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ABSTRACT: With the rapid advancement of Voice over Internet Protocol (VoIP) technology, speech steganography
techniques such as Quantization Index Modulation (QIM) and Pitch Modulation Steganography (PMS) have emerged
as significant challenges to information security. These techniques embed hidden information into speech streams,
making detection increasingly difficult, particularly under conditions of low embedding rates and short speech
durations. Existing steganalysis methods often struggle to balance detection accuracy and computational efficiency
due to their limited ability to effectively capture both temporal and spatial features of speech signals. To address these
challenges, this paper proposes an Efficient Sliding Window Analysis Network (E-SWAN), a novel deep learning model
specifically designed for real-time speech steganalysis. E-SWAN integrates two core modules: the LSTM Temporal
Feature Miner (LTFM) and the Convolutional Key Feature Miner (CKFM). LTFM captures long-range temporal
dependencies using Long Short-Term Memory networks, while CKFM identifies local spatial variations caused
by steganographic embedding through convolutional operations. These modules operate within a sliding window
framework, enabling efficient extraction of temporal and spatial features. Experimental results on the Chinese CNV and
PMS datasets demonstrate the superior performance of E-SWAN. Under conditions of a ten-second sample duration
and an embedding rate of 10%, E-SWAN achieves a detection accuracy of 62.09% on the PMS dataset, surpassing
existing methods by 4.57%, and an accuracy of 82.28% on the CNV dataset, outperforming state-of-the-art methods by
7.29%. These findings validate the robustness and efficiency of E-SWAN under low embedding rates and short durations,
offering a promising solution for real-time VoIP steganalysis. This work provides significant contributions to enhancing
information security in digital communications.
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1 Introduction
With the proliferation of Internet technology and the reduction in communication costs, Voice over

Internet Protocol (VoIP) has gained widespread application. However, this has also brought new security
challenges, particularly the misuse of voice steganography techniques, which are increasingly being used as
potential means for covert information transmission and illegal activities [1–3]. Faced with increasing detec-
tion and monitoring pressures, malicious actors are turning to more advanced and covert information hiding
techniques. Steganography allows secret information to be cleverly embedded into seemingly ordinary VoIP
speech stream data without drawing attention [4]. For example, common steganography techniques such
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as least significant bit replacement [5] and Quantization Index Modulation (QIM) [6] can embed signif-
icant amounts of hidden information with minimal impact on audio quality. Therefore, as steganography
techniques advance, developing more efficient steganalysis techniques becomes increasingly important.

In response to the development of steganography techniques, steganalysis technologies have also
been continuously progressing. Current steganalysis methods can be broadly categorized into two types:
traditional machine learning methods relying on manual feature extraction, and modern methods based on
deep learning.

Traditional methods typically use manually designed features, such as spectral analysis [7] and entropy
measurements [8], combined with algorithms like Support Vector Machines (SVM) [9–11], extreme gradient
boosting (XGBoost) [12] or Random Forests [13] for steganalysis, suitable for small-scale data analysis.
However, these methods often show insufficient detection accuracy and limited generalization ability
when facing low embedding rates or new steganography techniques. Consequently, in recent years, deep
learning methods based on neural networks have gradually become a research hotspot in the field of VoIP
speech steganalysis, with representative works including methods based on Convolutional Neural Networks
(CNN) [14–17] and Recurrent Neural Networks (RNN) or Long Short-Term Memory (LSTM) [18–20]. These
methods can automatically learn complex features, improving the detection capability for low embedding
rate steganographic content and demonstrating stronger generalization ability. However, there is still room
for improvement in accuracy under low embedding rates and short duration scenarios, and real-time
performance needs further enhancement. To address these issues, this paper proposes a new Efficient Sliding
Window Analysis Network (E-SWAN), aiming to balance detection accuracy and computational efficiency.

Existing steganalysis methods typically need to make trade-offs between detection accuracy and
computational complexity when facing complex environments. These methods can be broadly categorized
into traditional machine learning methods that rely on handcrafted features and modern deep learning-
based methods. Traditional methods often struggle with generalization, especially when dealing with diverse
data types such as image, video, and audio. Recent advances in deep learning have provided more effective
approaches for steganalysis, as they can automatically learn complex features without the need for manual
feature engineering. In particular, deep learning for steganalysis has shown significant improvements in
the analysis of diverse data types, such as images, video, and audio, by leveraging deep architectures like
CNNs and RNNs [21]. The sliding window technique, as a fundamental method in signal processing, can
extract local features by moving a fixed-size window over the signal, effectively reducing computational
complexity in the process. Therefore, sliding windows are particularly suitable for handling large-scale data
tasks with high real-time requirements. Sliding windows not only preserve the overall structure of the signal
but also finely capture subtle changes in the data, making them an important tool in steganalysis. Based on
sliding window technology, the Convolutional Sliding Window (CSW) method [22] has achieved significant
success in VoIP speech steganalysis, especially in low embedding rate scenarios, but there is still room for
improvement. In light of this, this paper proposes a new E-SWAN. To optimize network architecture design
to significantly improve computational efficiency while ensuring detection accuracy, providing an efficient
solution for real-time VoIP speech steganalysis.

The proposed E-SWAN integrates two key modules, LTFM and CKFM, to address the challenges of VoIP
speech steganalysis. The LTFM (LSTM Temporal Feature Miner) leverages LSTM networks to capture long-
range temporal dependencies, which are essential for analyzing the temporal variations inherent in speech
signals. This allows the model to effectively detect temporal patterns related to steganographic embedding.
The CKFM (Convolutional Key Feature Miner), on the other hand, focuses on extracting crucial spatial
features using convolutional operations. These spatial features help identify localized changes in the speech
signal that are indicative of hidden information. By combining LTFM and CKFM, the proposed method



Comput Mater Contin. 2025;82(3) 4799

benefits from both temporal and spatial feature extraction, significantly enhancing detection accuracy and
robustness, especially under low embedding rates.

