current values for vacuum degree and water pressure.

The three-dimensional model, along with the chart, illustrates the overall structure of HTBTE and the
internal operation status of the high-temperature furnace, offering users a more intuitive visual experience.
Testing has shown that the data transmission delay between the physical HTBTE and the digital HTBTE
consistently remains below 100 ms.
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Figure 23: Remote monitoring visualization interface of HTBTA

5 Conclusion
This study presents a digital twin-based modeling and application scheme for HTBTA. It establishes

a digital twin model encompassing the design, validation, operation, and maintenance phases, as well as a
platform that enables remote visualization and monitoring of the real-time operational status of HTBTA.

The main contributions of this study are as follows: the construction of a five-dimensional digital
twin architecture for HTBTA, which includes the physical apparatus, digital apparatus, data, connections,
and services. This study established a digital apparatus for HTBTA, designing and modeling it into three
modules within a geometric model. Stress analysis, modal analysis, and environmental field analysis were
conducted on the physical model to verify HTBTA’s reliability. Additionally, the behavior model designed
a servo gain mismatch cross-coupling control strategy. Both experiments at room temperature and 1700○C
have confirmed that the synchronous loading error of biaxial force values is less than 2%. The rule model
utilized LSTM to predict the internal temperature of the high-temperature furnace 10 s into the future, and
the R2 value can reach 0.99 or above through algorithm testing. A digital twin visualization model and scene
of HTBTA are built using WebGL, with data transmission delays consistently under 100 ms, enabling remote
state monitoring and real-time mapping of the physical apparatus.

Future research should focus on biaxial non-proportional load tests, incorporating friction and wear,
fatigue testing, and other force loading methods combined with high-temperature ablation and additional
environmental loading methods. Furthermore, innovative approaches such as laser scattering and high-
speed camera in-situ observation should also be explored for the digital twin model.
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