The core innovations of the E-SWAN are specifically reflected in the following aspects:

• Two-Module Deep Learning Architecture: This study proposes a novel deep learning model architecture
based on an Efficient Sliding Window Analysis Network (E-SWAN), which integrates two core modules:
the LSTM Temporal Feature Miner (LTFM) and the Convolutional Key Feature Miner (CKFM), based
on a sliding window approach. The LTFM module utilizes LSTM networks to deeply mine long-
term temporal features of speech signals, capturing intricate temporal dependencies introduced by
steganographic embedding. This capability is crucial for detecting subtle variations in compressed
speech streams. On the other hand, the CKFM module employs convolutional operations to extract
key spatial features that help identify local and fine-grained modifications indicative of steganographic
content. By combining LTFM and CKFM, the proposed method efficiently captures both temporal and
spatial information, enhancing detection performance across a wide range of embedding rates.

• Improved Detection Accuracy and Robustness: Our experimental results demonstrate that the proposed
model achieves a significant balance between detection accuracy and computational efficiency across
various embedding rates and speech durations. Notably, the combination of LTFM and CKFM not only
helps capture complementary feature aspects (temporal and spatial) but also results in superior detection
accuracy, particularly in challenging scenarios with low embedding rates and short speech samples. This
dual-module design ensures robust performance even under adverse conditions.

• Comprehensive Evaluation and Comparison: We compared E-SWAN against existing state-of-the-art
methods using multiple datasets and across different embedding rates. Experimental results consis-
tently indicate that E-SWAN outperforms other models in both detection accuracy and adaptability,
demonstrating stronger robustness across different speech durations, embedding rates, and stegano-
graphic methods.

The remainder of this paper is organized as follows. Section 2 reviews related work in VoIP speech
steganalysis, covering both traditional and deep learning-based methods. Section 3 presents a detailed
explanation of the proposed E-SWAN, including its design concept, network structure, and key compo-
nents. Section 4 describes the experimental setup, presents comprehensive evaluation results, and provides
in-depth discussion of the model’s performance under various scenarios. Finally, Section 5 concludes the
paper with a summary of contributions, limitations, and future research directions.

2 Background and Related Work
The process of hiding secret information in compressed speech involves embedding the data during

the speech encoding phase to ensure the embedded message remains imperceptible. Typically, secret data is
embedded by modifying certain codec parameters, such as Linear Predictive Coding (LPC) coefficients or
pitch delay parameters, to incorporate the hidden payload without degrading speech quality. Fig. 1 illustrates
the main stages at which embedding can occur during compression: within the pitch synthesis filter and the
LPC synthesis filter.

The extraction process, conversely, involves recovering this hidden information during decompression
by analyzing and extracting the modified parameters. This process is crucial in the context of information
hiding as it ensures the hidden message can be successfully retrieved at the receiving end.
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Figure 1: Process flow of information hiding and extraction in VoIP transmission

Steganography involves the embedding of secret information into audio signals by modifying certain
properties of the speech signal, such as quantization indices in QIM or pitch delay parameters in PMS. These
modifications are carefully designed to be imperceptible to the listener while maximizing the capacity for
hidden data embedding and ensuring minimal distortion of the original audio quality.

Speech Voice steganography techniques have continuously evolved with the rapid development of digital
communication in VoIP, where Quantization Index Modulation (QIM) steganography and Pitch Modulation
Steganography (PMS) steganography are two common and effective methods.

QIM steganography embeds secret data during the Linear Predictive Coding (LPC) vector quan-
tization process. For example, Xiao et al. [23] proposed Complementary Neighbor Vertex (CNV) QIM
steganography, which embeds data by partitioning QIM codebook information to improve embedding
efficiency and concealment. Subsequently, Tian et al. [24] proposed SEC-QIM, combining matrix encoding
to enhance resistance against steganalysis while improving embedding efficiency. Liu et al. [25] treated LPC
quantization indices as points in three-dimensional space, using a QIM-based nearest neighbor projection
point replacement technique to embed information into quantization indices, enhancing steganographic
concealment, and proposed the NPP-QIM steganography method.

PMS achieves secret information embedding by modifying adaptive codebook delay codewords. Huang
et al. [26] proposed the pitch search range steganography algorithm, synchronously embedding data during
low bit-rate speech encoding, allowing speech coding and steganography to occur simultaneously. Ren
et al. [27] proposed an AMR adaptive steganography scheme based on unvoiced speech, embedding
information by modifying pitch delay parameters while maintaining short-term stability of pitch delay. Liu
et al. [28] further optimized this method, proposing a new steganography scheme based on pitch delay
search, embedding information through fractional pitch delay while keeping integer pitch delay unchanged
to enhance steganographic concealment.

Steganalysis, on the other hand, is the process of detecting the presence of hidden information within
audio signals. This process involves analyzing speech features that may reveal subtle traces of data embedding.
Conventional steganalysis techniques have relied on handcrafted features combined with machine learning
classifiers, while recent approaches have increasingly employed deep learning models to automatically learn
and detect complex steganographic patterns.

Early steganalysis methods predominantly relied on handcrafted statistical features and used machine
learning algorithms for classification. For instance, Kraetzer et al. [29] analyzed Mel-frequency features
of audio signals and used SVM for classification to detect steganographic information in audio. This
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method leveraged SVM’s strong generalization ability to effectively detect audio steganography. However, the
manual feature extraction process is complex and susceptible to noise and feature selection issues. For QIM
steganography, Liu et al. [30] achieved certain detection accuracy by extracting statistical features generated
during the vector quantization process and modeling them using Markov chains. Similarly, for PMS, Ren
et al. [31] analyzed statistical features of pitch delay and detected hidden information using machine learning
methods. However, these methods depend heavily on expert knowledge in feature selection, making them
difficult to adapt to rapidly evolving steganography techniques. Moreover, manually extracted features often
fail to comprehensively capture complex steganographic traces, especially in low embedding rate scenarios.
Additionally, these methods often require redesigning features when facing new steganographic algorithms,
lacking universality and scalability.

In recent years, deep learning based steganalysis methods have made significant progress in the field of
VoIP speech steganalysis. Wu et al. [19] proposed a two-layer LSTM recurrent neural network steganalysis
model (RNN-SM). This model effectively captures long and short-term dependencies in speech stream
signals, greatly improving steganalysis accuracy. Subsequently, Hu et al. [15] developed the Steganalysis
Feature Fusion Network (SFFN) model, further expanding the application of LSTM in processing low bit-
rate VoIP speech streams, demonstrating the powerful performance of deep learning methods in complex
data environments.

Recent advancements in the field of speech steganalysis have led to the development of several novel
methods, particularly leveraging deep learning models and multi-domain information fusion techniques.
Li et al. [32] proposed SANet, a steganography algorithm-independent steganalysis model for low-bit-rate
compressed speech, utilizing an uncompressed domain intermediate representation to enhance detection
accuracy. Zhang et al. [33] introduced TENet, a transformer encoder-based steganalysis model that effectively
detects QIM-based steganography in VoIP speech streams, leveraging transformer encoders for high
detection efficiency. Guo et al. [34] proposed MDoIF, a method based on multi-domain information fusion
for AMR speech streams, which combines Bayesian network modeling with feature selection to achieve
robust performance, particularly at low embedding rates. These references provide valuable insights into
recent innovations in steganalysis techniques and underscore the growing trend of employing advanced deep
learning frameworks to improve detection robustness and accuracy.

The sliding window technique, as a powerful data processing method, has shown excellent results
in multiple fields. In image processing, sliding windows are widely used for object detection and image
segmentation tasks [35]. In natural language processing, sliding window techniques are applied to text
classification and named entity recognition [36]. In time series analysis, sliding window methods are used
for stock price prediction and anomaly detection [37]. The widespread application of this technique stems
from its ability to effectively capture local features and analyze data at different scales.

In the field of speech signal processing, sliding window techniques have also shown tremendous
potential. For example, in speech recognition, sliding windows are used to extract short-time spectral
features [38]. In speaker recognition tasks, sliding window techniques help capture dynamic features of
speech [39]. These successful applications provide a solid theoretical and practical foundation for introducing
sliding window techniques into the field of speech steganalysis.

Based on the widespread application and success of sliding window technology, Yang et al. [22] proposed
the innovative CSW method, cleverly combining CNN with sliding window techniques. The CSW method
uses CNN to extract spatial features while capturing time series information through sliding windows,
effectively improving the accuracy of steganalysis. This method can not only handle variable-length VoIP
speech stream signals but also capture subtle steganographic traces in speech while maintaining relatively
low computational complexity.
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However, although deep learning algorithms excel in many aspects, there is still room for improvement
in handling global features and adapting to complex steganography methods. Furthermore, how to further
improve the real-time performance and adaptability of models while maintaining high detection accuracy
remains an important challenge facing current research.

To address the shortcomings of the aforementioned steganalysis methods, this study proposes a new
network model for real-time detection of steganographic information in compressed speech streams. This
model is specifically designed to detect QIM and PMS algorithms, significantly improving detection perfor-
mance under different embedding rates and speech duration conditions. Our method aims to overcome the
limitations of existing approaches and provide a more efficient and accurate steganalysis solution through
innovative network design and feature fusion techniques.

3 The Proposed Method

3.1 Input Representation
The proposed model is designed to analyze two distinct categories of compressed speech inputs,

CNV and PMS, each requiring a specific input representation derived from the underlying compression
algorithms.

For CNV inputs, our focus is on the Line Spectral Pair (LSP) coefficients. In LPC based codecs, each
frame is typically encoded using three 8-bit vector quantization codewords. These codewords, which encode
the LSP coefficients, effectively capture the spectral envelope of the speech signal, resulting in a three-
parameter representation per frame. In contrast, PMS inputs necessitate the extraction of pitch-delay-related
parameters, yielding a four-parameter representation for each frame.

To facilitate efficient detection, we abstract the audio input as a matrix. Let T denote the total number
of frames in an audio segment. The input can then be represented as a matrix S ∈ RT×C :

S =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

s11 s12 ⋅ ⋅ ⋅ s1C
s21 s22 ⋅ ⋅ ⋅ s2C
⋮ ⋮ ⋱ ⋮

sT1 sT2 ⋅ ⋅ ⋅ sTC

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(1)

The elements of matrix S, denoted as si j, represent the j-th parameter of the i-th frame in the audio
segment. The dimensionality parameter C, which determines the number of columns in the matrix, varies
depending on the steganographic method under analysis. For CNV inputs, C is equal to 3, corresponding to
the three vector quantization codewords used to encode each frame. In the case of PMS inputs, C increases
to 4, reflecting the four pitch-delay-related parameters extracted per frame.

3.2 Overall Structure
The architecture of E-SWAN is composed of two primary subnetworks: LTFM and CKFM. These

subnetworks are strategically designed to capture distinct aspects of speech signals. The LTFM is responsible
for extracting global sequence-related features, while the CKFM focuses on mining local features. This dual-
pronged approach allows for a comprehensive analysis of the speech signal, leveraging both temporal and
spatial characteristics. The synergy between these subnetworks enables E-SWAN to effectively process and
analyze speech data for steganalysis purposes. The structural composition of E-SWAN, including the detailed
arrangement of its subnetworks, is illustrated in Fig. 2.
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Figure 2: E-SWAN network architecture

The LTFM comprises two LSTM layers and a Temporal Convolutional Network (TCN). LSTM layers
are employed to detect long-term dependencies in time series data, providing an optimal mechanism for
extracting global sequence-related features. TCN essentially captures temporal dependencies through dilated
convolutions. By constructing different convolutional kernels, the TCN architecture introduced in this paper
can utilize convolutional kernels of varying sizes to perform feature extraction in different subspaces, thereby
enhancing the expressive ability of the obtaining features.

The CKFM integrates the One-Dimensional Convolutional Network (OCN) as a key component. The
OCN employs one-dimensional convolutional layers to extract features from the input data, followed by
batch normalization and ReLU activation functions. This structure enhances the model’s ability to capture
local features, thus improving training stability and convergence speed.

Feature sets from LTFM and CKFM are aggregated to form a new feature collection, which is then
concatenated with the remaining feature information. This concatenated feature set undergoes a series
of operations through a fully connected layer, including Linear layer, Batch Normalization layer, ReLU
(Rectified Linear Unit) activation functions, and Dropout layer. Finally, the output is obtained through a
Sigmoid activation function.

During the training process, an Adam optimizer is utilized to optimize model parameters, and cross-
entropy loss is calculated between predicted results and true labels. Throughout the training phase, the
model’s performance is continuously evaluated by monitoring loss and accuracy metrics.

3.3 Sliding Window
Sliding window techniques play a crucial role in signal processing. The theoretical foundation of

thistechnique derives from time-frequency analysis, allowing for local analysis of audio signals while
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main-taining temporal continuity. Consequently, this study introduces a sliding window-based steganogra-
phy analysis algorithm. An example of the sliding window used in this study is shown in Fig. 3.

Figure 3: Sliding window example

The sliding window technique is used to segment the input into overlapping chunks, each consisting of
multiple feature dimensions over a time segment. While these segments are illustrated in a 2D manner to
indicate capturing multiple features at once, the data is then flattened into a 1D sequence for processing by
the LSTM, which handles the temporal dependencies across these segments. This representation allows us to
visually convey how spatial relationships within the features are retained during the initial extraction phase
before LSTM processes the temporal dependencies.

Let the detection window length L represent the number of frames contained in the detection window.
Given a stream S, the last received frame is designated as pk , and the formation of the current detection
window is shown in Eq. (2).

⎧⎪⎪⎨⎪⎪⎩

(pk−L+1 , pk−L+2, ⋅ ⋅ ⋅ , pk−1 , pk) , k ≥ L
(p1 , p2, ⋅ ⋅ ⋅ , pk−1 , pk) , k < L

(2)

When the next frame pk+1 arrives, the current detection window is reformed as shown in Eq. (3).

⎧⎪⎪⎨⎪⎪⎩

(pk−L+2, pk−L+3, ⋅ ⋅ ⋅ , pk , pk+1) , k + 1 ≥ L
(p1 , p2, ⋅ ⋅ ⋅ , pk , pk+1) , k + 1 < L

(3)

The algorithm introduced in this study, based on sliding window technology, reduces computational
overhead while maintaining the integrity and stability of feature extraction, avoiding unnecessary parameter
calculations. Within the scope of this study, the sliding window length is consistently L = 3, which facilitates
the extraction of relational features between each frame and its adjacent frames in speech streams.

3.4 LTFM Module
In the field of deep learning, effective extraction of multi-level feature information is crucial for parsing

complex data structures. For data with temporal characteristics, LSTM networks have demonstrated the
ability to capture long-term dependencies, as shown in Fig. 4.

This study designs a residual module architecture for processing input data with three-dimensional
features. These data are presented in the form of three-dimensional tensors, with dimensions corresponding
to batch size, time series length, and three feature channels. The framework uses two cascaded LSTM units
to extract temporal features from the input data, as shown in Fig. 5.
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Figure 4: LSTM model introduction

Figure 5: LTFM module network structure

To optimize the computational process, VoIP speech stream inputs are encoded and represented as FL

in the LSTM framework. Considering that the two LSTM layers are initialized with different weight sets, the
output of the first LSTM layer is represented as Fl 1, while the output of the second layer is represented as Fl 2.
Thus, the data expression after the feature extraction phase can be represented by Eqs. (4) and (5).

O f 1(X) = Fl 1(X) (4)

O f 2(X) = Fl 2(O f 1(X)) (5)

At the beginning of the network, the input tensor is processed through two LSTM layers. The first LSTM
layer captures the relationships between time steps in the input data while reducing the feature dimension
to 50. This transformation emphasizes the inherent temporal features in the sequence while reducing data
complexity. The subsequent LSTM layer maintains the 50-dimensional feature dimension, aiming to further
mine deeper temporal features and capture long-term dependencies in the data.

Feature extraction from local regions of the input matrix is accomplished through convolution opera-
tions. Specifically, assuming the k-th sliding window Lk is read, the convolution kernel of the convolutional
layer can be represented by Eq. (6).

W k =
⎡⎢⎢⎢⎢⎢⎣

wk
1,1 wk

1,2 wk
1,Lk

wk
2,1 wk

2,2 wk
2,Lk

wk
3,1 wk

3,2 wk
3,Lk

⎤⎥⎥⎥⎥⎥⎦
(6)
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When the convolution kernel overlaps with elements, features are extracted from the input, as shown
in Eq. (7).

ck
1,1 = f

⎛
⎝

3
∑
i=1

3
∑
j=1
(wk

i , j ⋅ ai , j) + bk⎞
⎠

(7)

where the weights represent the contribution of the j-th value in the i-th coordinate system, bk is the bias
term, and f is a non-linear function. Three-dimensional convolution can effectively extract spatiotemporal
features, denoted by the symbol cov3D(⋅), as shown in Eq. (8).

O f 3(X) = cov3D(O f 2(X)) (8)

To extract more comprehensive features of speech signals within the sliding window, multiple convolu-
tion kernels are used simultaneously for feature extraction. Assuming the number of convolution kernels in
the first layer is u1, the features extracted after the first convolution can be represented by Eq. (9).

Ck =

⎡⎢⎢⎢⎢⎢⎢⎣

ck
1,1 ck

1,2 ⋅ ⋅ ⋅ ck
1,Lu1

ck
2,1 ck

2,2 ⋅ ⋅ ⋅ ck
2,Lu1

ck
3,1 ck

3,2 ⋅ ⋅ ⋅ ck
3,Lu1

⎤⎥⎥⎥⎥⎥⎥⎦

(9)

The ReLU activation function is defined as shown in Eq. (10).

f (X) = max(0, x) (10)

The ReLU function introduces non-linearity, enhancing the network’s ability to model complex
relationships. After introducing the ReLU function, it can be represented by Eq. (11).

O f 4(X) = σ (O f 3(X)) (11)

Increasing the number of convolutional layers within a certain range is beneficial for extracting higher-
level signal features and subsequent feature analysis. However, excessive layers may lead to overfitting and
reduce detection efficiency. Therefore, another convolutional layer is added after the first one. The operation
of the second convolutional layer is essentially the same as the first, also containing multiple convolution
kernels, each with a width equal to Ck . The features extracted by the second convolutional layer can be
represented by Eq. (12).

Ek =
⎡⎢⎢⎢⎢⎢⎣

ek
1,1 ek

1,2 ⋅ ⋅ ⋅ ek
1,u2

ek
2,1 ek

2,2 ⋅ ⋅ ⋅ ek
2,u2

ek
3,1 ek

3,2 ⋅ ⋅ ⋅ ek
3,u2

⎤⎥⎥⎥⎥⎥⎦
(12)

where u2 in the formula represents the number of convolution kernels in the second layer, as shown
in Eq. (13).

O f 5(X) = cov3D(O f 4(X)) (13)
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After applying three-dimensional convolution, the output undergoes batch normalization. This layer
normalizes the input from the previous layer. This step reduces internal covariate shift, improving conver-
gence speed and enhancing model stability during training. The batch normalization operation is denoted
by BatchNorm3D(⋅) and can be formally expressed by Eq. (14).

O f 6(X) = BatchNorm3D(O f 5(X)) (14)

The output then passes through a ReLU activation function, resulting in the output shown in Eq. (15).

O f 7(X) = σ (O f 6(X)) (15)

After processing through two layers of convolutional networks, the output is obtained. The tensor
dimension is then reduced by removing unit-length dimensions and taking the average along the second and
third dimensions, resulting in a three-dimensional feature representation. This operation effectively reduces
the risk of model overfitting while maintaining the overall feature distribution by reducing the number of
network parameters. This not only alleviates the computational burden of subsequent processing but may
also enhance the robustness of feature mapping and remove redundant information.

The averaging operation can be formally represented by Mean(⋅), as shown in Eq. (16).

O f 8(X) = σ (Mean(O f 7(X))) (16)

After reducing the feature dimension, the resulting features are flattened into a one-dimensional tensor
O f , which is then used for subsequent processing in the network architecture. This method achieves superior
performance on complex sequential tasks by preserving important temporal information while reducing
data dimensionality.

3.5 CKFM Module
The CKFM achieves efficient feature processing of input data through a tight integration of OCN, Batch

Normalization layer, and ReLU activation functions, as illustrated in Fig. 6.

Figure 6: CKFM module network structure

In the initial stage of the module, the input data is a one-dimensional tensor with three channels.
This dimension is first processed through a one-dimensional convolutional layer, aimed at expanding the
data’s depth without increasing the number of parameters. Here, the number of input channels is set to
3, while the output corresponds to the depth of the convolutional tensor. Through this processing, each
convolution operation involves only a single element, effectively extracting features from the original data.
The one-dimensional convolution operation is represented by conv1D(⋅), as shown in Eq. (17).

Oc1(X) = cov1D(X) (17)
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Immediately following, one-dimensional batch normalization layer is applied, as shown in Eq. (18).

Oc2(X) = BatchNorm1D(Oc1(X)) (18)

The batch-normalized data then passes through a ReLU activation function. The ReLU function
introduces non-linearity to the network, enhancing the model’s ability to capture complex relationships
between inputs and outputs, thereby accelerating the neural network training process and improving model
performance, as shown in Eq. (19).

Oc(X) = σ (Oc2(X)) (19)

As Oc is a tensor of size 800 ∗ 1000, to reduce model complexity, the second dimension of Oc is reduced,
retaining only the maximum values along this dimension. This results in the Oc tensor being reduced to a
size of 800 ∗ 1, producing a feature sequence of length 800. This design strategy aims to enhance the model’s
predictive performance and generalization ability by extracting the most salient features from the data.

In this way, the CKFM module effectively processes and compresses the input data, extracting key
features while maintaining computational efficiency. This design not only reduces the number of model
parameters but also helps prevent overfitting, improving the model’s performance across various tasks.

3.6 Feature Fusion Network
In the process of constructing deep learning models to solve complex classification tasks, the quality

and representation of feature information play a decisive role in improving model performance. This study
integrates the output features of the LTFM module and CKFM module, enabling the model to capture and
interpret data information from different levels and perspectives. Based on this feature fusion, the model
effectively enhances the non-linear expressive ability of features by stacking a series of linear layers, thereby
improving classification effects, as shown in Eqs. (20) and (21).

Ol = Oc + O f (20)
W = concat(Oc , Ol , O f ) (21)

The concat(⋅) function is used to concatenate features from different sources along a specific dimension.
The residual module employs the LSTM model to capture deep information, while the fully convolu-

tional module effectively extracts local features. By adding the results of these two modules, a new feature
representation Ol is obtained. Then, features Oc , Ol , and O f are concatenated, allowing the model to fuse
representations from different levels and perspectives, providing comprehensive feature information for
subsequent classification tasks.

The concatenated feature tensor W is then input into two linear processing layers. The first linear layer
consists of a fully connected layer, batch normalization, ReLU activation, and Dropout operation. The fully
connected layer transforms the input dimension from 2400 to 2048, providing the model with a high-density
feature representation. This is followed by batch normalization, which standardizes features and accelerates
model training while improving stability. The ReLU activation function endows the model with the ability to
capture complex non-linear relationships between inputs and outputs, while the Dropout operation serves as
a regularization technique to mitigate overfitting and enhance the model’s generalization ability. The Dropout
operation can be simplified as Dropout(Yd , W), as shown in Eqs. (22) and (23).

W ′ = σ (BatchNorm1D(MLP(W))) (22)
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W ′′ = MLP (Yd (W ′)) (23)

The second linear layer consists of another fully connected layer and a Sigmoid activation function.
This layer is primarily used to fuse diverse feature information and optimize the classifier’s performance.
Finally, the Sigmoid function compresses the model’s output to the range [0, 1], representing the predicted
binary classification probability F. This probability value is used to determine whether the detected audio data
stream contains steganographic information, providing a basis for the final decision, as shown in Eq. (24).

DetectionResult = { Stego (F ≥ 0.5)
Cover (F < 0.5) (24)

where Stego represents steganographic sample files, and Cover represents carrier sample files.

4 Experiments and Analysis

4.1 Experimental Setup
We perform experiments on the speech dataset proposed in [18]. The experimental dataset comprises

English and Chinese speech samples, consisting of 72 h of English speech and 41 h of Chinese speech. These
original speech samples were initially stored in pulse code modulation format.

To construct the dataset required for the experiments, all speech samples were first encoded using the
G.729 encoder. G.729 is a low bit-rate (8 kbit/s) speech codec widely used in VoIP communications. The
steganographic technique proposed in [23] was employed to randomly embed 01 bit streams into the encoded
speech data, generating a steganographic speech dataset in CNV format. Additionally, the method described
in [26] was used to hide secret information in speech files, constructing the PMS dataset.

In this paper, the embedding rate is defined as the ratio of embedded bits to the total embedding capacity.
To comprehensively evaluate the model’s performance under different embedding rates, we constructed
training datasets with durations of 10s and embedding rates ranging from 10% to 100%. We also created
additional datasets with embedding rates from 1% to 9% for comparative analysis.

The steganographic speech dataset and carrier speech dataset were divided into training, testing, and
validation sets using a 6:2:2 ratio. This resulted in 9240 training speech files, 3080 testing speech files, and
3080 validation files for each dataset group.

All comparative experimental data were derived from the test set. Accuracy was primarily used as the
evaluation metric, calculated as follows:

Accuracy = TP + TN
TP + FN + FP + TN

(25)

where True Positive (TP) represents the number of correctly predicted positive samples, False Positive (FP)
represents the number of negative samples incorrectly predicted as positive, False Negative (FN) represents
the number of positive samples incorrectly predicted as negative, and True Negative (TN) represents the
number of correctly predicted negative samples.

Furthermore, to assess the model’s real-time performance, we introduced the average detection time per
speech stream as a detection time indicator. If the detection time for any steganographic technique is signifi-
cantly less than the speech stream length, it indicates that the model possesses real-time detection capability.

Experiments were conducted on a GeForce GTX 3090 GPU with 24 GB of video memory. The
implementation of models and algorithms utilized the PyTorch framework. During the neural network
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training process, Adam was selected as the optimizer, with a learning rate of 0.001, and cross-entropy was
used as the loss function. The maximum number of iterations was set to 200, with a training batch size of
128.

4.2 Ablation Experiments
This section primarily explores the selection of model hyperparameters and their impact on perfor-

mance, while also comparing the effectiveness of different model structures. The proposed model requires
the determination of certain key hyperparameters, such as the number of channels and convolutional layers.
Generally, increasing these hyperparameters can enhance the network’s representational capacity. However,
this may also increase the risk of overfitting, potentially reducing detection performance. Therefore, we
conducted experiments to determine the optimal hyperparameter configuration. To evaluate the impact of
different model substructures on performance, we conducted experiments using the CNV dataset with a
speech duration of 10s and an embedding rate of 10%. Table 1 presents the experimental results.

Table 1: Performance comparison of different models on the CNV dataset (10% embedding rate)

Model Chinese English
LTFM (L = 3) 81.07 80.48
CKFM (L = 3) 55.18 55.49

Remove TCN (L = 3) 56.32 58.19
LTFM + CKFM (L = 2) 80.80 83.20
LTFM + CKFM (L = 4) 80.01 82.33

Ours 82.28 85.18

From Table 1, it is evident that the removal of the TCN component led to a significant drop in
accuracy, with results of 56.32% for Chinese and 58.19% for English, compared to the original accuracy
of 82.28% and 85.18%, respectively. This represents a drop of approximately 26% for Chinese and 27% for
English. This highlights the critical role played by TCN in capturing temporal dependencies and ensuring
model robustness. The combination of LTFM and CKFM modules alone was not sufficient to achieve the
same level of performance, emphasizing the importance of temporal convolution in feature extraction. By
integrating TCN with LTFM and CKFM, the proposed model effectively leverages both temporal and spatial
feature representations, resulting in significantly improved detection accuracy, especially under challenging
conditions such as low embedding rates.

We also conducted experiments with different sliding window sizes. When processing Chinese and
English CNV datasets, results showed that a sliding window size of 3 achieved higher accuracy compared to
window sizes of 2 or 4.

4.3 Performance Analysis at Different Embedding Rates
This experiment utilized two distinct speech datasets (CNV and PMS), each comprising Chinese and

English speech samples. We employed five different detection methods (RNN_SM, SFFN, CSW, SANet, and
Ours) for the analysis. The embedding rates ranged from 10% to 100%, with 10 different embedding rates
cases. The experimental results for both datasets are presented in Tables 2 and 3.
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Table 2: Performance comparison of different models on Chinese speech set with 10 s sample length

Steganography
method

Steganalysis
method

Embedding rate (%)

10 20 30 40 50 60 70 80 90 100

CNV

RNN_SM 58.57 69.84 83.53 86.68 91.61 95.08 96.77 98.12 98.95 99.34
SFFN 58.39 78.52 91.19 94.29 97.79 98.46 99.04 99.21 99.58 99.94
CSW 74.47 86.58 93.53 96.53 98.09 99.03 99.76 99.90 99.98 100
SANet 74.99 85.17 93.15 95.72 97.53 98.05 98.91 99.15 99.48 99.91
Ours 82.28 93.27 98.25 99.50 99.70 99.84 100 100 100 100

PMS

RNN_SM 52.93 54.92 57.69 63.73 71.85 74.42 76.18 78.08 79.19 88.06
SFFN 51.89 60.69 72.83 79.16 88.23 89.50 92.20 94.74 95.14 96.54
CSW 57.52 62.18 74.06 81.49 89.42 91.40 94.87 96.37 97.44 98.56
SANet 57.15 61.89 73.89 80.47 88.87 90.91 93.42 96.11 97.21 98.19
Ours 62.09 71.67 80.27 85.74 92.03 92.62 95.52 97.21 98.23 99.76

Table 3: Performance comparison of different models on English speech set with 10 s sample length

Steganography
method

Steganalysis
method

Embedding rate (%)

10 20 30 40 50 60 70 80 90 100

CNV

RNN_SM 61.22 74.40 82.31 89.59 93.70 95.66 97.25 98.56 99.02 99.46
SFFN 67.19 85.23 93.28 95.87 98.09 99.11 99.37 99.53 99.75 99.88
CSW 78.03 90.91 95.40 98.17 99.31 99.77 99.90 100 100 100
SANet 77.34 89.18 94.33 98.10 99.17 99.53 99.80 99.92 100 100
Ours 85.18 94.65 98.29 99.33 99.79 99.96 100 100 100 100

PMS

RNN_SM 52.77 53.30 57.35 65.08 73.43 73.58 79.43 84.64 87.19 88.76
SFFN 52.05 63.20 75.61 85.64 88.06 90.70 92.34 95.87 96.78 97.89
CSW 58.68 67.71 76.02 85.17 89.83 93.09 94.68 96.45 97.21 98.04
SANet 58.08 67.42 75.78 85.10 89.80 92.83 94.50 96.05 96.72 97.96
Ours 62.20 73.54 79.04 87.04 89.98 93.87 94.86 96.88 97.89 98.66

As evidenced in Table 2, our proposed model demonstrated superior performance on the PMS Chinese
dataset, achieving an accuracy of 62.09% at a 10% embedding rate. The model’s accuracy consistently
improved as the embedding rate increased, reaching 99.76% at a 100% embedding rate. In comparison, while
the RNN_SM, SFFN, CSW, and SANet methods also showed improvement with increasing embedding rates,
their performance was consistently lower than our model across all conditions. Notably, compared to SANet,
our model achieved up to 7.1% higher accuracy at lower embedding rates on the CNV dataset, while for the
PMS dataset, the improvement ranged from 2% to 5%, particularly for embedding rates between 30% to 70%.

Table 3 presents similar trends for the English speech set. Our model maintained high accuracy across
various embedding rates, with its performance advantage becoming more pronounced as the embedding
rate increased. At a 10% embedding rate, our model achieved a 62.20% success rate, which steadily improved
to 98.66% at a 100% embedding rate.
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For the CNV dataset, our model’s performance was particularly impressive. In the Chinese speech set,
our model achieved an 82.28% success rate at a 10% embedding rate, significantly outperforming other
analytical methods which had accuracy rates below 75% under the same conditions. At a 70% embedding
rate, our model reached 100% accuracy, whereas RNN_SM, SFFN, CSW, and SANet achieved accuracies of
96.77%, 99.04%, 99.76%, and 98.91%, respectively.

The performance on the CNV English dataset was equally remarkable, with our model achieving
an 85.18% success rate at a 10% embedding rate. The accuracy continuously improved as the embedding
rate increased, stabilizing at 100% after a 70% embedding rate, consistently outperforming the comparison
methods.

These results comprehensively demonstrate the significant advantages and practical application value
of our proposed model in handling steganalysis tasks across a wide range of embedding rates. The model
exhibits excellent performance in both low and high embedding rate scenarios, showcasing its strong
adaptability and robustness. This performance advantage is not limited to a single language or dataset but
is consistently verified across Chinese and English speech and different steganographic methods, further
confirming the universality and practicality of our approach.

4.4 Performance Comparison at Low Embedding Rates
This experiment aims to conduct a comparative study of steganalysis under extremely low embed-ding

rate conditions. Tables 4 and 5 present the experimental results for detecting Chinese and English speech
using CNV and PMS datasets, with embedding rates ranging from 1% to 9%.

As shown in Tables 4 and 5, on the CNV Chinese dataset, the proposed model demonstrates excellent
performance. At an extremely low embedding rate of 1%, the model achieves a detection success rate of
52.26%, slightly higher than RNN_SM, SFFN, CSW, and SANet. As the embedding rate increases, the
performance steadily improves, reaching an accuracy of 80.14% at 9% embedding rate, surpassing RNN_SM
by 22.61%, SFFN by 23.56%, CSW by 6.92%, and SANet by 5.92%. Notably, at 5% embedding rate, our model
achieves 69.34% accuracy, while other models generally remain below 66%, with RNN_SM at 54.24%, SFFN
at 53.19%, CSW at 65.47%, and SANet at 65.24%.

For the CNV English dataset, the proposed model shows more prominent performance at higher
embedding rates. Although comparable to other models at low embedding rates, at 9% embedding rate, the
detection success rate reaches 83.42%. This performance significantly exceeds RNN_SM by 22.31%, SFFN
by 18.86%, CSW by 6.47%, and SANet by 7.53%. These results suggest that the proposed model has distinct
advantages in handling English speech steganalysis tasks.

Table 4: Accuracy of Chinese speech set at extremely low embedding rates (1%∼9%)

Steganography method Steganalysis method Embedding rate (%)

1 2 3 4 5 6 7 8 9

CNV

RNN_SM 51.06 52.16 52.97 53.46 54.24 55.11 56.54 57.43 57.53
SFFN 51.22 51.23 51.90 52.13 53.19 53.28 54.02 54.74 56.58
CSW 52.11 56.56 59.01 62.14 65.47 67.38 69.73 72.10 73.22

SANet 52.08 56.32 59.32 61.78 65.24 66.11 68.89 73.24 74.22
Ours 52.26 58.91 62.69 66.99 69.34 71.75 74.86 77.02 80.14

PMS

RNN_SM 50.22 50.55 51.33 51.46 52.14 52.27 52.56 53.04 53.54
SFFN 50.18 50.42 50.49 50.52 50.60 50.67 50.88 51.31 51.35
CSW 51.19 51.36 51.64 52.27 52.67 53.14 54.30 55.39 56.61

SANet 51.14 51.47 51.74 52.18 53.11 53.89 54.12 55.30 56.34
Ours 51.43 52.19 53.30 54.48 55.35 56.56 58.69 59.67 60.39
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Table 5: Accuracy of English speech set at extremely low embedding rates (1%∼9%)

Steganography method Steganalysis method Embedding rate (%)

1 2 3 4 5 6 7 8 9

CNV

RNN_SM 50.82 51.53 52.38 54.07 54.70 56.20 57.22 60.94 61.11
SFFN 50.63 50.89 51.98 53.06 55.74 56.33 60.38 61.55 64.56
CSW 52.63 58.99 62.17 65.79 67.84 71.26 72.89 75.59 76.95

SANet 51.87 57.26 61.78 65.22 67.36 69.33 72.76 75.21 75.89
Ours 54.00 60.26 65.58 67.90 72.34 76.68 78.74 80.81 83.42

PMS

RNN_SM 50.22 50.57 50.74 50.80 50.99 51.20 51.53 52.11 52.45
SFFN 50.11 50.29 50.38 50.48 50.68 50.93 50.98 51.02 51.25
CSW 51.13 51.54 51.97 52.58 53.01 54.37 55.36 56.14 56.33

SANet 51.07 51.77 51.88 52.21 54.89 55.67 56.98 57.26 57.92
Ours 51.41 52.42 53.42 54.84 56.05 56.84 57.36 58.59 59.18

On the PMS dataset, the proposed model also demonstrates advantages. For the Chinese PMS dataset,
the model achieves an accuracy of 60.39% at 9% embedding rate, notably higher than RNN_SM at 53.54%,
SFFN at 51.35%, CSW at 56.61%, and SANet at 56.34%. Similar results are observed for the English PMS
dataset, with the proposed model reaching 59.18% at 9% embedding rate, outperforming RNN_SM at 52.45%,
SFFN at 51.25%, CSW at 56.33%, and SANet at 57.92%.

In some experimental scenarios, particularly with very low embedding rates or datasets containing
high levels of variability and noise, the steganalysis results approached random guessing. This challenge
is not unique to our model but is common across steganalysis approaches when detecting subtle pertur-
bations. The minimal signal introduced by low-rate steganography can be easily masked by background
noise or variability in the cover data, highlighting current methodological limitations in handling such
subtle scenarios.

4.5 Performance Analysis at Short-Time Low Embedding Rate
Considering the impact of speech stream length on detection accuracy, we divided the dataset into

non-overlapping consecutive segments with speech stream lengths ranging from 0.1 to 1 s. This experiment
aims to evaluate the performance of the proposed model under different speech lengths and embedding
rates. Five embedding rates (10%, 30%, 50%, 70%, and 90%) and four speech lengths (0.1, 0.3, 0.5, and 1 s)
were considered in the experiment. The experimental results for the Chinese speech datasets are presented
in Figs. 7 and 8, illustrating the performance of various models on CNV and PMS datasets, respectively.

For the Chinese CNV speech dataset (Fig. 7), the proposed model demonstrates superior performance
across different speech lengths and embedding rates. As both parameters increase, all models show improved
detection accuracy, with our model consistently outperforming others. At 1 s speech length and 90%
embedding rate, our model achieves 97.13% accuracy, significantly surpassing comparative models.

It’s noteworthy that for shorter speech lengths (0.1 and 0.3 s) and lower embedding rates (10% and
30%), the advantage of our model is less pronounced. This may be attributed to the limited steganographic
information available under these conditions, posing challenges for effective detection. However, as speech
length and embedding rate increase, the superiority of our model becomes increasingly evident.

Similar trends are observed in the Chinese PMS speech dataset results (Fig. 8). Our model outperforms
comparative models in most scenarios, particularly at higher embedding rates and longer speech lengths. At
1 s speech length and 90% embedding rate, our model achieves 78.65% accuracy, an improvement of 0.96%
over the CSW model and 1.12% over SANet.
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Figure 7: Performance comparison of steganalysis methods on Chinese CNV speech at various embedding rates and
durations. (a) 0.1 s; (b) 0.3 s; (c) 0.5 s; (d) 1.0 s
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Figure 8: (Continued)
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Figure 8: Performance comparison of steganalysis methods on Chinese PMS speech at various embedding rates and
durations. (a) 0.1 s; (b) 0.3 s; (c) 0.5 s; (d) 1.0 s

Turning to the English speech datasets, Figs. 9 and 10 present results for CNV and PMS datasets,
respectively. As can be seen from Fig. 9, the performance trends largely mirror those observed in the Chinese
datasets. For the English CNV dataset, our model maintains its leading position across various conditions. At
1 s speech length and 90% embedding rate, it achieves 98.20% accuracy, showcasing significant improvement
over RNN_SM, SFFN, CSW, and SANet.

In Fig. 10, the English PMS dataset results further corroborate the model’s effectiveness. At 1 s speech
length and 90% embedding rate, our model attains 80.13% accuracy, surpassing the RNN_SM model by
4.25%, SFFN by 3.86%, CSW by 1.15%, and SANet by 1.32%.

In this experiment considering short-time speech segments, our model demonstrated clear advantages
over existing approaches. The performance at lower embedding rates and shorter speech lengths was
consistently higher. For example, at 0.5 s speech length and 30% embedding rate, our model achieved 3.2%
higher detection accuracy compared to RNN_SM, while improvements over SFFN, CSW, and SANet ranged
from 1% to 3% depending on the embedding rate.

These comprehensive results demonstrate the proposed model’s strong adaptability and stability in
handling speech steganalysis tasks across different languages, speech lengths, and embedding rates. The
model’s performance notably improves with increasing speech length and embedding rate, likely due to the
availability of more feature information, enabling more accurate detection.

4.6 Time Complexity Analysis
In VoIP communication, real-time transmission of speech signals requires steganalysis models to be

efficient enough to meet real-time processing demands. All models employ GPU (Graphics Processing Unit)
acceleration to ensure consistency and fairness of test conditions. Table 6 shows the detection time required
by various models to process a 1s speech stream.

The experimental results show that the proposed method requires an average of only 2.21 ms to process
a 1 s speech stream, which is 0.67, 0.56 and 0.36 ms faster than the SFFN, CSW, and SANet methods,
respectively. This result amply demonstrates the real-time processing capability of our algorithm. In terms
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of computational efficiency, compared to SANet’s 2.57 ms per 1 s speech stream, our model represents
an approximately 14% reduction in processing time, highlighting the potential of E-SWAN for real-time
applications in VoIP environments where computational efficiency is critical.

It is worth noting that although (RNN_SM has a slight advantage in detection time, its detection
accuracy fails to meet current high standard requirements.

Further analysis indicates that the proposed method achieves a good balance between real-time
performance and detection accuracy. The time advantage of this method over SFFN, CSW, and SANet will
have a significant impact when processing large amounts of speech stream data.
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Figure 9: Performance comparison of steganalysis methods on English CNV speech at various embedding rates and
durations. (a) 0.1 s; (b) 0.3 s; (c) 0.5 s; (d) 1.0 s
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Figure 10: Performance comparison of steganalysis methods on English PMS speech at various embedding rates and
durations. (a) 0.1 s; (b) 0.3 s; (c) 0.5 s; (d) 1.0 s

Table 6: Comparison of time required to detect a 1 s speech stream

Method Time (ms)
RNN_SM 1.49

SFFN 2.88
CSW 2.77

SANet 2.57
Ours 2.21
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5 Conclusion
This paper introduces the E-SWAN, a novel deep learning model for speech steganalysis that effectively

balances detection accuracy and real-time performance. By integrating residual and fully convolutional
networks, E-SWAN demonstrates superior feature extraction capabilities, particularly for low em-bedding
rates. Experimental results on CNV and PMS datasets show significant improvements over existing methods,
achieving up to 98.20% accuracy for 1 s speech samples with 90% embedding rates, while processing a
0.1 s stream in just 2.21 ms. These findings underscore E-SWAN’s potential for real-time VoIP steganalysis.
However, challenges remain for extremely short speech and very low embedding rates, suggesting directions
for future research. This work contributes to advancing speech steganalysis technology and enhancing
information security in digital communications.

Future work will focus on overcoming the limitations observed in low embedding rate scenarios where
detection accuracy is close to random guessing. This includes exploring more robust feature extraction
methods, ensemble learning, and domain adaptation to improve model performance under noisy conditions.
We also plan to enhance real-time processing capabilities and explore transformer-based architectures for
capturing global features more effectively.
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